
Oracle® Database
PL/SQL Language Reference   

11g Release 1 (11.1)  

B28370-05

August 2009



Oracle Database PL/SQL Language Reference, 11g Release 1 (11.1)   

B28370-05

Copyright © 1996, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sheila Moore

Contributing Author: E. Belden

Contributors: S. Agrawal, C. Barclay, D. Bronnikov, S. Castledine, T. Chang, B. Cheng, R. Dani, R. Decker, 
C. Iyer, S. Kotsovolos, N. Le, W. Li, S. Lin, B. Llewellyn, D. Lorentz, V. Moore, K. Muthukkaruppan, C. 
Racicot, J. Russell, C. Wetherell, M. Vemulapati, G. Viswanathan, M. Yang

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on 
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data 
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" 
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As 
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and 
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of 
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software 
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not 
developed or intended for use in any inherently dangerous applications, including applications which may 
create a risk of personal injury. If you use this software in dangerous applications, then you shall be 
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use 
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of 
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks 
of their respective owners.

This software and documentation may provide access to or information on content, products, and services 
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all 
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and 
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of 
third-party content, products, or services.







v

Contents

Preface .............................................................................................................................................................   xxxi

Audience...................................................................................................................................................    xxxi
Documentation Accessibility .................................................................................................................    xxxi
Related Documents ................................................................................................................................    xxxii
Conventions ............................................................................................................................................    xxxii
Syntax Descriptions...............................................................................................................................    xxxiii

What's New in PL/SQL?.......................................................................................................................    xxxv

New PL/SQL Features for 11g Release 1 (11.1) ................................................................................     xxxv

1  Overview of PL/SQL

Advantages of PL/SQL ............................................................................................................................   1-1
Tight Integration with SQL...............................................................................................................   1-1
High Performance ..............................................................................................................................   1-2
High Productivity ..............................................................................................................................   1-2
Full Portability ....................................................................................................................................   1-3
Tight Security......................................................................................................................................   1-3
Access to Predefined Packages.........................................................................................................   1-3
Support for Object-Oriented Programming ...................................................................................   1-3
Support for Developing Web Applications and Server Pages ....................................................   1-4

Main Features of PL/SQL........................................................................................................................   1-4
PL/SQL Blocks ...................................................................................................................................   1-4
PL/SQL Error Handling ...................................................................................................................   1-5
PL/SQL Input and Output ...............................................................................................................   1-6
PL/SQL Variables and Constants....................................................................................................   1-6

Declaring PL/SQL Variables.....................................................................................................   1-6
Assigning Values to Variables ..................................................................................................   1-7
Declaring PL/SQL Constants....................................................................................................   1-9
Bind Variables .............................................................................................................................   1-9

PL/SQL Data Abstraction.................................................................................................................   1-9
Cursors ......................................................................................................................................    1-10
%TYPE Attribute......................................................................................................................    1-10
%ROWTYPE Attribute ............................................................................................................    1-10
Collections.................................................................................................................................    1-11
Records ......................................................................................................................................    1-12



vi

Object Types .............................................................................................................................    1-12
PL/SQL Control Structures ...........................................................................................................    1-13

Conditional Control.................................................................................................................    1-13
Iterative Control .......................................................................................................................    1-15
Sequential Control ...................................................................................................................    1-17

PL/SQL Subprograms....................................................................................................................    1-17
Standalone PL/SQL Subprograms........................................................................................    1-18
Triggers......................................................................................................................................    1-19

PL/SQL Packages (APIs Written in PL/SQL) ............................................................................    1-20
Conditional Compilation ...............................................................................................................    1-23
Embedded SQL Statements ...........................................................................................................    1-23

Architecture of PL/SQL ........................................................................................................................    1-24
PL/SQL Engine ...............................................................................................................................    1-24
PL/SQL Units and Compilation Parameters ..............................................................................    1-25

2  PL/SQL Language Fundamentals

Character Sets and Lexical Units ...........................................................................................................   2-1
Delimiters ............................................................................................................................................   2-3
Identifiers ............................................................................................................................................   2-4

Reserved Words and Keywords ...............................................................................................   2-5
Predefined Identifiers.................................................................................................................   2-5
Quoted Identifiers.......................................................................................................................   2-5

Literals .................................................................................................................................................   2-6
Numeric Literals..........................................................................................................................   2-6
Character Literals........................................................................................................................   2-7
String Literals...............................................................................................................................   2-7
BOOLEAN Literals .....................................................................................................................   2-8
Date and Time Literals ...............................................................................................................   2-8

Comments ...........................................................................................................................................   2-9
Single-Line Comments ...............................................................................................................   2-9
Multiline Comments................................................................................................................    2-10

Declarations............................................................................................................................................    2-10
Variables ...........................................................................................................................................    2-11
Constants ..........................................................................................................................................    2-11
Using DEFAULT .............................................................................................................................    2-11
Using NOT NULL...........................................................................................................................    2-12
Using the %TYPE Attribute ...........................................................................................................    2-12
Using the %ROWTYPE Attribute .................................................................................................    2-15

Aggregate Assignment............................................................................................................    2-16
Using Aliases ............................................................................................................................    2-17

Restrictions on Declarations ..........................................................................................................    2-18
Naming Conventions............................................................................................................................    2-19

