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Abstract. In this paper, we investigate how attackers can discover sen-
sitive information embedded within databases by exploiting inference
rules. We demonstrate the inadequacy of naively applied existing state
of the art differential privacy (DP) models in safeguarding against such
attacks.
We introduce ontology aware differential privacy (Onto-DP), a novel ex-
tension of differential privacy paradigms built on top of any classical DP
model by enriching it with semantic awareness. We show that this ex-
tension is a sufficient condition to adequately protect against attackers
aware of inference rules.
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1 Introduction

Databases in general, and semantic databases such as Knowledge Graphs (KGs)
in particular, are often used to store personal and/or private information, such
as healthcare data [1]. In this article, we are interested in the privacy issues
linked to protecting the personal information in databases when publishing the
results of queries. These privacy questions have been a pressing issue since sem-
inal works of Sweeney [2] on k-anonymity, and a whole field called differential
privacy (DP) [3] has seen a very strong development these last twenty years.
DP has garnered a great interest within both theoretical and applied database
and privacy communities. The general idea behind DP is to bound the relative
information gain on the underlying data that a querier obtains when observing
the result of their query. One of the most important features of DP is that the
approach (supposedly) makes no assumption on any background knowledge that
the attacker may possess, which was an important breakthrough, compared to
previous works such as k-anonymity, where a large part of the practical diffi-
culties when trying to evaluate the security of the approach is that it depends
on the attacker’s background knowledge. However there is in fact an implicit
dependency of DP on some kind of attacker background knowledge: DP is based
on the concept of adjacent databases, loosely defined as two databases that differ
by “one element”. In this article, we consider that the adjacent databases of a
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given database D are given by defining a distance d and its associated neigh-
borhood Nd(D). Once this neighborhood definition is given, it is then possible
to directly apply state of the art DP mechanisms to protect the data, such as
adding random noise drawn from a Laplace distribution.

A lot of research in DP has gone into building optimal mechanisms, however
we focus on a much less studied question: how to correctly define this distance,
in order to capture what we call semantic attackers that possess knowledge
about inference rules (Data dependency). To our knowledge, we are the first to
(correctly) build such a distance. The main difficulty of this research question is
that classical distances used in DP are expressed over a representation-dependent
notion of single datum (e.g. relational databases differ by a single tuple, graph
databases differ by a single node or edge, RDF databases differ by a single
triple, etc.), but this may not precisely translate two databases differing in one
fact, in the semantic sense, since data items are often correlated, especially in
graph structured databases. Works such as Pufferfish [4] provide a very wide
setting to customize privacy for dependent data by defining secrets, alternative
worlds that must be indistinguishable, and an attacker’s background knowledge.
However, while DP and deterministic inference considerations can be expressed
in this setting with a prohibitively comprehensive class of attackers, in practice
showing that a process respects a privacy constraint or not is best checked on
a small set of worst-case-scenario attackers. No such suitable definition that we
know of exist for databases with inference.

To address these limitations, we (i) formalize both the concepts of a se-
mantically aware attacker, i.e. one that knows how to infer facts from existing
information, and knows all but one information, and of a distance providing a
well suited defense w.r.t. a class of attacker, in the context of a DP based pro-
tection; (ii) demonstrate that classical DP approaches on databases, while well
suited w.r.t. semantic-unaware attackers, are ill suited w.r.t. attackers aware of
inference rules; (iii) show that such ill-suitedness can lead to incorrect estima-
tion of privacy and leaks of supposedly protected data; (iv) propose onto-DP, a
consistent extension built on top of existing DP models, and demonstrate that
it is (by construction) well suited for semantic-aware attackers

The remainder of this paper is structured as follows. Sec. 2 introduces the
background on DP and (semantic) databases. The problem we study is presented
and formalized in Sec. 3. The incorporation of inference rules is discussed in
Sec. 4. The related work and positioning of our paper are presented in Sec. 6.
Finally, Sec. 7 concludes and presents future research directions.

2 Background and notations

In this section, we provide the background on the data model, inference rules,
differential privacy and distances necessary to the theoretical foundations of this
paper.

