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Abstract. The Semantic Web represents an extension of the current
web offering a metadata-rich environment based on the Resource De-
scription Format (RDF) which supports advanced querying and infer-
ence. However, relational database (RDB) management systems remain
the most widespread systems for (Web) data storage. Consequently, the
key to populating the Semantic Web is the mapping of RDB to RDF, sup-
ported by standardized mechanisms. Confidentiality and privacy repre-
sent significant barriers for data owners when considering the translation
and subsequent utilization of their data. In order to facilitate acceptance,
it is essential to build privacy models that are equivalent, explainable,
and usable within both data formats.
Differential Privacy (DP) has emerged to be the flagship of data privacy
when sharing or exploiting data. Recent works have proposed DP-models
tailored for either multi-relational databases or RDF. This paper lever-
ages this field of work to study how privacy guarantees on RDB with
foreign key constraints can be transposed to RDF databases and vice
versa.
We use classical RDB and RDF formalisms as well as an established
translation tool between the two (RDB2RDF) to compare DP models be-
tween the two data representations. We consider a promising DP model
for RDB related to cascade deletion and demonstrate that it is some-
times similar to an existing DP graph privacy model, but inconsistently
so. Consequently, we tweak this model in the relational world and pro-
pose a new model called restrict deletion. We show that it is equivalent
to an existing DP graph privacy model, facilitating the comprehension,
design and implementation of DP mechanisms in the context of the map-
ping of RDB to RDF. Conversely, we consider a useful DP model with
label differentiation capabilities on graphs (QL-outedge), and propose its
transposition into an original RDB distance.

Keywords: Differential Privacy · Relational Databases · Knowledge
Graph · RDB2RDF mapping.

1 Introduction

The Semantic Web represents an extension of the current web standardized by
the World Wide Web Consortium. It relies on the Resource Description For-
mat (RDF) and provides metadata-rich, reusable, and shareable data. RDF is
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a form of knowledge graph that can be coupled with ontologies such as OWL,
thereby enhancing the semantic value of the data and inference capabilities. A
key advantage of the Semantic Web is its ability to enrich data with well-defined
semantics and to interconnect datasets through the RDF ontology language. A
major motivation for this interlinking lies in the identification and integration
of heterogeneous related data sources, significantly enhancing the value of using
open datasets. As pointed out by reports such as Field et al. [1] and Michel
et al. [2], many domains, such as neuroscience, biology, or social sciences, re-
quire combining and analyzing datasets that span multiple scales and represen-
tations. Achieving this integration demands explicit semantics that allow diverse
databases to be interpreted in a common framework.

Currently, vast volumes of data still reside in relational databases (RDB),
and relational database management systems (RDBMS), such as Oracle and
PostgreSQL, remain among the most popular systems to manage data 1. Map-
ping data from relational databases to RDF is a key to populate the Semantic
Web. Transforming this massive amount of data into a machine-readable format
is likely to facilitate the integration of various data sources and the emergence
of new applications and innovative technological solutions. Mapping has been
an active field of research during the last two decades [2,3,4] initiated by the
RDB2RDF (Relational Database to Resource Description Format) incubator
group2.

However, the benefits of data integration and sharing also raise new con-
cerns. Data collected (whether stored in RDB or RDF) can contain sensitive
information. With the increasing attention on data privacy and the develop-
ment of privacy regulations (e.g., the General Data Protection Regulation in the
European Union), it is becoming increasingly important to protect sensitive in-
formation when sharing or allowing the utilization of data. Such concerns are a
significant obstacle for RDB holders in accepting the translation and subsequent
utilization of their data, as protection models vastly differ between RDF and
RDB formats. It is crucial to construct models that are equivalent and explain-
able within both formats, easing the comprehension of the guarantees provided in
RDF within the familiar context of RDB.

Differential Privacy (DP) [5] is a classical yardstick to measure privacy pro-
tection. Publication mechanisms that satisfy DP provide a form of indistin-
guishability. That is to say, it is difficult for an entity observing the output of a
DP mechanism to determine which of several adjacent or neighboring databases
was used as input. If two neighboring databases differ by the contribution of an
individual, an external observer may therefore not know with high confidence
whether the data pertaining to a particular individual has been used. Hence,
it may not infer anything significant on such data. The concept of adjacency is
thus a cornerstone of DP, defining what is protected. In the most simple con-
text, a database is a single, monolithic table of records (or tuples) that holds
private data. In this context, neighboring databases are those that differ by one

1 See : https://db-engines.com/en/ranking
2 http://www.w3.org/2001/sw/rdb2rdf/

http://www.w3.org/2001/sw/rdb2rdf/
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record, meaning that DP protects (or “hides”) the presence or absence of any
single record in the database [5]. The intuition here is that each individual par-
ticipates in, at most, one database record and therefore DP indeed protects the
contribution of each individual.

Defining neighborhoods for multi-relational databases, i.e., databases com-
posed of many tables, is challenging for many reasons (see, for instance, [6]).
The introduction of several relations usually comes with constraints, each con-
straint arising from the semantics of the database. It is thus no longer possible
to define an adjacent database simply by adding or removing a tuple in a table
since this may violate the database constraints. In this paper, we consider an
important type of constraint, foreign key (FK) constraints, sometimes associated
to cardinality constraints.

In graphs, however, there exists several notions of distances where neighbors
differ only locally, the most classic being the node distance (where two neigh-
boring graphs differ only by the deletion of a node and its incident edges) and
the edge distance (where two neighboring graphs differ only by the deletion of
a single edge). We note that those different distances create different neighbor-
hoods, and it turn, lead to DP models that provide different guarantees.

This paper focuses on distances and neighborhoods in the RDB and RDF
worlds that are equivalent through standard translation mechanisms to build
DP-models that are equivalent in both. More specifically, we focus on the fol-
lowing objectives:

O1 Establish a framework to match or compare DP models between the RDB
and RDF formalisms. DP models can be characterized by their distance,
which means we want mappings of databases from one formalism to the
other with some distance-preserving properties.

O2 Apply this framework to the DP model on RDB centered around cascade
deletion [7]. We aim to find a matching RDF DP model, and study potential
adjustments.

O3 Apply this framework to the DP model on RDF centered around outedges
of specific labels [8]. We aim to find a matching RDP DP model, and char-
acterize mapping choices for the comparison to be meaningful.

The fulfillment of these objectives would offer the benefit of a common ground
that actors considering DP in RDB and RDF can share, and leverage it to offer a
variety of DP models, actable in both formalisms, that can provide a wide variety
of privacy guarantees, depending on a specific application’s requirements.

Contributions

To meet these objectives, this paper:

– formalizes the notion of encoding (or mapping) from RDB to RDF, consistent
with R2RML mapping, that subsumes standard-compliant W3C recommen-
dations.
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– formalizes a generalized notion of cascade deletion in RDB covering both
transitive deletion and our proposal.

– studies the translation in RDF of the DP model relying on transitive deletion.
– introduces a meaningful relaxation of this model and demonstrates that it

is equivalent to an existing graph privacy model through mapping.
– proposes a RDB model and R2RML encoding choices that make it equivalent

to QL-Outedge privacy [8], which provides semantics for the neighborhoods.