Scope .................................................................................................................................................    2-19
Case Sensitivity................................................................................................................................    2-20
Name Resolution.............................................................................................................................    2-20
Synonyms .........................................................................................................................................    2-22

Scope and Visibility of PL/SQL Identifiers .....................................................................................    2-22



vii

Assigning Values to Variables ............................................................................................................    2-26
Assigning BOOLEAN Values........................................................................................................    2-27
Assigning SQL Query Results to PL/SQL Variables.................................................................    2-27

PL/SQL Expressions and Comparisons.............................................................................................    2-28
Concatenation Operator .................................................................................................................    2-28
Operator Precedence.......................................................................................................................    2-28
Logical Operators ............................................................................................................................    2-30

Order of Evaluation .................................................................................................................    2-33
Short-Circuit Evaluation .........................................................................................................    2-34
Comparison Operators............................................................................................................    2-34

IS NULL Operator ............................................................................................................    2-35
LIKE Operator ...................................................................................................................    2-35
BETWEEN Operator.........................................................................................................    2-37
IN Operator .......................................................................................................................    2-37

BOOLEAN Expressions .................................................................................................................    2-38
BOOLEAN Arithmetic Expressions ......................................................................................    2-38
BOOLEAN Character Expressions........................................................................................    2-39
BOOLEAN Date Expressions.................................................................................................    2-39
Guidelines for BOOLEAN Expressions................................................................................    2-40

CASE Expressions ...........................................................................................................................    2-40
Simple CASE Expression ........................................................................................................    2-41
Searched CASE Expression ....................................................................................................    2-41

Handling NULL Values in Comparisons and Conditional Statements ..................................    2-42
NULL Values and the NOT Operator...................................................................................    2-43
NULL Values and Zero-Length Strings................................................................................    2-44
NULL Values and the Concatenation Operator ..................................................................    2-44
NULL Values as Arguments to Built-In Functions.............................................................    2-45

PL/SQL Error-Reporting Functions....................................................................................................    2-47
Using SQL Functions in PL/SQL........................................................................................................    2-47
Conditional Compilation.....................................................................................................................    2-48

How Does Conditional Compilation Work?...............................................................................    2-48
Conditional Compilation Control Tokens............................................................................    2-48
Using Conditional Compilation Selection Directives.........................................................    2-49
Using Conditional Compilation Error Directives ...............................................................    2-49
Using Conditional Compilation Inquiry Directives ...........................................................    2-49
Using Predefined Inquiry Directives with Conditional Compilation..............................    2-50
Using Static Expressions with Conditional Compilation...................................................    2-50

Boolean Static Expressions ..............................................................................................    2-51
PLS_INTEGER Static Expressions..................................................................................    2-51
VARCHAR2 Static Expressions......................................................................................    2-51
Static Constants .................................................................................................................    2-52

Using DBMS_DB_VERSION Package Constants................................................................    2-53
Conditional Compilation Examples .............................................................................................    2-54

Using Conditional Compilation to Specify Code for Database Versions ........................    2-54
Using DBMS_PREPROCESSOR Procedures to Print or Retrieve Source Text ...............    2-55

Conditional Compilation Restrictions..........................................................................................    2-55
Using PL/SQL to Create Web Applications......................................................................................    2-56



viii

Using PL/SQL to Create Server Pages ...............................................................................................    2-57

3  PL/SQL Data Types

Predefined PL/SQL Scalar Data Types and Subtypes .......................................................................   3-1
Predefined PL/SQL Numeric Data Types and Subtypes ............................................................   3-2

PLS_INTEGER and BINARY_INTEGER Data Types............................................................   3-2
SIMPLE_INTEGER Subtype of PLS_INTEGER .....................................................................   3-3

Overflow Semantics.............................................................................................................   3-3
Overloading Rules ...............................................................................................................   3-4
Integer Literals .....................................................................................................................   3-4
Cast Operations....................................................................................................................   3-5
Compiler Warnings .............................................................................................................   3-5

BINARY_FLOAT and BINARY_DOUBLE Data Types ........................................................   3-5
NUMBER Data Type ..................................................................................................................   3-6

Predefined PL/SQL Character Data Types and Subtypes...........................................................   3-7
 CHAR and VARCHAR2 Data Types ......................................................................................   3-8

Predefined Subtypes of Character Data Types................................................................   3-9
Memory Allocation for Character Variables....................................................................   3-9
Blank-Padding Shorter Character Values .....................................................................    3-10
Comparing Character Values..........................................................................................    3-10
Maximum Sizes of Values Inserted into Character Database Columns ...................    3-11

RAW Data Type .......................................................................................................................    3-12
NCHAR and NVARCHAR2 Data Types .............................................................................    3-12

AL16UTF16 and UTF8 Encodings..................................................................................    3-12
NCHAR Data Type...........................................................................................................    3-13
NVARCHAR2 Data Type................................................................................................    3-14

LONG and LONG RAW Data Types....................................................................................    3-14
ROWID and UROWID Data Types .......................................................................................    3-14

Predefined PL/SQL BOOLEAN Data Type................................................................................    3-15
Predefined PL/SQL Datetime and Interval Data Types ...........................................................    3-15