Private database D. We consider a database D containing (sensitive) infor-
mation to be queried. We do not make any extra hypothesis on the structure of
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D: it may be relational, a knowledge graph, etc. We note D the set of databases
considered and D ⊆ D′ the fact that D is contained in D′.

As we consider attackers that conduct inferences, we will instantiate D as a
knowledge graph (KG) in our examples, but our results hold in the general case.
Knowledge graphs are structured representation in graphs that model real-world
entities as nodes, and their relationships as edges, or subject-predicate-object
triples. RDF or Neo4j [5] are common frameworks to represent KGs.

Example 1 (Hospital DB). A toy example knowledge graph database

# Example Hospital Database

@prefix ex: <http://example.com/hospital#> .

ex:d1 a ex:doctor ;

ex:worksIn ex:dept1 ;

ex:hasPatient ex:p1 .

ex:dpt1 a ex:dept .

ex:p1 a ex:patient .

Inference Rules I are mechanisms that allow the derivation of new knowledge
from existing facts by applying logical reasoning to help enrich the database with
new facts. They may be expressed in various knowledge representation languages,
from the simplest ones like RDFS [6] to much more expressive languages such
as SWRL [7]. Reasoner engines such as Hermit [8] are used to derive new facts
in the database, based on its contents and the rules considered.

Example 2 (Inferring new tuples). Consider an inference rule stating that a pa-
tient under the care of a physician working in a particular department is a patient
in said department, written in SWRL ”human readable syntax” format [7]:

IR = {hasPatient(?x, ?y) ∧ worksIn(?x, ?z) ⇒ patientIn(?y, ?z)}

We show next the hospital database of Example 1, after applying a reasoner.

# Example Hospital Database after reasoning

@prefix ex: <http://example.com/hospital#> .

ex:d1 a ex:doctor ;

ex:worksIn ex:dept1 ;

ex:hasPatient ex:p1 .

ex:dpt1 a ex:dept .

ex:p1 a ex:patient .

ex:p1 ex:patientIn ex:dept1 .

We formally define the inference system by the following:

Definition 1 (Inference System). Let D be a space of databases, and I a set
of inference rules. An inference system I : D → D is function that associates
some database D of D to its saturated version I(D) which is obtained by applying
all the rules in I. It is idempotent I(I(D)) = I(D).
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Notations: We note I = ∅ to indicate that there are no inference rules, thus
no extra information may be inferred. Formally, this means I is the identity
function. We say that a database D is a saturation of D(−1) by inference system
I if I(D(−1)) = D. Conversely, we say that D(−1) is an antecedent of D if D is
a saturation of D(−1). Note that the database in Example 2 is indeed saturated
by the inference system I, applying the inference rule IR.

Differential Privacy. DP [3] is possibly the most well-established criterion in
the privacy research community. It ensures that an attacker who observes the
outcome of a query cannot infer the presence or absence (and hence the value)
of any particular sensitive datum in the dataset.

Definition 2 (ε-Differential privacy DP [3]). Given ε > 0, a function f
defined on D and a distance d over D, f satisfies ε-DP if for all (D1, D2) ∈ D2

such that d(D1, D2) = 1, and for all subsets S of the range of f , we have:

Pr[M(D1) ∈ S] ≤ eε × Pr[M(D2) ∈ S]

where probability is taken over the randomness of f . In this case, we say that
D1 and D2 are ε-indistinguishable [9] where ε represents the privacy budget and
parameterizes the protection.

Implementing DP. A classical method to implement a DP mechanism for
numeric queries is to return a noisy answer rather than the true query result [10].
The added noise must be carefully calibrated so that the result remains useful
while still protecting individual contributions. Its amplitude depends on ε and
the query’s sensitivity ∆f (called ℓ1-sensitivity by [10]), i.e. how much it may
vary among a neighborhood:

Definition 3 (Global Sensitivity ∆f [10]). Given a numeric query f : D →
R and a distance d over D, the (global or ℓ1) sensitivity of f is defined as

∆f = max
x,y

|f(x)− f(y)| for all x, y such that d(x, y) = 1.