The remainder of this paper is structured as follows. The next section details
relevant related works on mapping and DP. Section 3 introduces an illustrative
example as well as the formalization of the considered databases and mappings.
Section 4 proposes an analysis of the translation of transitive deletion in RDF
and details our proposed relaxation, demonstrating its equivalence to a well-
established DP model in graphs through mapping. Section 5 proposes a novel
distance in relational databases which, under adequate encoding, is equivalent
to the concept of QL-Outedge privacy. Adequacy of these encodings and their
impact on privacy is further illustrated in Section 6. Finally, Section 7 concludes
this paper and discusses future work.

This paper is an extended version of our previous works [9,10]. In [9], we
first introduced the problem addressed here, but only in an informal manner
and without formal proofs of model equivalency through mappings. A first for-
malization, focusing on cascade deletion, was later proposed in [10]. Building
on these foundations, the present paper extends the formalization of RDB and
RDF to the encodings that connect them, and broadens the comparative study
of distances to include QL-outedge. This requires particular choices in R2RML
mappings in order to admit an equivalent in RDB.

2 Related Work

This section introduces background on RDB to RDF mapping, before introduc-
ing DP and its adaptations to RDB and RDF databases. To the best of our
knowledge, this paper is the first at the intersection of these two fields, focusing
on the impact of the RDB to RDF translation on DP-models and the definition
of equivalent DP-models in both worlds.

2.1 Mapping RDB to RDF

In September 2012, the RDB2RDF Working Group published two Recommen-
dations: Direct Mapping (DM) [11] and customized mapping (CM) R2RML [12].

The W3C DM recommendation defines simple mapping rules to map rela-
tional data to RDF [13]. The RDF generated straightforwardly is based on the
structure of the database schema. URIs are automatically generated [14]. Many-
to-many relations in relational databases are generally represented as a join table
where all its columns are foreign keys (FKs) to other tables (n-ary relations).
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One missing part from the DM is to represent many-to-many relations as simple
triples [15]. When DM is applied, the join table will be translated into a dis-
tinct class, which conflicts with the canonical representation of many-to-many
relationship in RDF.

CM R2RML [12] is a RDB to RDF mapping language that allows to manually
customize the mapping. The expert user has to know the RDB and the domain
ontology to express the schema utilizing an existing target ontology. The W3C
RDB2RDF Working Group proposed a set of core requirements for R2RML [16],
including the exposition of many-to-many join tables as simple triples [15].

Due to the representation of many-to-many join tables as simple RDF triples,
we consider mapping mechanisms conform to the R2M2RL specifications.

Extended mapping models. RML [17][18] extends the R2RML mapping
language to support the mapping of data sources with diverse formats, including
data formats like XML, CSV/TSV and JSON. However, it does not tackle the
constraints associated with handling various kinds of databases and query lan-
guages. xR2RML [19], a mapping language developed as an extension of R2RML
and RML. Beyond relational databases, xR2RML also supports the mapping of
many non-relational databases to RDF. It is intended to flexibly adjust to di-
verse data models and query languages. In addition, it can handle data under
heterogeneous formats. In the rest of the article, we focus on R2RML as it is the
original standard, but adapting our work to cover extensions such as RML and
xR2RML could be an interesting perspective.

2.2 Differential privacy

Differential Privacy (DP) proposes a robust mathematical framework for privacy
protection [20]. An algorithm respects DP if observing its output does not permit
to determine with strong confidence which of several neighboring dataset was
used as input.

Definition 1 (ϵ-differential privacy). Given ϵ > 0, a function f : X → S
and a distance d over X , is ϵ-differentially private if, for any couple of datasets
(D,D′) ∈ D2 such that d(D,D′) = 1, and for any S ⊆ S:

Pr[f(D) = S] ≤ eϵ × Pr[f(D′) = S]

where probability Pr is over the randomness of f .

Parameter ϵ is also known as the privacy budget, a smaller value indicating
stricter privacy requirements. Two datasets at a distance one are said to be
neighbors. One classical way of achieving DP for a function (e.g. a query) f is
to add an appropriate amount of noise to its results, calibrated by the global
sensitivity (GS) of f . GS measures the maximal variation of the query result
when evaluated upon any two neighboring databases.

Definition 2 (Global Sensitivity (GS)[5]). For a function f : D → S and
a distance d over X for all datasets (D,D′) ∈ D2:

df = GSf = max
D,D′:d(D,D′)=1

∥ f(D)− f(D′) ∥1
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where ∥∥1 denotes the L1 norm.

GS depends only on f , the considered space of databases X , and the distance
d it is associated with (i.e., that identify neighboring databases). It is indepen-
dent of the database itself. For queries with low GS, only a small magnitude of
noise needs to be added to respect DP. On the other hand, when the GS is high,
a substantial amount of noise must be injected to achieve DP, which will impair
data utility.

DP for RDF DP is immediately applicable to any space X given a proper dis-
tance d or notion of neighborhood over X . When considering graphs, two models
prevail : node-DP and k-edge-DP. We consider a third, more recent, proposal in-
tegrating semantics, QL-edge-labeled-DP.

In node-DP, neighboring graphs differ by a single node and all its incident
edges, thereby protecting each node along with its incident edges. While node-DP
is the strongest of these models, it poses a particular challenge: two neighboring
graphs can differ by an arbitrarily large number of edges, which may lead to
high variations in outputs across the neighborhood and result in low-utility DP
mechanisms.

k-edge-DP [21] is a looser model in which two graphs are adjacent if they
differ by up to k edges. Compared to node privacy, edge privacy is limited to
protecting k relationships. 1-edge-DP is simply called edge-DP and the most
commonly employed in the literature.

We note that these two models do not discriminate nodes or edges based
on attributes or labels. Such considerations have value in privacy, as informa-
tion is not uniformly sensitive: for instance, the timestamp of a tweet is usually
considered less sensitive than a personal address. Reuben [7] studied the adapta-
tion of DP to edge-labeled directed graphs by defining sets of sensitive labels to
which the protection is restricted. Reuben introduced the notion of QL-edge-label
neighboring graphs: graphs that differ by a set of outedges of a node with specific
labels. The underlying idea behind this definition is that, for example, in RDF
graphs, some relations of an entity may be innocuous and some should be con-
sidered sensitive, shown by particular labels. Given this neighboring definition,
the author presented QL-edge-labeled-DP, that considers edges’ semantics by
only protecting edges of a given set QL (i.e., sensitive labels). As such, it only
protects a predetermined subset of edges. This notion can be transposed to most
models. For example, k-typed-edge DP could be defined as the model where two
adjacent graphs differ by up to k sensitive edges.

Reuben considers the outedges of a node since it denotes the contributions
made by that node within the graph. This semantically grabs the idea of the
presence of an individual in a graph while not being present in another graph,
analogous to how private data is modeled as a tuple in the relational model.
Throughout this article, we will use QL-Outedge DP as a synonym for QL-
edge-labeled DP to better reflect the considered model. The related distance
for QL-Outedge privacy is presented in [8].
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DP for multi-relational databases In the DP literature [5], a database is
commonly a single, monolithic table of records (or tuples) that holds private
data. Multi-relational databases, i.e., databases composed of many tables, are
less popular. However, DP has also been investigated in this setting [22,23,24].