DATE Data Type ......................................................................................................................    3-16
TIMESTAMP Data Type .........................................................................................................    3-17
TIMESTAMP WITH TIME ZONE Data Type .....................................................................    3-18
TIMESTAMP WITH LOCAL TIME ZONE Data Type ......................................................    3-19
INTERVAL YEAR TO MONTH Data Type.........................................................................    3-20
INTERVAL DAY TO SECOND Data Type ..........................................................................    3-20
Datetime and Interval Arithmetic .........................................................................................    3-21
Avoiding Truncation Problems Using Date and Time Subtypes .....................................    3-21

Predefined PL/SQL Large Object (LOB) Data Types .....................................................................    3-22
BFILE Data Type .............................................................................................................................    3-23
BLOB Data Type..............................................................................................................................    3-23
CLOB Data Type .............................................................................................................................    3-23
NCLOB Data Type ..........................................................................................................................    3-23

User-Defined PL/SQL Subtypes.........................................................................................................    3-23
Defining Subtypes ..........................................................................................................................    3-24
Using Subtypes................................................................................................................................    3-24

Type Compatibility with Subtypes .......................................................................................    3-25



ix

Constraints and Default Values with Subtypes...................................................................    3-26
PL/SQL Data Type Conversion ...........................................................................................................    3-28

Explicit Conversion.........................................................................................................................    3-28
Implicit Conversion ........................................................................................................................    3-29

4  Using PL/SQL Control Structures

Overview of PL/SQL Control Structures .............................................................................................   4-1
Testing Conditions (IF and CASE Statements)...................................................................................   4-2

Using the IF-THEN Statement .........................................................................................................   4-2
Using the IF-THEN-ELSE Statement...............................................................................................   4-2
Using the IF-THEN-ELSIF Statement..............................................................................................   4-4
Using the Simple CASE Statement ..................................................................................................   4-5
Using the Searched CASE Statement ..............................................................................................   4-6
Guidelines for IF and CASE Statements .........................................................................................   4-7

Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements) ....................................   4-8
Using the Basic LOOP Statement.....................................................................................................   4-9
Using the EXIT Statement .................................................................................................................   4-9
Using the EXIT-WHEN Statement................................................................................................    4-10
Using the CONTINUE Statement.................................................................................................    4-10
Using the CONTINUE-WHEN Statement ..................................................................................    4-11
Labeling a PL/SQL Loop ...............................................................................................................    4-12
Using the WHILE-LOOP Statement.............................................................................................    4-13
Using the FOR-LOOP Statement ..................................................................................................    4-13

How PL/SQL Loops Repeat...................................................................................................    4-15
Dynamic Ranges for Loop Bounds........................................................................................    4-16
Scope of the Loop Counter Variable .....................................................................................    4-17
Using the EXIT Statement in a FOR Loop ............................................................................    4-19

Sequential Control (GOTO and NULL Statements) ......................................................................    4-20
Using the GOTO Statement ...........................................................................................................    4-20
GOTO Statement Restrictions .......................................................................................................    4-22
Using the NULL Statement............................................................................................................    4-23

5  Using PL/SQL Collections and Records

Understanding PL/SQL Collection Types ...........................................................................................   5-1
Understanding Associative Arrays (Index-By Tables) .................................................................   5-2
Understanding Nested Tables..........................................................................................................   5-4
Understanding Variable-Size Arrays (Varrays).............................................................................   5-5

Choosing PL/SQL Collection Types .....................................................................................................   5-5
Choosing Between Nested Tables and Associative Arrays .........................................................   5-5
Choosing Between Nested Tables and Varrays.............................................................................   5-6

Defining Collection Types......................................................................................................................   5-6
Declaring Collection Variables ..............................................................................................................   5-8
Initializing and Referencing Collections .........................................................................................    5-10
Referencing Collection Elements .......................................................................................................    5-12
Assigning Values to Collections.........................................................................................................    5-13
Comparing Collections.........................................................................................................................    5-17



x

Using Multidimensional Collections ................................................................................................    5-19
Using Collection Methods ...................................................................................................................    5-20

Checking If a Collection Element Exists (EXISTS Method) ......................................................    5-21
Counting the Elements in a Collection (COUNT Method) .......................................................    5-21
Checking the Maximum Size of a Collection (LIMIT Method) ................................................    5-22
Finding the First or Last Collection Element (FIRST and LAST Methods) ............................    5-22
Looping Through Collection Elements (PRIOR and NEXT Methods)....................................    5-23
Increasing the Size of a Collection (EXTEND Method) .............................................................    5-24
Decreasing the Size of a Collection (TRIM Method)..................................................................    5-26
Deleting Collection Elements (DELETE Method) ......................................................................    5-27
Applying Methods to Collection Parameters..............................................................................    5-28

Avoiding Collection Exceptions .........................................................................................................    5-28
Defining and Declaring Records........................................................................................................    5-31
Using Records as Subprogram Parameters and Function Return Values ..................................    5-33
Assigning Values to Records...............................................................................................................    5-34

Comparing Records ........................................................................................................................    5-36
Inserting Records Into the Database.............................................................................................    5-36
Updating the Database with Record Values ...............................................................................    5-36
Restrictions on Record Inserts and Updates ...............................................................................    5-38
Querying Data Into Collections of Records.................................................................................    5-38

6  Using Static SQL

Description of Static SQL .......................................................................................................................   6-1
Data Manipulation Language (DML) Statements .........................................................................   6-1
Transaction Control Language (TCL) Statements .........................................................................   6-3
SQL Functions.....................................................................................................................................   6-3
SQL Pseudocolumns..........................................................................................................................   6-4