DP on various databases models. DP is immediately applicable to any space
D given a proper distance d or simply a neighborhood definition. Classically, for
relational databases, the notion of neighborhood corresponds to two databases
D1 and D2 differing by a single tuple. When considering graph databases, two
DP-models, relying on two notions of neighborhoods, prevail: k-edge-DP [11]
and node-DP [12], where two databases are neighbors if they differ by up to k
edges (resp. one node and all its adjacent edges).

Bounded and Unbounded DP. There exist two ways to compute distances
for differential privacy: unbounded and bounded DP [13]. In bounded-DP, two
datasets are considered neighbors if one can be obtained by editing/modify-
ing one sensitive piece of information within the other. In unbounded-DP, two
datasets are neighbors if they differ by the addition or deletion of a single piece
of information.
We now define paired bounded and unbounded distances, an important new
concept that we introduce to link the attacker/defender models:
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Definition 4 (Paired bounded/unbounded distances). Let D1 and D2

represent two databases. Two distances du db, unbounded and bounded, respec-
tively, are said to be paired if :

∀D1, D2|D1 ̸= D2, db(D,D′) = 1 ⇐⇒ ∃D0|D0 ⊆ D1 ∧D0 ⊆ D2

∧ du(D0, D1) = 1 ∧ du(D0, D2) = 1

3 Problem formalization and analysis

In this paper, we consider a curator (defender) relying on DP where the true
database D is ε-indistinguishable from its neighbors according to some distance
d. On the other hand, the attacker tries to determine the true database among
a set of databases it considers possible.

Our attackers generalize classical worst-case scenario attackers that are just
one datum (e.g. edge or line) away from knowing the full graph, to a setting
where fact inference is possible. This means that the attacker is considering
unbounded distance neighbors where exactly one piece of information ι0 (i.e. the
missing datum and all other derived from it) is added to its prior knowledge.
On the other hand, the curator (who knows D) must protect against any such
attacker (for all possible values of ι0). The ε-indistinguishable databases should
hence be the union of all the databases considered by any attacker, thus the
union of all the databases containing all information of D except for one plus
all possible variations of the missing information. This is by construction exactly
the set of databases that are bounded neighbors of D. We will thus consider any
paired bounded/unbounded distances db and du, with db the distance used by
the curator (adding the noise) and du used to characterize the attacker.

In this section, we formalize the attackers, the defense and attack spaces, and
the concept of well-suitedness. By using these definitions, we are able to show
that in the classical case with no consideration of inferences, existing DP models
are well suited for our attackers. An interesting problem, studied in the rest of
the paper, arises when the attacker leverages knowledge of inference rules. In
this case, classical DP models are no longer well-suited. The main result of this
paper is to restore this property of well-suitedness with an extension of classical
DP models that applies for various distances accounting for ontologies.

Defense space. A defense space is a mapping from D to 2(D) that maps each
database to a set of decoys. In DP, this set of decoys (and their corresponding
defense space) is the neighborhood of the true database according to the chosen
distance (plus the original database itself).

Definition 5 (Defense space). Let db be a (bounded) distance over databases.
The defense space Ndb

of db maps each graph D to {D′|db(D,D′) ≤ 1}.

Attacker model. An attacker is an observer that starts with some knowledge of
the database (i.e. a subset of data that they know to be true). This allows them
to construct a set of databases they believe are susceptible to be the true state
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of the database, which we call attack space. We consider a worst-case (i.e. very
knowledgeable) attacker that has knowledge of the database up to exactly one
missing datum, as in [14,15]. Such an attacker (that we term up-to-one attacker)
and its attack space are defined as follows:

Definition 6 (Up-to-one attacker and its attack space). Let du be an
(unbounded) distance on D, I an inference system, D0 be a database modeling
the prior knowledge of the attacker. We note AI

du
(D0) the up-to-one attacker on

distance du, aware of inference system I, and of prior D0. A
I
du
(D0) considers

all saturated graphs D′ ∈ D such that ∃D′(−1) such that

• D′ = I(D′(−1))
• D0 ⊆ D′(−1)

• du(D0, D
′(−1)) = 1

Intuitively, such an attacker has a prior knowledge D0 and misses a single
datum of information. The attacker considers all databases D′(−1) with exactly
one possibility for the datum (i.e. du(D0, D

′(−1)) = 1) and saturates them using
the inferences I. By notational abuse, AI

du
(D0) denotes both an attacker and its

attack space and AI
du

denotes both the class of attackers and the union of their
attack spaces.