PINQ [22] and FLEX [23] consider a simple definition of neighboring
databases, which does not consider foreign key (FK) constraints. According to
their definition, neighboring databases possess the same set of relations and at-
tributes and differ by exactly one tuple in one relation.

The PrivateSQL system [24] introduces a richer notion of neighboring
databases that considers constraints in the schema, in particular primary and
FK constraints. Under this model, upon deletion of one tuple from one relation,
many tuples in other relations have to be deleted because of the existence of FK
constraints. PrivateSQL enables privacy to be designated at multiple resolutions.
The data owner can flexibly designate which entities in the schema need privacy.
The key idea is that one relation is specified to be the primary private relation.
Privacy protection extends to additional private relations linked to the primary
one via FKs, which are called secondary private relations.

Under this DP policy, two database instances are considered neighbors when
one can be obtained from the other by deleting a record x from the primary
private relation and cascade deleting other records that refer to x through FKs.
One requirement in this approach is that the schema needs to be acyclic. Based
on this proposal, researchers began to consider FK constraints when defining
neighboring databases [25,26].

Due to the consideration of FK constraints, the familiarity of cascade dele-
tion on which its neighborhood concept relies, and the general adoption of the
model presented in [24], we adopt this model as the starting point for O2 and
aim at providing an equivalent model in RDF. The related formal distance defi-
nition will be restated in our model in Definition 9.

3 Setting: formalizing the concepts

This section introduces an illustrative example based on a Twitter dataset that
will be used in the remainder of the paper. It then proposes the formalization of
RDB, graphs representing RDF databases, and the mapping from RDB to RDF.

3.1 Illustrative example

Illustrative dataset In this paper, we use as an illustrative example a simple
Twitter database, inspired by the Sentiment140 dataset composed of 1.6 million
tweets 3. Its ER diagram is presented in Fig. 1 and an instance of the database
is illustrated in Fig. 2.

3 https://www.kaggle.com/kazanova/sentiment140

https://www.kaggle.com/kazanova/sentiment140
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Fig. 1: Entity-Relation Schema of the Sentiment140 dataset

Fig. 2: A database instance of the schema in Fig. 1

This example presents two many-to-many relationships: 1) between Person
and Tweet, captured by the References table with FK referencing the id of a
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tweet and the id of the persons it references; 2) between Tweet and Emotion,
captured by the HasEmotion table. The Tweet table possesses a FK “p_id” from
table Person referencing the person that authored the tweet.

Our mapping process As we aim to compare mechanisms and DP models
in RDB and RDF, we require a framework in which we can specify encodings,
or mappings, from one to the other. We select R2RML-F [27], an R2RML im-
plementation available on Github4. The R2RML mapping process is done with
R2RML-F whose engine takes as input the RDB, the R2RML mapping file that
dictates the direction of relations, and the format of the output file to generate
RDF data.

R2RML represents one-to-many and many-to-many relations as simple RDF
triplets, which is to say edges in our graphs. Since RDF is an oriented formalism,
such mappings require user input to specify in which directions such triplets will
end up pointing. We will manually write R2RML mapping files exploring the
consequences of those decisions. For instance, in Fig. 3a, the mapping of many-
to-many relations, such as References and HasEmotion, can be made in either
direction. We choose that Tweet references go from tweet to person, and Emotion
labelling goes from tweet to emotion, but this choice is left up to the user by
the W3C recommendations 5. For the one-to-many relation that links a tweet
to its author (modeled by the foreign key p_id in the Tweet table). R2RML
also allows for this relation to be oriented either way. A default mapping would
follow W3C recommendations to model it by an edge going from the referencing
table (here, Tweet) to the referenced table (here, Person) as depicted in Fig. 3a.
However, for our considerations, we will often consider non-default mappings
that do not follow this rule, for instance in Fig. 3b, which depicts a fragment
of another encoding of this database, where the edge representing the relation
between Tweet and Person is “backwards”, which we will find to sometimes be
more appropriate (see Section 6). As such, the fact that “person 2 has tweeted
tweet 32” is translated as an edge going from r:person_2 to r:tweet_32.

The R2RML-F engine takes the Twitter relational database and the
R2RML mapping file as input and generates the output file in turtle format (.ttl)
available online 6. We use R2RML-F for the R2RML mapping code. However, the
code (from 2012), needed some updates. Our 2025 runnable code for R2RML-F
is available at :https://github.com/sarataki/mapping/tree/main/code.

Throughout this paper, IRIs are simplified using prefixes. In lisiting 1.1 we
present all the prefixes used. For instance “rdf:” is a shorthand for the full prefix
“http://www.w3. org/1999/02/22-rdf-syntax-ns#”.

Listing 1.1: Prefixes
PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX tweet : <http :// foo . example/DB/ tweet/>

4 https://github.com/chrdebru/r2rml
5 https://github.com/sarataki/mapping/tree/main/defaultR2RML/r2rml.ttl
6 https://github.com/sarataki/mapping/tree/main/defaultR2RML/output.ttl

https://github.com/sarataki/mapping/tree/main/code
https://github.com/chrdebru/r2rml
https://github.com/sarataki/mapping/tree/main/defaultR2RML/r2rml.ttl
https://github.com/sarataki/mapping/tree/main/defaultR2RML/output.ttl
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(a) ...with a default mapping (b) ...with another, arbitrary, mapping

Fig. 3: Extracts of the database mapped from Fig. 2...

PREFIX person : <http :// foo . example/DB/person/>
PREFIX r e f e r e n c e s : <http :// foo . example/DB/ r e f e r e n c e s/>
PREFIX r e f e r e n c e : <http :// foo . example/DB/ r e f e r e n c e s#>
PREFIX pr : <http :// foo . example/DB/ tweet#>
PREFIX t : <http :// foo . example/DB/type_tweet/>
PREFIX r : <http :// example . com/ re sou r c e/>

3.2 Relational Database

We use a conventional notion of schema for relational databases.

Definition 3 (Database Schema).

– A table schema T is a set of attribute names.
– A primary key constraint PKT on T is a subset of the attributes of T .
– A foreign key constraint ϕl0,l1 from T0 to T1 is a pair of equal-length lists

(l0, l1) of attributes of T0 and T1 respectively.
– A database schema D is a finite set of tables T and of constraints C such

that each table T has exactly one primary key constraint PKT in C, and for
all foreign key constraint ϕl0,l1 from T0 to T1, PKT0

= l0.

We assume tables and attribute sets are disjoint, and that attributes do not
have types or domains for this formalism.

Definition 4 (Database). A database following a certain database schema
D = (T , C) is a set D of elements x (called records) such that:

– x belongs to exactly one table T ∈ T , we note x ∈ T
– For each s an attribute of T , we note x.s the value of attribute s for x. If it

is undefined, we say x.s = null. By extension, if l is a n-uplet of attributes,
x.l is the n-uplet of their values in x.

The constraints C ∈ C are interpreted as such:
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– Primary key For all PK constraint PKT , for all x ∈ T , for each s ∈ PKT ,
x.s is defined, and if x ̸= x′ then there exists s ∈ PKT such that x.s ̸= x′.s.