CURRVAL and NEXTVAL........................................................................................................   6-4
LEVEL...........................................................................................................................................   6-5
ROWID .........................................................................................................................................   6-5
ROWNUM ...................................................................................................................................   6-6

SQL Operators ....................................................................................................................................   6-6
Comparison Operators...............................................................................................................   6-6
Set Operators ...............................................................................................................................   6-7
Row Operators ............................................................................................................................   6-7

Managing Cursors in PL/SQL ................................................................................................................   6-7
SQL Cursors (Implicit) ......................................................................................................................   6-7

Attributes of SQL Cursors .........................................................................................................   6-8
%FOUND Attribute: Has a DML Statement Changed Rows?......................................   6-8
%ISOPEN Attribute: Always FALSE for SQL Cursors ..................................................   6-8
%NOTFOUND Attribute: Has a DML Statement Failed to Change Rows? ...............   6-8
%ROWCOUNT Attribute: How Many Rows Affected So Far?....................................   6-8

Guidelines for Using Attributes of SQL Cursors ...................................................................   6-9
Explicit Cursors ..................................................................................................................................   6-9

Declaring a Cursor ...................................................................................................................    6-10
Opening a Cursor.....................................................................................................................    6-11
Fetching with a Cursor............................................................................................................    6-11



xi

Fetching Bulk Data with a Cursor .........................................................................................    6-12
Closing a Cursor.......................................................................................................................    6-13
Attributes of Explicit Cursors ................................................................................................    6-13

%FOUND Attribute: Has a Row Been Fetched? ..........................................................    6-13
%ISOPEN Attribute: Is the Cursor Open? ....................................................................    6-14
%NOTFOUND Attribute: Has a Fetch Failed?.............................................................    6-14
%ROWCOUNT Attribute: How Many Rows Fetched So Far? ..................................    6-15

Querying Data with PL/SQL ...............................................................................................................    6-16
Selecting At Most One Row (SELECT INTO Statement) ..........................................................    6-16
Selecting Multiple Rows (BULK COLLECT Clause) .................................................................    6-17
Looping Through Multiple Rows (Cursor FOR Loop)..............................................................    6-17
Performing Complicated Query Processing (Explicit Cursors) ...............................................    6-17
Cursor FOR LOOP ..........................................................................................................................    6-18

SQL Cursor FOR LOOP ..........................................................................................................    6-18
Explicit Cursor FOR LOOP.....................................................................................................    6-18

Defining Aliases for Expression Values in a Cursor FOR Loop...............................................    6-19
Using Subqueries ..................................................................................................................................    6-19

Using Correlated Subqueries.........................................................................................................    6-20
Writing Maintainable PL/SQL Subqueries .................................................................................    6-21

Using Cursor Variables (REF CURSORs) .........................................................................................    6-22
What Are Cursor Variables (REF CURSORs)?............................................................................    6-23
Why Use Cursor Variables?...........................................................................................................    6-23
Declaring REF CURSOR Types and Cursor Variables ..............................................................    6-23
Passing Cursor Variables As Parameters ....................................................................................    6-24
Controlling Cursor Variables (OPEN-FOR, FETCH, and CLOSE Statements)......................    6-25

Opening a Cursor Variable.....................................................................................................    6-25
Using a Cursor Variable as a Host Variable.........................................................................    6-27
Fetching from a Cursor Variable ...........................................................................................    6-28
Closing a Cursor Variable.......................................................................................................    6-29

Reducing Network Traffic When Passing Host Cursor Variables to PL/SQL ......................    6-29
Avoiding Errors with Cursor Variables.......................................................................................    6-30
Restrictions on Cursor Variables ..................................................................................................    6-30

Using Cursor Expressions....................................................................................................................    6-31
Overview of Transaction Processing in PL/SQL .............................................................................    6-32

Using COMMIT in PL/SQL ..........................................................................................................    6-33
Using ROLLBACK in PL/SQL......................................................................................................    6-34
Using SAVEPOINT in PL/SQL ....................................................................................................    6-35
How the Database Does Implicit Rollbacks ................................................................................    6-36
Ending Transactions .......................................................................................................................    6-36
Setting Transaction Properties (SET TRANSACTION Statement) ..........................................    6-37
Overriding Default Locking ..........................................................................................................    6-37

Using FOR UPDATE ...............................................................................................................    6-38
Using LOCK TABLE................................................................................................................    6-39
Fetching Across Commits .......................................................................................................    6-39

Doing Independent Units of Work with Autonomous Transactions ..........................................    6-40
Advantages of Autonomous Transactions ..................................................................................    6-41
Defining Autonomous Transactions ............................................................................................    6-41



xii

Comparison of Autonomous Transactions and Nested Transactions .............................    6-43
Transaction Context.................................................................................................................    6-43
Transaction Visibility...............................................................................................................    6-43

Controlling Autonomous Transactions .......................................................................................    6-44
Entering and Exiting................................................................................................................    6-44
Committing and Rolling Back................................................................................................    6-44
Using Savepoints......................................................................................................................    6-44
Avoiding Errors with Autonomous Transactions...............................................................    6-45

Using Autonomous Triggers .........................................................................................................    6-45
Invoking Autonomous Functions from SQL...............................................................................    6-46