Well-suitedness of defense with regard to an attacker. A defense space
is appropriately calibrated against a class of attackers if the set of graphs they
considered plausible is exactly equal to the defense space. If we consider DP, and
the up-to-one attackers, we get the following formalization:

Definition 7 (Well-suited DP defense). Let du, db be two distances on D
and inference system I. We say that db-DP is a well-suited defense to the AI

du

up-to-one class of attackers if, for all D ∈ D,

Ndb
(D) =

⋃
D0|D∈AI

du
(D0)

(AI
du
(D0))

We note that this property is indeed respected for classical DP and distance
in the absence of inference rules.

Lemma 1 (Well suitedness of classical DP model w.r.t. semantic un-
aware attacker). For du and db paired distances, db-DP is a well-suited defense
to the A∅

du
up-to-one class of attackers.

Objectives and contributions of the rest of the paper. In the next part
of the paper, we analyze the ill-suitedness (and related ill-effects) of classical DP
models w.r.t. semantic aware attackers and propose (I, db)-DP that integrates
ontology to a distance db, such that:

1. (∅, db)-DP is equivalent to db-DP
2. if db, du are paired with db bounded, then (I, db)-DP is well suited w.r.t. AI

du
.
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4 Mismatch of the (∅, db)-DP defense for a semantic
aware attacker AI

du

We now study the impact of the up-to-one adversary knowing inference rules
and show that classical distance are ill suited against such an attacker.

A curator using (∅, db)-DP associates to each database D the defense space
N(∅,db)(D) = {D′|db(D,D′) ≤ 1}. Given a database D, by Def 6, an instance

of AI
du

considering D plausible starts with a prior D0 such that ∃D(−1), D0 ⊆
D(−1) ∧ du(D

(−1), D0) = 1 ∧ I(D(−1)) = D. It only considers other databases
D′ with an antecedent D′(−1) such that du(D

′(−1), D0) = 1. The problem arises
here since it is possible to have db(D,D′) > 1 even though db(D

(−1), D′(−1)) = 1.
Databases an attacker with inference rules considers are not necessarily neighbors
in the sense of the considered distances du or db. Indeed, inferences on different
db-neighboring databases can create (arbitrarily) distant databases w.r.t. db,
since an arbitrary number of facts could be added during the saturation process
(this obviously depends on I and D).

Since the defense space of the curator is entirely composed of db neighbors of
D, it immediately follows that there may be a mismatch and that the (∅, db)-DP
defense cannot always be well-suited for a semantic aware attacker AI

du
. This

is particularly problematic since the perceived query variation of an up-to-one
attacker may be greater than the curator’s considered sensitivity. For any query
Q applicable on D, we note ∆IQ the perceived sensitivity of AI

du
attackers, i.e.

∆IQ = max
D0

( max
(D,D′)∈(AI

du
(D0))2

|Q(D)−Q(D′)|)

Proposition 1 (Privacy leakage by a (∅, db) curator against an AI
du

at-

tacker). Consider AI
du
, a class of attackers with knowledge of inference rules on

a database, and a curator using (∅, db)-DP, thus a defense space not considering
inference rules. It is possible for such a curator to underestimate the leakage of
sensitive private information; i.e. that for a query Q, ∆∅Q < ∆IQ. In fact, it
is possible that ∆∅Q = 0 while ∆IQ > 0.

Proof. We illustrate this mismatch in an example inspired by [16]. We con-
sider edge-distances and D to be KGs such as the one in Fig. 1 representing
de-identified data in a hospital. In such graphs, each di is necessarily assigned
to a deptj , and each pk is necessarily a patient of a specific di. All of them
are instances of a class dept, doctor, or patient, which are represented as
nodes. Typing is represented as an edge. Edges are labeled hasPatient, worksIn,
hasType, or patientIn. Contrarily to aformentioned relations, the patientIn rela-
tion is not mandatory and links the patient of a doctor to the departement it
belongs to.