– For all FK constraint ϕl0,l1 from T0 to T1, for all x′ ∈ T1, there exists a
unique element x ∈ T0 called its antecedent such that x.l0 = x′.l1.

In this setting, we identify a common type of tables in relational databases.
A relation table is a table whose primary key contains all its attributes, and is
composed of the disjoint union of the domain of two foreign keys. Other tables
are called entities.

In the classical entity-relational model, many-to-many relations are stored in
relation tables, whereas one-to-many relations are directly embedded in entities
through foreign keys. In our example database, the relation “tweeted” is a one-
to-many, as each tweet has only one author, and is thus stored as a foreign key in
the Tweet table. However, the “references” relation is many-to-many, as a tweet
can reference several people, and a person can be mentionned in several tweet.
The table References stores this relation as pairs of foreign keys from Person and
Tweet.

We say that a database schema D = (T , C) is ER-compliant if for all FK
constraints ϕl0,l1 from some T0 to some T1:

– T0 is an entity
– either T1 is a relation and all attributes of l1 are in its primary key PKT1

,
or T1 is an entity and no attribute of of l1 is in its primary key PKT1

.

3.3 Graph Database and distances

We present a brief definition of graph databases. It is classical, but distinguishes
attributes in a way that will facilitate encodings between RDB and RDF. A
RDF dataset is represented as a graph:

Definition 5 (Graph Database). A graph database is a tuple (A,L, V,E)
such that:

– A is a potentially infinite set of attribute values
– L is a potentially infinite set of edge labels
– V is a finite set of vertices
– E ⊆ V ×L×(V ∪A) is a set of edges. In an edge v, l, v′ we call v the subject,

l the predicate, v′ the object.

In this definition, RDF triples are modeled as edges, either between two nodes
or from a node to one of its attributes. Attributes here correspond to literals in
RDF: they cannot be the subject of a relation and cannot appear isolated. We
note that those attributes are not nodes themselves, and will not be counted
as such in future distances. L denotes all possible predicates and A denotes the
domain of definition of literals that may be object of a predicate.

In the figures, by convention, we represent nodes as yellow ovals and at-
tributes as red rectangle. For example, in Fig. 3b, the node “r:person_2” has
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an out-edge labeled “rdf:name” whose destination is an attribute “Bob”. This
represent an RDF triple whose object has URI “r:person_2”, with predicate
“rdf:name” and object the literal string “Bob”. From the remainder of the graph,
we see that the individual named Bob is the author of “r:tweet_32” which ref-
erences “r:person_1”, etc.

3.4 Encoding formalizing a mapping

The default mapping of the RDB presented in Fig. 2 is illustrated in Fig. 2. To
produces another mapping, one may manually write R2RML mappings, which
are tailored to their database schema. The choice of an encoding, or mapping,
from RDB to graphs modeling a RDF dataset, can be characterized as picking
a direction for all those triples. In our formalism, it is defined as follows:

Definition 6 (Orientation). Let D = (T , C) be an ER-compliant database
schema. An orientation σ is a function that associates to each relation table and
foreign key between entities a direction.

– For all T relation table, there exists two FK constraints ϕl0,l from T0 to T
and ϕl1,l′ from T1 to T such that l, l′ are a partition of the attributes of t.
An orientation for T is then (l, l′) (from l to l′) or (l′, l) (from l′ to l). We
can also note these orientations (l0, l1) and (l1, l0), or (T0, T1) and (T0, T1)
if T0 ̸= T1.

– For all FK constraint ϕl0,l1 from entity T0 to entity T1, an orientation is
(l0, l1) (from l0 to l1) or (l1, l0) (from l1 to l0). We can also note these
orientations (T0, T1) and (T0, T1) if T0 ̸= T1.

Definition 7 (ER encoding). Let D = (T , C) be an ER-database schema, and
σ an orientation. An encoding of relational databases following D into graphs
is an injective function f from the set of all relational databases following D
into the set of graphs, that matches all ER-database D following D a graph
f(D) = (A,L, V,E) such that:

– Nodes: For each entity T , for each x ∈ T in D, there is a node x ∈ V
– Labels: The labels L are the union of

• The attributes s of all the tables of T
• The relation tables
• The entity-to-entity foreign key constraints

– Attributes: For each entity T , for each attribute s such that for no FK
constraint ϕl0,l1 , s ∈ l1, for each x ∈ T with a defined value for s x.s = a in
D, there exists a value a ∈ A and an edge (x, s, a) ∈ E

– Many-to-many relations: For each relation T , its two FK constraints
ϕl0,l from T0 to T and ϕl1,l′ from T1 to T such that l, l′ are a partition
of the attributes of t, of orientation σ(T ) = (l, l′), for all x ∈ T , y ∈ T0

the antecedent of x.l, and z ∈ T1 the antecedent of x.l′, there is an edge
(y, T, z) ∈ E
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– One-to-many relations: For all FK constraint ϕl0,l1 from entity T0 to
entity T1, for all x ∈ T1, y ∈ T0 the antecedent of x.l0, if σ(ϕl0,l1) = (l0, l1)
there is an edge (y, ϕl0,l1 , x) ∈ E, if σ(ϕl1,l0) = (l1, l0) there is an edge
(x, ϕl0,l1 , y) ∈ E

– There is no other node, attribute, or edge in f(D)

In the rest of this paper, we will consider distances and how they are pre-
served through encodings. An ER encoding is an isometry w.r.t. a distance d
on relational databases and a distance d′ on graph databases iff for all D,D′

relational databases following D, if d(D,D′) is defined then d′(f(D), f(D′)) is
defined and equal to d(D,D′).

For our recurring example, one possible encoding of some entries of Fig. 2
is the graph of Fig. 3b. The R2RML mapping file 7 and the output file are
available online 8. The entities (e.g. person 2, tweet 32, emotion 4) are translated
into nodes. However, relations such as References and foreign key relations such
as the p_id foreign key in the Tweet table become labellings in L and are
represented as edges, e.g. (r:tweet_32,rdf:references,r:person_1).

4 Distances and isometries for DP in RDB and RDF

In this section, we formalize two classic distances, namely cascade deletion dis-
tance in RDB (4.1) and node distance in RDF (4.2). Because encodings transform
entities into nodes, the cascade distance allows the deletion of several entities
at once, but the node distance does not allow the deletion of several nodes at
once, no encoding is an isometry between both distances in the general case. We
present on the one had a RDF distance that matches cascade deletion (4.3), and
on the other hand a RDB distance that matches the graphs’ node distance (4.4).

4.1 Cascade Deletion in RDB

We first present a generalized notion of cascade deletion. Then we show the spe-
cial case that corresponds to the transitive deletions introduced by Kotsogiannis
et al. [24], and we analyze this notion on the RDB example, Twitter.

In general, a cascade deletion is the repercussion of the deletion of an element
in a table to all other elements that depended on it in others. The characteri-
zation of such dependencies usually revolves around foreign keys, but may vary
from a formalization to another. For this reason, we define here the cascade
deletion as parameterized by its dependencies.