7  Using Dynamic SQL

When You Need Dynamic SQL .............................................................................................................   7-1
Using Native Dynamic SQL ...................................................................................................................   7-2

Using the EXECUTE IMMEDIATE Statement...............................................................................   7-2
Using the OPEN-FOR, FETCH, and CLOSE Statements .............................................................   7-4
Repeating Placeholder Names in Dynamic SQL Statements.......................................................   7-5

Dynamic SQL Statement is Not Anonymous Block or CALL Statement ...........................   7-5
Dynamic SQL Statement is Anonymous Block or CALL Statement ...................................   7-5

Using DBMS_SQL Package ...................................................................................................................   7-6
DBMS_SQL.TO_REFCURSOR Function ........................................................................................   7-7
DBMS_SQL.TO_CURSOR_NUMBER Function............................................................................   7-8

Avoiding SQL Injection in PL/SQL ......................................................................................................   7-9
Overview of SQL Injection Techniques ..........................................................................................   7-9

Statement Modification..............................................................................................................   7-9
Statement Injection ..................................................................................................................    7-11
Data Type Conversion.............................................................................................................    7-12

Guarding Against SQL Injection...................................................................................................    7-14
Using Bind Arguments to Guard Against SQL Injection...................................................    7-14
Using Validation Checks to Guard Against SQL Injection................................................    7-15
Using Explicit Format Models to Guard Against SQL Injection.......................................    7-17

8  Using PL/SQL Subprograms

Overview of PL/SQL Subprograms ......................................................................................................   8-1
Subprogram Parts .....................................................................................................................................   8-3
Creating Nested Subprograms that Invoke Each Other ...................................................................   8-5
Declaring and Passing Subprogram Parameters ................................................................................   8-6

Formal and Actual Subprogram Parameters .................................................................................   8-6
Specifying Subprogram Parameter Modes.....................................................................................   8-7

Using IN Mode............................................................................................................................   8-8
Using OUT Mode........................................................................................................................   8-8
Using IN OUT Mode ..................................................................................................................   8-9
Summary of Subprogram Parameter Modes ..........................................................................   8-9

Specifying Default Values for Subprogram Parameters ..............................................................   8-9
Passing Actual Subprogram Parameters with Positional, Named, or Mixed Notation .......    8-11

Overloading PL/SQL Subprogram Names .......................................................................................    8-12
Guidelines for Overloading with Numeric Types .....................................................................    8-13



xiii

Restrictions on Overloading ..........................................................................................................    8-14
When Compiler Catches Overloading Errors .............................................................................    8-14

How PL/SQL Subprogram Calls Are Resolved ...............................................................................    8-16
Using Invoker's Rights or Definer's Rights (AUTHID Clause) ...................................................    8-18

Choosing Between AUTHID CURRENT_USER and AUTHID DEFINER.............................    8-19
AUTHID and the SQL Command SET ROLE.............................................................................    8-20
Need for Template Objects in IR Subprograms..........................................................................    8-20
Overriding Default Name Resolution in IR Subprograms .......................................................    8-20
Using Views and Database Triggers with IR Subprograms .....................................................    8-20
Using Database Links with IR Subprograms ..............................................................................    8-20
Using Object Types with IR Subprograms ..................................................................................    8-21
Invoking IR Instance Methods ......................................................................................................    8-22

Using Recursive PL/SQL Subprograms ............................................................................................    8-23
Invoking External Subprograms ........................................................................................................    8-23
Controlling Side Effects of PL/SQL Subprograms .........................................................................    8-24
Understanding PL/SQL Subprogram Parameter Aliasing ............................................................    8-25
Using the PL/SQL Function Result Cache ........................................................................................    8-27

Enabling Result-Caching for a Function......................................................................................    8-28
Developing Applications with Result-Cached Functions .........................................................    8-29
Restrictions on Result-Cached Functions ....................................................................................    8-29
Examples of Result-Cached Functions.........................................................................................    8-30

Result-Cached Application Configuration Parameters......................................................    8-30
Result-Cached Recursive Function........................................................................................    8-32

Advanced Result-Cached Function Topics .................................................................................    8-32
Rules for a Cache Hit...............................................................................................................    8-32
Bypassing the Result Cache....................................................................................................    8-33
Making Result-Cached Functions Handle Session-Specific Settings ...............................    8-33
Making Result-Cached Functions Handle Session-Specific Application Contexts........    8-34
Choosing Result-Caching Granularity..................................................................................    8-35
Result Caches in Oracle RAC Environment.........................................................................    8-36
Managing the Result Cache....................................................................................................    8-37
Hot-Patching PL/SQL Units on Which Result-Cached Functions Depend....................    8-37

9  Using Triggers

Overview of Triggers ...............................................................................................................................   9-1
Trigger Types......................................................................................................................................   9-2
Trigger States ......................................................................................................................................   9-2
Data Access for Triggers ...................................................................................................................   9-2
Uses of Triggers ..................................................................................................................................   9-3

Guidelines for Designing Triggers .......................................................................................................   9-3
Privileges Required to Use Triggers .....................................................................................................   9-4
Creating Triggers .....................................................................................................................................   9-5

Naming Triggers ...............................................................................................................................   9-6
When Does the Trigger Fire? ...........................................................................................................   9-6

Do Import and SQL*Loader Fire Triggers?.............................................................................   9-6
How Column Lists Affect UPDATE Triggers ........................................................................   9-7