We consider the inference rule stated in Example 2 that a patient under the
care of a doctor working in a particular dept is a patient in said dept.

We now consider an example database Dex and its saturation by I, as repre-
sented in Figure 2, where types are implicit for simplicity sake. We consider the
basic query Q which counts the number of patients in the oncology department.
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hasType

hasType

hasType

dept1 dept2

d1 d2

p1 p2 p3 patient

doctor

dept

worksInworksIn

hasPatient hasPatient hasPatient

Fig. 1: Considered databases D

Q = SELECT (COUNT(DISTINCT ?patient) AS ?numPatients)

WHERE {

?patient :patientIn :Oncology .

}

We further restrict D to only contain saturated database, considering that
the curator systematically saturates the database as Q would e.g. returns 0 on
Dex.

If an attacker can start from a prior D0, guess a database D′ with one
more piece of data (i.e. one more edge), then saturate that D′ into a database
I(D′) ∈ D, then I(D′) will be considered by the attacker as part of the attack
space. This means that an attacker considers a specific saturated database if its
prior is a subgraph neighbor of one of this database’s antecedents, i.e. a graph
that saturates to it. In order to provide adequate protection, the curator should
also consider them as part of the defense space.

In Fig. 3a, database Dex
0 represents the attacker’s knowledge. Note that in

this case, Dex
0 /∈ D since there exists a doctor that does not work in any depart-

ment.

Psychiatry Oncology

DrSmith DrAdam

P1 P2 P3

worksInworksIn

hasPatient hasPatient hasPatient

(a) Antecedent of the true database
Dex

Psychiatry Oncology

DrSmith DrAdam

P1 P2 P3

worksInworksIn

hasPatient hasPatient hasPatient

patientIn

patientIn patientIn

(b) True database I(Dex)

Fig. 2: True database and inferred information
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Psychiatry Oncology

DrSmith DrAdam

P1 P2 P3

worksIn

hasPatient hasPatient hasPatient

(a) Attacker’s prior knowledge Dex
0

Psychiatry Oncology

DrSmith DrAdam

P1 P2 P3

worksInworksIn

hasPatient hasPatient hasPatient

patientIn
patientIn

(b) Plausible graph for AC,I
deu

(Dex
0 )

Fig. 3: Example of attacker knowledge and saturation of a possible neighbor

The attacker knows I = {hasPatient(?x, ?y)∧worksIn(?x, ?z) ⇒ patientIn(?y, ?z)},
considers the neighbors of Dex

0 , then saturates them. Fig. 2b and Fig. 3b show
two plausible saturated graphs for this attacker. This means that by construction
they differ by a single datum of information for the attacker. Hence, ∆IQ ≥ 2.
However, from the curator’s point of view, if they were to use (∅, db)-DP as a
defense without further adjustment, the database pictured in Fig. 3b) would not
be part of the defense space of the database I(Dex

0 ) (Fig. 2b), as they are too
far from each other (the edge distance between these graphs is 3, not 1). This
means that these graphs will not be considered by the curator when computing
the sensitivity of the query.

Indeed, the direct (∅, db)-distance neighbors of the database I(Dex) (and
actually many saturated graphs) will have the same answer to our query, as any
alteration to a worksIn or hasPatient edge may have a knockdown effect on
patientIn and would result in the database no longer be saturated (and hence
/∈ D). In fact, two saturated graphs can only be (∅, db)-distance neighbors if their
only difference is swapping a patient between two doctors of same department,
or changing the department of a patientless doctor. Under those circumstances,
as stated in the proposition, we find a sensitivity equal to 0 under bounded edge
DP on D.