Definition 8 (C′ Cascade Deletion). Let D be a database on a schema D =
(T , C), and C′ ⊆ C a set of FK. Let x be an element of D. The cascade deletion
of x alongside C′ defines a set of deleted elements Lrm(x) as the smallest set
of lines such that:
7 https://github.com/sarataki/mapping/tree/main/propR2RML/r2rml.ttl
8 https://github.com/sarataki/mapping/tree/main/propR2RML/output.ttl

https://github.com/sarataki/mapping/tree/main/propR2RML/r2rml.ttl
https://github.com/sarataki/mapping/tree/main/propR2RML/output.ttl
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– x ∈ Lrm(x)

– If z is an element in T1, such that there exists a foreign key ϕl0,l1 ∈ C′ from
T0 to T1, and the antecedent of z by ϕl0,l1 is y ∈ Lrm(x), then z ∈ Lrm(x).

This is turn defines a set Arm(x) of deleted attributes, pairs (y, s) such that:

– y ∈ T1 is not in Lrm(x)

– there exists a foreign key constraint ϕl0,l1 ̸∈ C′ from T0 to T1

– the antecedent of y by ϕl0,l1 is in Lrm(x)

The result of the cascade deletion of x in D is a database D′ of schema
D = (T , C) whose elements are all the elements of D that are not in Lrm(x)

where for every (y, s) ∈ Arm(x), y.s is set to null.

We use this deletion formalism to define a distance:

Definition 9 (C′ Cascade Distance). Let D,D′ be two databases of same
schema, and C′ a set of entity to entity FK. We say that D and D′ are C′

Cascade neighbors if D′ is the result of the cascade deletion of an element x in
D alongside C′, or D is the result of the cascade deletion of an element x in D′

alongside C′.
The C′ cascade distance is defined over databases of same schema as the length
of a shortest path connecting two databases neighbor by neighbor, if it exists.

We note that this definition is “eager” in its deletion, which is to say elements
are deleted as soon as one of their relevant antecedents is deleted. There exists
another, “cautious” (or lazy) cascade deletion, where elements get deleted only
if all their relevant antecedents are deleted. The definition of transitive dele-
tions [24] uses this eager deletion strategy. Our own proposed distance (4.4) will
circumvent the problem by limiting deletions in a way this distinction no longer
matters.

We also note that if C ′ does not contain all FK of relation tables, it is possible
to have “dangling” relation records that potentially break primary key unicity.
For simplicity’s sake, we will focus on the cases where it does not happen.

4.2 Classical RDF node distance

In graphs, records in entities are encoded as nodes. As such, the classical measure
most closely related to cascade deletion of a record is the node distance.

Definition 10 (Node Deletion). Let G = (A,L, V,E). We call Ermv the set
of edges incident to v: (v0, l, v1) ∈ Ermv iff v0 = v or v1 = v. The result of the
node deletion of v in G is a graph G′ = (A,L, V \{v}, E\Ermv).

Accordingly, the transposition of the node distance in this formalism is:
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Fig. 4: Node deletion

Definition 11 (Node Distance). Let G = (A,L, V,E) and G = (A,L, V ′, E′)
be two graph databases. We say that G and G′ are node-distance neighbors if
G′ is the result of the deletion of a node v ∈ V in G, or G is the result of the
deletion of a node v ∈ V in G′.
The node distance is defined over graphs of same labels as the length of a shortest
path connecting two databases neighbor by neighbor, if it exists.

Figure 4 illustrates the deletion of node “r:person_2” from the graph pictured
in Fig. 3b. All the edges incident to it are deleted (those labeled “rdf:name”,
“rdf:tweeted”, and “rdf:references”). While still formally in A, the attribute “Bob”
does not appear in the graph anymore since the triple it was the object of has
been suppressed. We recall that literals cannot appear while isolated but do not
count this as the suppression of a node toward the distance. The resulting graph,
containing 4 nodes and two edges, is a node-neighbor of the original graph.

4.3 Cascade Deletion Distance in Graphs

It is immediate that in the general case, encodings cannot hope to be isometric
from the RDB cascade distance to the RDF node distance. Indeed, some RDB
cascade deletions lead to the deletion of several records in entity tables. In an
encoding, this would translate as the deletion of several nodes. However, the
RDF node distance only allows the deletion of one node at a time.

We present herein the graph distances and encodings for which this isometry
holds. In such cases, comparisons of privacy guaranteeing mechanisms across
formalisms would be possible. The definition of a cascade deletion in graphs
would follow certain labels as follow:

Definition 12. Let G = (A,L, V,E) be a graph database and L′ ⊆ L a set of
labels. Let x be an element of V . The cascade deletion of V alongside L′ defines
a set of deleted nodes Vrm(x) as the smallest set of nodes such that:

– x ∈ Vrm(x)

– If l ∈ L′, y, z ∈ V such that (y, l, z) ∈ E, and y ∈ Vrm(x), then z ∈ Vrm(x).
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(a) in RDB

(b) in RDF

Fig. 5: Transitive cascade deletion with Person as primary entity

This is turn defines a set Erm(x) of deleted edges: for (y, l, z) ∈ E, (y, l, z) ∈
Erm(x) iff y ∈ Vrm(x) or z ∈ Vrm(x). This also defines a set Arm(x) of deleted
attributes, a ∈ Arm(x) if for all y, l such that (y, l, a), y ∈ Vrm(x)

The result of the cascade deletion of x along L′ in G is
G′ = (A\Arm(x), L, V \Vrm(x), E\Erm(x), )

Definition 13 (Cascade Deletion Graph Distance). Let G = (A,L, V,E)
and G = (A′, L, V ′, E′) be two graph databases. We say that G and G′ are L′-
cascade deletion-distance neighbors if G′ is the result of the deletion of a node
v ∈ V along L′ in G, or G is the result of the deletion of a node v ∈ V along L′

in G′.
The L′-cascade deletion-distance is defined over graphs of same labels as the
length of a shortest path connecting two databases neighbor by neighbor, if it
exists.

This cascade deletion works in a way that propagates through some edges of
label l ∈ L′. This means that this graph cascade deletion is dependant on the
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choice of encoding, which is to say on our chosen R2RML mapping. However,
for the (natural) choices of encodings and L′, this new distance matches RDB
cascade deletion, which is immediate by construction.

Lemma 1. Let D = (T , C) be a database schema, C′ a set of FK (containing
all relation table FK). We call L′ ⊆ C′ the entity to entity FK of C′. Let σ be an
orientation such that for all ϕl0,l1 ∈ L′, σ(ϕl0,l1) = (l0, l1). Then the σ-encoding
from RDB to RDF is an isometry from the C ′ cascade deletion distance in RDB
to the L′ cascade deletion distance in RDF.

For instance, to model cascade deletions in a way that corresponds to [24],
we consider that one can compute a join between tables starting from a primary
entity T and following all entity to entity foreign key constraints. To study the
impact a deletion in the primary table would have on the join, we can delete
every line of every table that would no longer occur in it. This corresponds to a
transitive deletion alongside those foreign keys.

As an example, the transitive deletion of Bob in the Person table, illustrated
in Fig. 5, cascades to the Reference table as tweet 30 can no longer reference
him, but also leads to the deletion of his tweet (tweet number 32) which in turns
deletes two more lines in the database, one in References, one in HasEmotion.