Controlling When a Trigger Fires (BEFORE and AFTER Options) ...........................................   9-7



xiv

Ordering of Triggers ..........................................................................................................................   9-8
Modifying Complex Views (INSTEAD OF Triggers) ...................................................................   9-8

Views that Require INSTEAD OF Triggers.............................................................................   9-9
Triggers on Nested Table View Columns ...............................................................................   9-9
Example: INSTEAD OF Trigger.............................................................................................    9-11

Firing Triggers One or Many Times (FOR EACH ROW Option) ...........................................    9-12
Firing Triggers Based on Conditions (WHEN Clause) .............................................................    9-13
Compound Triggers........................................................................................................................    9-13

Why Use Compound Triggers? .............................................................................................    9-13
Compound Trigger Sections...................................................................................................    9-14
Triggering Statements of Compound Triggers....................................................................    9-15
Compound Trigger Restrictions ............................................................................................    9-15
Compound Trigger Example .................................................................................................    9-16
Using Compound Triggers to Avoid Mutating-Table Error .............................................    9-18

Coding the Trigger Body .....................................................................................................................    9-18
Accessing Column Values in Row Triggers ...............................................................................    9-20

Example: Modifying LOB Columns with a Trigger............................................................    9-20
INSTEAD OF Triggers on Nested Table View Columns ...................................................    9-21
Avoiding Trigger Name Conflicts (REFERENCING Option) ..........................................    9-21
Detecting the DML Operation that Fired a Trigger ............................................................    9-22
Error Conditions and Exceptions in the Trigger Body ......................................................    9-22

Triggers on Object Tables...............................................................................................................    9-22
Triggers and Handling Remote Exceptions ...............................................................................    9-23
Restrictions on Creating Triggers ................................................................................................    9-24

Maximum Trigger Size............................................................................................................    9-24
SQL Statements Allowed in Trigger Bodies.........................................................................    9-25
Trigger Restrictions on LONG and LONG RAW Data Types ..........................................    9-25
Trigger Restrictions on Mutating Tables ..............................................................................    9-25
Restrictions on Mutating Tables Relaxed .............................................................................    9-26
System Trigger Restrictions....................................................................................................    9-27
Foreign Function Callouts ......................................................................................................    9-27

Who Uses the Trigger? ...................................................................................................................    9-27
Compiling Triggers ..............................................................................................................................    9-27

Dependencies for Triggers ............................................................................................................    9-28
Recompiling Triggers ....................................................................................................................    9-28

Modifying Triggers ...............................................................................................................................    9-29
Debugging Triggers ..............................................................................................................................    9-29
Enabling Triggers ..................................................................................................................................    9-29
Disabling Triggers.................................................................................................................................    9-29
Viewing Information About Triggers................................................................................................    9-30
Examples of Trigger Applications .....................................................................................................    9-31

Auditing with Triggers...................................................................................................................    9-31
Contraints and Triggers .................................................................................................................    9-35
Referential Integrity Using Triggers.............................................................................................    9-36

Foreign Key Trigger for Child Table.....................................................................................    9-37
UPDATE and DELETE RESTRICT Trigger for Parent Table ............................................    9-37
UPDATE and DELETE SET NULL Triggers for Parent Table ..........................................    9-38



xv

DELETE Cascade Trigger for Parent Table ..........................................................................    9-39
UPDATE Cascade Trigger for Parent Table.........................................................................    9-39
Trigger for Complex Check Constraints...............................................................................    9-40
Complex Security Authorizations and Triggers..................................................................    9-41
Transparent Event Logging and Triggers ............................................................................    9-42
Derived Column Values and Triggers ..................................................................................    9-42
Building Complex Updatable Views Using Triggers .........................................................    9-43
Fine-Grained Access Control Using Triggers ......................................................................    9-44

Responding to Database Events Through Triggers ........................................................................    9-45
How Events Are Published Through Triggers ...........................................................................    9-45
Publication Context.........................................................................................................................    9-46
Error Handling ................................................................................................................................    9-46
Execution Model..............................................................................................................................    9-46
Event Attribute Functions..............................................................................................................    9-46
Database Events ..............................................................................................................................    9-50
Client Events ....................................................................................................................................    9-51

10  Using PL/SQL Packages

What is a PL/SQL Package? .................................................................................................................    10-1
What Goes in a PL/SQL Package? ......................................................................................................    10-2
Advantages of PL/SQL Packages........................................................................................................    10-3
Understanding the PL/SQL Package Specification ........................................................................    10-3
Referencing PL/SQL Package Contents ............................................................................................    10-4
Understanding the PL/SQL Package Body .......................................................................................    10-5
Examples of PL/SQL Package Features .............................................................................................    10-6
Private and Public Items in PL/SQL Packages ................................................................................    10-9
How STANDARD Package Defines the PL/SQL Environment...................................................    10-9
Overview of Product-Specific PL/SQL Packages ..........................................................................    10-10

DBMS_ALERT Package................................................................................................................    10-10
DBMS_OUTPUT Package ............................................................................................................    10-10
DBMS_PIPE Package ....................................................................................................................    10-11
DBMS_CONNECTION_POOL Package ...................................................................................    10-11
HTF and HTP Packages ...............................................................................................................    10-11
UTL_FILE Package........................................................................................................................    10-11
UTL_HTTP Package .....................................................................................................................    10-11
UTL_SMTP Package .....................................................................................................................    10-11