The code and demo of our tool illustrating this possible mismatch are avail-
able at: https://anonymous.4open.science/r/Onto-Differential-Privacy-E068/README.md

Consequence of this mismatch. In this case, this ill-suitedness has drastic
consequences in particular when restricting the considered space to saturated
databases: following the formal definition of DP, a sensitivity equal to 0 would
mean that a query with no added randomized mechanism (i.e. outputing the
true result of the query) is ε DP for all ε > 0. Indeed, since the result of the
query does not vary among any neighborhood, the probability of obtaining a
result is the same when applied to any adjacent databases. However in reality,
the query’s raw results do reveal some sensitive information to our up-to-one
attacker, which could derive its missing piece of information with absolute cer-
tainty. The mismatch of attack and defense spaces would thus here lead to a
dramatic complete absence of protection under classical DP.

https://anonymous.4open.science/r/Onto-Differential-Privacy-E068/README.md
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5 (I, db)-onto-DP : A defense model against a
semantic-aware attacker AI

du

In order to solve the sensitivity issue when using traditional DP when dealing
with ontology-aware attackers, we introduce (I, db)-onto-DP, based on a novel
distance notion that contains a reasoning process. This distance is constructed
to have a defense space matching semantic aware attackers. As such, it considers
saturated graphs, and neighbors in this distance are not neighbors in the sense of
db, but rather have unsaturated ancestors that are db neighbors. Hence, they are
also unbounded neighbors of a common graph, matching with some attacker’s
prior. This is illustrated in Fig. 4 and formalized as follows.

Definition 8 ((I, db)-onto Distance). Let db be a (bounded) distance. The
(I, db)-ontology aware distance is defined by its neighborhoods, then classically
extended. For (D,D′) ∈ D2, D′ is a neighbor of D if and only if there exists an
antecedent D(−1) of D and D′(−1) of D′ w.r.t. I such that db(D

(−1), D′(−1)) = 1.

Consequence. It is immediate that (∅, db)-ontology aware distance is db.

Unsaturated Databases

D0

D(−1) D′(−1)

D D′

unbounded unbounded

bounded

saturate saturate

inferred neighbors

Fig. 4: (I, d) neighborhood pattern

Theorem 1 (Onto-DP is well-suited w.r.t. semantic aware attacker).
Let du, db be paired distances, unbounded and bounded respectively. For any I
inference rules, (I, db)-DP is a well-suited defense to the AI

du
up-to-one class of

attackers

Proof. Let us consider a database D ∈ I(D), and a AI
du

up-to-one attacker

of prior D0 that considers it. This means that there exists a database D(−1),
neighbor of D0 according to du, such that I(D(−1)) = D. Any other databases
considered by this attacker are D′ ∈ I(D) such that there exists a database
D′(−1), du neighbor of D0, whose saturated is I(D′(−1)) = D′. Since D(−1) and
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D′(−1) are both du neighbors of the same D0, they are db neighbors by definition
of paired distance. By definition, D and D′ are neighbors in the (I, du)-distance.

Conversely, let us consider a database D,D′ ∈ I(D), neighbors in the (I, db)-
distance. By definition, there exist D(−1) antecedent of D and D′(−1) of D′ that
are db neighbors. Since db and du are paired, this means that there exists some
D0, subset and du-neighbour of both D(−1) and D′(−1). This means that a (I, du)
up-to-one attacker of prior D0 considers both D and D′.

From both of these we conclude that the defense space of D in the (I, db)-
onto-DP is exactly the set of all databases considered by at least one AI

du
up-to-

one attacker that also considers D.

Takeaway. Theorem 1 is the main result of the article. It shows that it is
possible to build a DP mechanism that will correctly evaluate the sensitivity of
queries, in the presence of an attackers that have knowledge of inference rules
on a database, by using our proposed (I, db)-distance.

6 Related Work

Since KGs are the traditional representation for knowledge centered databases,
we provide herein an overview of existing work related to semantic aware DP in
such context. We also discuss work questioning attacks models for DP and inves-
tigating distances and neighborhoods for DP. Finally, we present the proposal
closest to our own, DP approaches over correlated data.