Limitations. We now discuss the two limitations of cascade deletion as presented
here as compared to Kotsogiannis et al. [24]. First, for the approach of [24], the
choice of a primary table is restricting. While the join approach and transitive
deletion as described in [24] necessitates picking a starting point, this has the
undesirable side-effect of locking the privacy model towards certain protections
and away from others. In RDF, it is possible to use a privacy model protecting
any node (DP with node distance) or even nodes from one or several tables ex-
clusively (DP with type-node distance). This is not always possible in databases
once a primary table is picked. For instance, in the given database, if we pick
Person as the primary table, Fig. 5a shows the only possible way to delete tweet
32. It is then impossible to delete a specific tweet without deleting its author
and all its other tweets. In turn, choosing Tweet as a primary table would make
it impossible to protect a Person. In a privacy setting, this a restriction that
(typed) node DP would not exhibit.

Furthermore, cascade deletion can have a greater or lesser impact based on
the chosen starting table. To illustrate this point, in Fig 6, we show a cascade
deletion starting from a tweet. In the corresponding RDF graph, this leads to
the deletion of a single node and all its adjacent edges, which is coherent with
a node distance of 1. However, in Fig 5, we show a cascade deletion starting
from a person. In the corresponding RDF graph, this leads to the deletion of
two nodes and their adjacent edges, which is coherent with a node distance of 2.
While it is possible to define an equivalent distance in graphs and propose DP
mechanisms accordingly, they would be at risk of having low utility. Indeed, the
number of nodes affected by a single deletion being unbounded is a problem in
a DP setting, as it aims to guarantee a protection between neighbors. Providing
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node-DP while maintaining acceptable utility can be challenging, and in the
present case neighboring database would differ even more.

Fig. 6: Transitive cascade deletion of a tweet as shown on a graph

4.4 A new meaningful distance : Restrict Cascade Distance

The previous subsection resolves the mismatch between cascade deletion dis-
tance in RDB and node distance in RDF by creating an RDF distance that
matches cascade deletion distance. Conversely, we can reverse the translation
and search for an RDB distance that matches the node distance. We propose
another instance of the cascade deletion: the restrict cascade deletion. The
key idea is that the deletion of elements from an entity only propagates on the
neighboring relations.

Definition 14 (Restrict Cascade Deletion). Let D be an ER-compliant
database on a schema D = (T , C), T ∈ T a table, and x ∈ T be an element
of D. The restrict cascade deletion of x in D is its C′ cascade deletion, where C′

is the set of FK of relation tables.

Definition 15 (Restrict Cascade Distance). Let D,D′ be two ER-compliant
databases of same schema. We say that D and D′ are Restrict Cascade neighbors
if D′ is the result of the cascade deletion of an element x in D, or D is the result
of the cascade deletion of an element x in D′.
The Restrict cascade distance is defined over ER-compliant databases of same
schema as the length of a shortest path connecting two databases neighbor by
neighbor, if it exists.

The restrict cascade deletion behaves similarly to the transitive distance ex-
cept that in some cases it accepts a null as FK rather than deleting the concerned
line. For example, the restrict cascade deletion is exactly equivalent to the tran-
sitive deletion in Fig. 6. Compared to the deletion performed in Fig. 5, restrict
cascade deletion is gentler. It would replace the FK p_id with value 2 by a null,
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but preserve the line, and the process would then stop, rather than leading to
the suppression of lines in the tables References and HasEmotion.

Notably, this meaningful notion of distance in the relational world, is, no
matter the starting table or the data we are trying to protect, always isometric
to RDF node distance, as node deletion is exactly ∅-cascade deletion.

Theorem 1. All ER encodings are isometric w.r.t the restrict cascade deletion
distance and the node distance

The proof of this theorem is made by establishing the following lemma:

Lemma 2. In an ER database, restrict cascade deleting an element of an entity
is exactly deleting adjacent relations and erasing adjacent foreign keys.

Proof (Lemma). Restrict cascade deletion only propagates through foreign keys
from an entity to a relation, hence the first part of the lemma: every element
of a relation pointing towards the original element are deleted, and it does not
propagate further. Erasure concerns foreign keys coming from deleted nodes.
However, the only deleted nodes are the original and adjacent relations. Since in
an ER database, foreign keys only come from entities, the foreign keys coming
from deleted nodes all come from the original. ⊓⊔

The proof of the theorem is a direct consequent:

Proof (Theorem). Let D be a database, x one of it’s elements, D′ the database
resulting from the cascade deletion of x in D, and f an ER encoding. D and
D′ are neighbors in the restrict cascade deletion distance, from Lemma 2. We
will prove f(D) and f(D′) are neighbors in the node deletion distance. The only
difference between D and D′ is:

– The deletion of x: this translates as the disappearance of the node x from V
and the deletion of all its information, which translates as a deletion of all
edges outgoing from x between f(D) and f(D′).

– The deletion of every adjacent relation element: this translates as the disap-
pearance of some edges between x and other elements of V that corresponds
to the encoding of relations between f(D) and f(D′).

– The erasure of every foreign key coming from x: this translates as the dis-
appearance of all remaining edges between x and elements of V that cor-
responds to the encoding of entity-to-entity foreign keys between f(D) and
f(D′).

As a summary, between f(D) and f(D′), we have removed x from V , and all
edges incident to x from E. We note that this is the exact definition of the node
deletion of x in f(D), and conclude that f(D) and f(D′) are neighbor in the
node deletion distance.

Note that this argument goes both ways: any node deletion in f(D) would
result in a new graph which is the encoding of another relational database D′′,
which is identical to D save for one restrict cascade deletion.
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Since both the cascade deletion distance and the node deletion distance are
defined as the shortest distance from neighbor to neighbor between two points,
this preservation of neighborhood is sufficient to prove that f is an isometry. ⊓⊔

5 QL-Outedge Privacy over Relational databases

In Section 4, we proposed a meaningful adaptation of a classical privacy model
in relational databases, that when transformed to an RDF database, correspond
to typed-node privacy. However, as discussed in Section 2, other privacy models
on graphs are better adapted to RDF graphs, such as QL-Outedge privacy [8].
Thus in this section, we propose to study how we can translate the QL-Outedge
privacy model to the relational database setting. The final goal is to propose a
neighborhood definition for a relational database which would be the equivalent
of the QL-Outedge neighborhood defined over RDF graphs.

Our approach is to map the relational database to RDF, apply QL-Outedge
privacy in RDF, then return to relational world to define the corresponding
neighborhood. When mapping a relational database to RDF, there is the edge
direction to be tailored in order to provide the appropriate privacy guarantee un-
der QL-Outedge privacy. Thereupon, we propose a model where one can choose
the direction of edges according to what to protect.

Desired Privacy and Motivating Queries As a way to illustrate the impor-
tance of varied (and matching) distances between RDB and RDF formalisms,
we consider a case where the desired protection of privacy is on the entire set
of tweets of a single person. As such, any sufficiently private mechanism should
be noisy enough for an attacker not to be able to significantly distinguish be-
tween the inclusion or exclusion of the set of tweets authored by a person from
the mechanism’s result. As a measuring stick, we study DP mechanisms that
would answer the following queries while adding a noise calibrated by the global
sensitivity of those queries under a particular distance.