Guidelines for Writing PL/SQL Packages ......................................................................................    10-12
Separating Cursor Specifications and Bodies with PL/SQL Packages .....................................    10-12

11  Handling PL/SQL Errors

Overview of PL/SQL Run-Time Error Handling ............................................................................    11-1
Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions....................................    11-2
Advantages of PL/SQL Exceptions ....................................................................................................    11-3
Predefined PL/SQL Exceptions...........................................................................................................    11-4
Defining Your Own PL/SQL Exceptions ..........................................................................................    11-6

Declaring PL/SQL Exceptions ......................................................................................................    11-6



xvi

Scope Rules for PL/SQL Exceptions ............................................................................................    11-6
Associating a PL/SQL Exception with a Number (EXCEPTION_INIT Pragma) .................    11-7
Defining Your Own Error Messages (RAISE_APPLICATION_ERROR Procedure) ............    11-8
Redeclaring Predefined Exceptions..............................................................................................    11-9

How PL/SQL Exceptions Are Raised .................................................................................................    11-9
How PL/SQL Exceptions Propagate.................................................................................................    11-10
Reraising a PL/SQL Exception ..........................................................................................................    11-12
Handling Raised PL/SQL Exceptions ..............................................................................................    11-13

Exceptions Raised in Declarations..............................................................................................    11-14
Handling Exceptions Raised in Exception Handlers ...............................................................    11-14
Branching To or from an Exception Handler............................................................................    11-15
Retrieving the Error Code and Error Message .........................................................................    11-15
Catching Unhandled Exceptions ................................................................................................    11-16
Guidelines for Handling PL/SQL Errors ..................................................................................    11-16

Continuing Execution After an Exception Is Raised.........................................................    11-16
Retrying a Transaction ..........................................................................................................    11-17
Using Locator Variables to Identify Exception Locations................................................    11-18

Overview of PL/SQL Compile-Time Warnings .............................................................................    11-19
PL/SQL Warning Categories ......................................................................................................    11-19
Controlling PL/SQL Warning Messages...................................................................................    11-20
Using DBMS_WARNING Package ............................................................................................    11-20

12  Tuning PL/SQL Applications for Performance

How PL/SQL Optimizes Your Programs...........................................................................................    12-1
When to Tune PL/SQL Code................................................................................................................    12-2
Guidelines for Avoiding PL/SQL Performance Problems ............................................................    12-3

Avoiding CPU Overhead in PL/SQL Code ................................................................................    12-3
Make SQL Statements as Efficient as Possible.....................................................................    12-3
Make Function Calls as Efficient as Possible .......................................................................    12-4
Make Loops as Efficient as Possible ......................................................................................    12-5
Use Built-In String Functions .................................................................................................    12-5
Put Least Expensive Conditional Tests First........................................................................    12-5
Minimize Data Type Conversions.........................................................................................    12-5
Use PLS_INTEGER or SIMPLE_INTEGER for Integer Arithmetic ..................................    12-6
Use BINARY_FLOAT, BINARY_DOUBLE, SIMPLE_FLOAT, and SIMPLE_DOUBLE for 
Floating-Point Arithmetic   12-6

Avoiding Memory Overhead in PL/SQL Code .........................................................................    12-7
Declare VARCHAR2 Variables of 4000 or More Characters .............................................    12-7
Group Related Subprograms into Packages ........................................................................    12-7
Pin Packages in the Shared Memory Pool............................................................................    12-7
Apply Advice of Compiler Warnings...................................................................................    12-7

Collecting Data About User-Defined Identifiers............................................................................    12-7
Profiling and Tracing PL/SQL Programs ..........................................................................................    12-8

Using the Profiler API: Package DBMS_PROFILER ..................................................................    12-8
Using the Trace API: Package DBMS_TRACE............................................................................    12-9

Reducing Loop Overhead for DML Statements and Queries with Bulk SQL..........................    12-9
Running One DML Statement Multiple Times (FORALL Statement) ..................................    12-10



xvii

How FORALL Affects Rollbacks .........................................................................................    12-14
Counting Rows Affected by FORALL (%BULK_ROWCOUNT Attribute) ..................    12-14
Handling FORALL Exceptions (%BULK_EXCEPTIONS Attribute)..............................    12-16

Retrieving Query Results into Collections (BULK COLLECT Clause) .................................    12-17
Examples of Bulk Fetching from a Cursor .........................................................................    12-19
Limiting Rows for a Bulk FETCH Operation (LIMIT Clause).........................................    12-20
Retrieving DML Results Into a Collection (RETURNING INTO Clause) .....................    12-21
Using FORALL and BULK COLLECT Together...............................................................    12-21
Using Host Arrays with Bulk Binds....................................................................................    12-22
SELECT BULK COLLECT INTO Statements and Aliasing.............................................    12-22

Writing Computation-Intensive PL/SQL Programs......................................................................    12-27
Tuning Dynamic SQL with EXECUTE IMMEDIATE Statement and Cursor Variables .......    12-27
Tuning PL/SQL Subprogram Calls with NOCOPY Hint ............................................................    12-28
Compiling PL/SQL Units for Native Execution ............................................................................    12-30