DP for KGs. Even though KGs are the traditional representation for knowledge
centered databases, there is surprisingly little work proposing semantic-aware
DP approaches on KG. Standard DP approaches are oftentimes applied, for
example, [17] applies “triple”-DP, which is equivalent to traditional edge-DP, to
the problem of Federated Knowledge Graph Embedding.

Reuben [18] was, to the best of our knowledge, the first to propose semantic-
aware DP for edge-labeled directed graphs. This approach was limited to ap-
plying edge-DP on a subset of labels. Building on this work, Taki et al. [19]
proposed a projection-based approach to reduce the sensitivity of queries on KG
using QL-edge-DP. Han et al. [20] proposed a similar idea where a set of sensitive
relationships is specified.
To the best of our knowledge, semantic-aware DP approaches for KG are limited
to the consideration of sensitive and non-sensitive labels (or types). There exists
no work integrating constraints and inferences in DP approaches.

Attacks models on DP. The efficiency of the protection of DP is reliant on
the choice of an ε. However, the concrete guarantees such constraints provide
is heavily reliant on the type of attack scenario considered. In domains like
membership or inference attacks [14], one standard scenario is the informed
attacker, who knows everything about a model and its training data save for one
specific element. This worst-case scenario is inspired by the implicit threat model
of DP [21]. Indeed, previous works [15] use worst-case attack scenarii to measure
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the efficiency of ε-DP. Their illustrative choice is that of an attacker that tries
to identify members of a queriable subgroup of individuals, but only misses one
information to do so, a scenario which serves as an inspiration for our up-to-one
attacker. Some works like [22,23] explored relaxations of this worst-case attacker,
but [24] demonstrates that such relaxations can lead to vulnerabilities.

Questioning DP-distances and Neighbourhoods. Several existing works
also study the necessary departures from classic distances and mechanisms in
scenarii where the neighborhoods given by classic distances are of variable believ-
ability or usefulness. Geo-indistinguishability [25] (and more generally metric-
DP [26]), which aims to publish someone’s location with enough noise so that
an attacker cannot be certain of the person’s true position, some locations (e.g.
a river, the sea) are considered unlikely answers, that cannot realistically count
as convincing decoys.

DP over correlated data. In many real cases like social networks, data is
related and cannot be considered independent [27]. To deal with this, models like
Pufferfish [4] and Bayesian Differential Privacy (BDP) [28] were developed. These
formalisms provide a very wide setting to customize privacy for dependent data
by defining secrets, i.e. alternative worlds that must be indistinguishable, and an
attacker’s background knowledge. Under such a setting, differential privacy can
be defined as requiring any attacker, regardless of prior knowledge, to be unable
to gain intel from an output. To add deterministic inference constraints is then
to prune this large set of background knowledges by only considering those that
never consider impossible databases where inferences are not properly made.
While this accurately translates the definition of DP, and lets the authors show
that under any correlation, classical Laplace mechanisms allow for security leaks,
one of the keys to differential privacy’s ease of use is that rather than checking
for all attackers whether they can gain undue confidence on a specific secret,
one can focus on showing it for worst-case scenario attackers, that only lack
one element of a database, and extending the property to the general case. To
find proper background knowledge for attackers that are able to use inference
to deduce several facts from one guess is then necessary to have a notion of
semantically aware DP one can hope to demonstrate on a given process.

7 Conclusion

This paper explores the challenges of protecting sensitive information against
attackers with knowledge about the database semantics (Data dependency). We
introduced and investigated semantic aware attackers, who have knowledge of
the database related inference rules, and showed that traditional DP methods
may underestimate the knowledge gained by an attacker, leading to privacy
leaks. Thus, we provide tight theoretical bound on the involved (perceived) sen-
sitivities. To address these issues, we proposed onto-DP, an extension of existing
differential privacy paradigms that enrich them with the consideration of the
database inference rules.
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Future work. We believe these results open exciting new research directions
at the intersection of DP and semantically rich databases such as KGs. A very
promising direction is to extend this work beyond count queries, using e.g. the
Exponential Mechanism [29] which is adapted for categorical queries, but that
also relies on some way of measuring the distance between plausible answers,
and thus where an investigation of the impact of neighborhoods in the presence
of inference rules should be studied.
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