– Motivating Example 1: Consider query Q1: Find the maximum number of
tweets tweeted by a single person (maximum out-degree of tweeted outedges).

– Motivating Example 2: Consider query Q2: Count how many users "Al-
ice" has referenced.

5.1 QL-outedge distance

We express the definition of QL-Outedge distance in our formalism.

Definition 16 (QL-Outedge pruning). Let G = (A,L, V,E). We call OQLv

the set of edges coming from v of label in QL: (v, l, v′) ∈ OQLv iff l ∈ QL. The
result of the QL pruning of v in G is a graph G′ = (A,L, V,E\OQLv).

Accordingly, the transposition of the node distance in this formalism is:
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Definition 17 (QL-Outedge Distance). Let G = (A,L, V,E) and
G = (A,L, V,E′) be two graph databases. We say that G and G′ are QL-Outedge
neighbors if G′ is the result of the QL pruning of a node v ∈ V in G, or G is the
result of the QL pruning of a node v ∈ V in G′.
The QL-Outedge distance is defined over graphs of same labels as the length of
a shortest path connecting two databases neighbor by neighbor, if it exists.

We note that only graphs of identical sets of nodes have a definable distance in
QL-Outedge.

5.2 RDB Keywise deletion

Similarly to the previous section, we aim to find an RDB distance that matches
the RDF QL-outedge distance. To do so, we will define keywise deletion as a
direct analog of QL-outedge pruning.

Definition 18 (Relational Keywise Pruning). Let D be a ER-compliant
database on a schema D = (T , C), and γ ⊆ σ a restriction of an orientation σ to
part of its domain. Let x be an element of T an entity table of T . The relational
keywise pruning of x alongside C′, σ defines a set of deleted elements LKW (x)

as the set of lines z such that:

– z is in a relation table T ′ of FK ϕl,l′0
from T to T ′ and ϕl′′,l′1

from some T ′′

to T ′,
– γ(T ′) = (l′0, l

′
1),

– x is the ϕ-antecedent of z for ϕl,l′0
.

The set AKW (x) of deleted attributes is the set of pairs (y, s) such that:

– y ∈ T ′ where T ′ is an entity table
– there exists a FK constraint ϕl,l′ from T to T ′

– γ(ϕl,l′) = (l, l′)
– the antecedent of y by ϕl,l′ is x
– s ∈ l′

or (x, s) such that:

– there exists a FK constraint ϕl′,l from T ′ to T
– γ(ϕl′,l) = (l, l′)
– s ∈ l

The result of the relational keywise deletion of x alongside γ is a database
D′ of schema D = (T , C) whose elements are all the elements of D that are not
in LKW (x) where for every (y, s) ∈ AQL(x), y.s is set to null.

γ represents both a choice of relations, many-to-many or one-to-many (the
restricted domain) and the only direction from which such relation must be
pruned. We note that in one-to-many relationships, the resulting deletion of
attributes can happen in a record away from x (if the orientation goes from the
antecedent outward) or in x itself (if the orientation goes from the postcedent
to the antecedent). We also note that both orientations cannot be picked for a
single relation, mirroring a known limitation of QL-outedge.
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Definition 19 (Relational Keywise Distance). Let D,D′ be two database
of same schema, and γ a restriction of an orientation. We say that D and D′ are
relational keywise neighbors if D′ is the result of the relational keywise deletion
of an element x in D alongside γ, or D is the result of the relational keywise
deletion of an element x in D′ alongside γ.
The relational keywise deletion distance is defined over databases of same schema
as the length of a shortest path connecting two databases neighbor by neighbor,
if it exists.

We note that only databases of identical entities have a definable distance in
Keywise Distance, up to attribute deletion, as entity lines are never part of
LKW (x).

5.3 Isometric Encoding RDB to RDF for QL-Outedge

We now characterize under which conditions the keywise distance and QL-
outedge distance are linked by an isometric encoding. Since all entities/nodes
remain untouched, and edge orientation is at the heart of QL-Outedge, this
property will focus on finding the appropriate orientation.

Lemma 3 (QL-outedge isometry). Let D = (T , C) be a database schema, γ
an orientation restriction, σ an orientation, QL a set of labels.

The σ-encoding of databases of schema D is an isometry between γ-keywise
distance and QL-outedge distance if γ is the restriction of σ on QL.

Proof. Let D be a database, and f(D) its σ-encoding. Let x be an element of
an entity T of D. It is a node in f(D). This node’s outgoing edges come from
three sources:

– Many-to-many relations: the lines of D encoded as edges to or from x
are lines of relations table that have x for antecedent in one of their FK.
Hence the outgoing edges of x come from the set of lines z such that:
• z is in a relation table T ′ of FK ϕl,l′0

from T to T ′ and ϕl′′,l′1
from some

T ′′ to T ′,
• σ(T ′) = (l′0, l

′
1),

• x is the ϕ-antecedent of z for ϕl,l′0
.

– One-to-many relations: the entity to entity FK of D encoded as edges
to or from x are those where x is the antecedent or postcedent. Depending
on the role x takes and the chosen orientation, those will be incoming or
outgoing. The outgoing ones specifically are the set of pairs (y, l′) such that:
• y ∈ T ′ where T ′ is an entity table
• there exists a FK constraint ϕl,l′ from T to T ′

• σ(ϕl,l′) = (l, l′)
• the antecedent of y by ϕl,l′ is x

or (x, l) such that:
• there exists a FK constraint ϕl′,l from T ′ to T
• σ(ϕl′,l) = (l, l′)
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• s ∈ l

If we were to prune x in f(D) along QL, we would restrict all of those edges to
those that fulfill those condition and are from a relation or FK in QL. That is to
say, it will be the same specification but every time we check for the orientation
σ of a relation or FK, it should also be in QL. In other words, it is the same
as checking this equality on the restriction of σ on QL, which is γ. However,
replacing σ by γ in the specification above gives us exactly the definitions of
LKW (x) and AKW (x). This means that γ-pruning x in D or QL-pruning x in
f(D) is identical. This means that finding D′ a γ-keywise neighbor of D or
finding f(D’) a QL-outedge-neighbor of f(D) is identical. This means that the
σ-encoding f is an isometry between those two distances.

6 Illustrating Encodings Impact on QL-outedge Privacy

To illustrate the concept introduced in the previous section and the impact of
mapping methods, we refer to our running example dataset and introduce two
simple example queries :

Q1 Find the maximum number of tweets tweeted by a single person (maximum
out-degree of tweeted outedges).

Q2 Count how many users “Alice" has referenced.

We discuss hereafter how protection and global sensitivity differ as different
R2RML mappings are proposed. As such, we will present the privacy protection
offered by the default mapping. We show that this may lead to weak protection
and, given a stronger target, show how to design an appropriate, manually-
written, R2RML mapping tailored to the use-case to achieve desired privacy
protection. These two different protections are illustrated through Q1 (which
they directly relate to) and Q2 (on which they have no impact).

6.1 Default R2RML, protecting authorship of a single tweet

In this first case, we use a R2RML mapping according to W3C R2RML recom-
mendation9. This standard lets the choice of orientation open for many-to-many
relationships in our example, References and HasEmotion. We translate both
relations as outedges of Tweet. However, for one-to-many relations (between
tweets and their author), the standard imposes that we choose a direction from
the referencing table (here, the one-side Tweet) to the referenced table (here,
the many-side Person). This means that, as is shown in Fig. 3a, the edges of this
relation count as outgoing for tweets rather than persons.

The implicit protection provided is that on a QL-outedge distance, a DP
mechanism would protect the information of any one tweet. This impacts the
neighbohrood one can build with QL-outedge, and the resulting global sensitivity
of certain queries is affected by this choice:
9 https://github.com/sarataki/mapping/tree/main/defaultR2RML/r2rml.ttl

https://github.com/sarataki/mapping/tree/main/defaultR2RML/r2rml.ttl
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Q1 The global sensitivity of this query under QL-Outedge privacy over the RDF
graph obtained from default R2RML mapping is 1, assuming that pr:p_id ∈
QL, which represents the tweetedBy relation. The neighboring graphs differ by
the QL-outedges of an arbitrary node. The Tweet node has exactly one tweetedBy
outedge (along with other outedges of other labels). So, one possible neighboring
graph differs by the outedges of node Tweet. The model related to this encoding
protects the tweetedBy outedge, i.e., the author of one tweet.

Q2 The global sensitivity of this query under QL-Outedge privacy over the RDF
graph obtained from this default R2RML mapping is infinite, assuming both
tweetedby and references are in QL. The node Person has one name outedge
with Literal value “Alice" (along with other outedges). Any neighboring graphs
differ by the QL-outedges of an arbitrary node, possibly a Tweet. The Tweet
node has exactly one tweetedBy outedge plus some references outedges. Since
the number of references outedges could be unbounded, so is this query’s global
sensitivity.

Discussion: As shown above, the default R2RML mapping restricts our choice
on privacy protection and, for example, imposes to protect only the author of
one tweet, as exemplified by the sensitivity of Q1 being 1. However, one may
want to protect all the tweets of a person, of an author, rather than the author
of one tweet. Notably, no choice of QL under default mapping would give us the
desired graph neighborhood. Under QL-outedge DP, protecting all the tweets of
a person requires the edges representing authorship to be outedges rather than
inedges of nodes Person. This can be achieved by writing a customized R2RML
mapping. We discuss the definition of the related mapping hereafter, as well as
the impact of the example queries.

6.2 Custom mapping, protecting someone’s tweets

Our objective is to find a distance for which DP guarantees protection on all
the tweets of a person, which is to say a distance where such deletion is possible
between a graph and one of its neighbors. As noted above, this is impossible
under default mapping. However, by writing another R2RML file where we define
our own mappings, we can better control the privacy protection as we reestablish
appropriate distance, and consequently, appropriate noise requirement for DP.

Design of a mapping satisfying the target protection For our example
dataset, protecting all the tweets authored by an individual corresponds in RDB
to a keywise distance on the foreign key p_id that points from Tweets to Person.
To delete all pointers to one person in one go, we must choose the orientation that
is contrary to the W3C recommendations, that is to say from the referenced table
to the referencing table. To find an isometry of this to a QL-outedge distance,
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Lemma 3 tells us that the encoding we pick must also choose the direction
from Person to Tweet to encode this foreign key. This encoding corresponds
to a different R2RML mapping10, which outputs graphs with properly oriented
edges (see Fig 7). In this new encoding and with the new QL-outedge distance it
permits, we reconsider query Q1 and Q2. We study again the global sensitivity
with our proposed R2RML mapping.

Q1 The sensitivity of Q1 in this new distance is the maximal number of edges
tweeted that can separate a graph from its neighbors. This maximal number does
not exist, as an arbitrarily great number of edges can be deleted from a single
Person node at once. The global sensitivity of this query is therefore infinite.
This means that we now correctly assess that no amount of noise can obfuscate
the presence or absence of a single person’s tweet output to the satisfaction of
DP criteria.

Note that, if the number of tweets outedges of node person is bounded, then
the global sensitivity of Q1 is bounded. This can also be achieved by using a
projection method (e.g. [8]).

Q2 Two possible neighbouring graphs differ by the QL-outedges of some nodes.
Tweet (resp. Person) nodes may have an arbitrary number of references (resp.
tweeted) outedges. Again, assuming tweeted ∈ QL or references ∈ QL, we have
global sensitivity of Q2 equal to infinite. Here, the change in mapping (and hence
privacy protection) does not impact Q2, since the number of people referenced
in a single tweet is unbounded, and protecting one or several tweet still lead to
the protection of an arbitrarily high number of referenced individuals.

Discussion Hence, the mappings influence privacy protection and, in turn,
may impact queries’ sensitivity. We note that this choice of orientation is not
objectively better, but merely adapted to the protection we use as an example.
Every such decision represents some form of tradeoff on what privacy protection
can or cannot be expressed. For instance, if we represent authorship information
from Person to Tweet, then privacy protection about a single tweet becomes
incongruous: even a complete deletion of all the information outgoing from a
Tweet node would leave its author edge untouched, as it is now incoming. If
translated into RDB, this gives an incomplete line pruning, as shown in Fig. 8.

7 Conclusion

In this paper, we analyze the transposition to RDF through mapping of a popular
DP model for multi-tables relational databases with FK constraints related to
transitive deletion [24]. We show it has an equivalent in RDF, an extension of
10 https://github.com/sarataki/mapping/tree/main/propR2RML/r2rml.ttl

https://github.com/sarataki/mapping/tree/main/propR2RML/r2rml.ttl
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Fig. 7: Proposed R2RML: translation of one-to-many relationship

Fig. 8: Tweet (incomplete) pruning under nonstandard edge orientation

node DP, under a choice of R2RML mapping made to correspond to a choice
of primary relation. To ease the construction of RDF DP mechanisms while
remaining explainable in the relational world, we tweak the original privacy
model in a meaningful way so that its translation is always equivalent to classical
node DP. Thus, we proposed the restrict deletion for relational databases, which
captures privacy policies and FK constraints.

Furthermore, we formalize neighborhoods in relational databases to match
the concept of QL-Outedge privacy, which was previously defined over RDF
graphs. We believe this approach is particularly suitable to the context of RDF,
offering meaningful semantics for the neighborhoods. When mapping relational
databases to RDF, we propose a model where one can choose what they want to
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protect. This is once again done by deciding the edge direction in the R2RML
mapping. The decision on which direction to choose will affect what edges are
incoming or outgoing, and, therefore, the QL-Outedge neighborhood definition
in the relational database. Finally, we proposed an implementation based on
R2RML to illustrate our approach.

For future work, we plan to strengthen and implement relational-to-graph
and graph-to-relational database mapping methods, by matching known and
useful distances of RDB or RDF as well as neighborhood definitions which would
make more sense in this context into corresponding notions in the other formal-
ism. Furthermore, another interesting research direction is establishing a bench-
mark to compare the efficiency of different privacy methods through mapping.
This would lead to a wider choice of comparable options for information stored
as RDB or RDF while preserving important privacy guaranteeing properties.
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