Determining Whether to Use PL/SQL Native Compilation ..................................................    12-30
How PL/SQL Native Compilation Works ................................................................................    12-31
Dependencies, Invalidation, and Revalidation.........................................................................    12-31
Setting Up a New Database for PL/SQL Native Compilation...............................................    12-31
Compiling the Entire Database for PL/SQL Native or Interpreted Compilation ...............    12-32

Performing Multiple Transformations with Pipelined Table Functions..................................    12-34
Overview of Pipelined Table Functions.....................................................................................    12-34
Writing a Pipelined Table Function............................................................................................    12-35
Using Pipelined Table Functions for Transformations............................................................    12-36
Returning Results from Pipelined Table Functions .................................................................    12-37
Pipelining Data Between PL/SQL Table Functions.................................................................    12-37
Optimizing Multiple Calls to Pipelined Table Functions........................................................    12-38
Fetching from Results of Pipelined Table Functions ...............................................................    12-38
Passing Data with Cursor Variables...........................................................................................    12-38
Performing DML Operations Inside Pipelined Table Functions ...........................................    12-41
Performing DML Operations on Pipelined Table Functions..................................................    12-41
Handling Exceptions in Pipelined Table Functions.................................................................    12-42

13  PL/SQL Language Elements

Assignment Statement .........................................................................................................................    13-3
AUTONOMOUS_TRANSACTION Pragma ...................................................................................    13-6
Block ........................................................................................................................................................    13-8
CASE Statement...................................................................................................................................    13-15
CLOSE Statement ................................................................................................................................    13-18
Collection ..............................................................................................................................................    13-19
Collection Method Call ......................................................................................................................    13-23
Comment ...............................................................................................................................................    13-27
Constant ................................................................................................................................................    13-28
CONTINUE Statement .......................................................................................................................    13-31
Cursor Attribute...................................................................................................................................    13-32
Cursor Variable Declaration..............................................................................................................    13-34
EXCEPTION_INIT Pragma ...............................................................................................................    13-38
Exception Declaration.........................................................................................................................    13-39



xviii

Exception Handler...............................................................................................................................    13-40
EXECUTE IMMEDIATE Statement .................................................................................................    13-42
EXIT Statement ....................................................................................................................................    13-45
Explicit Cursor .....................................................................................................................................    13-47
Expression .............................................................................................................................................    13-51
FETCH Statement ................................................................................................................................    13-60
FORALL Statement .............................................................................................................................    13-63
Function Declaration and Definition ..............................................................................................    13-66
GOTO Statement.................................................................................................................................    13-70
IF Statement..........................................................................................................................................    13-71
INLINE Pragma ...................................................................................................................................    13-73
Literal .....................................................................................................................................................    13-76
LOOP Statements ................................................................................................................................    13-79
NULL Statement ..................................................................................................................................    13-84
OPEN Statement ..................................................................................................................................    13-85
OPEN-FOR Statement ........................................................................................................................    13-87
Parameter Declaration ........................................................................................................................    13-90
Procedure Declaration and Definition ............................................................................................    13-92
RAISE Statement .................................................................................................................................    13-94
Record Definition................................................................................................................................    13-95
RESTRICT_REFERENCES Pragma .................................................................................................    13-98
RETURN Statement ..........................................................................................................................    13-100
RETURNING INTO Clause ............................................................................................................    13-102
%ROWTYPE Attribute .....................................................................................................................    13-105
SELECT INTO Statement ................................................................................................................    13-107
SERIALLY_REUSABLE Pragma .....................................................................................................    13-111
SQL (Implicit) Cursor Attribute .....................................................................................................    13-113
SQLCODE Function .........................................................................................................................    13-116
SQLERRM Function .........................................................................................................................    13-117
%TYPE Attribute ...............................................................................................................................    13-119
Variable................................................................................................................................................    13-121

14  SQL Statements for Stored PL/SQL Units

ALTER FUNCTION Statement ..........................................................................................................    14-3
ALTER PACKAGE Statement ............................................................................................................    14-6
ALTER PROCEDURE Statement ......................................................................................................    14-9
ALTER TRIGGER Statement ...........................................................................................................    14-11
ALTER TYPE Statement ....................................................................................................................    14-14
CREATE FUNCTION Statement ......................................................................................................    14-27
CREATE PACKAGE Statement ........................................................................................................    14-36
CREATE PACKAGE BODY Statement ..........................................................................................    14-39
CREATE PROCEDURE Statement...................................................................................................    14-42
CREATE TRIGGER Statement .........................................................................................................    14-47
CREATE TYPE Statement .................................................................................................................    14-60
CREATE TYPE BODY Statement ....................................................................................................    14-77
DROP FUNCTION Statement ..........................................................................................................    14-82
DROP PACKAGE Statement ............................................................................................................    14-84



xix

DROP PROCEDURE Statement.......................................................................................................    14-86
DROP TRIGGER Statement .............................................................................................................    14-87
DROP TYPE Statement ......................................................................................................................    14-88
DROP TYPE BODY Statement .........................................................................................................    14-90

A  Wrapping PL/SQL Source Code

Overview of Wrapping ...........................................................................................................................    A-1
Guidelines for Wrapping .......................................................................................................................    A-1
Limitations of Wrapping ........................................................................................................................    A-2
Wrapping PL/SQL Code with wrap Utility ........................................................................................    A-2

Input and Output Files for the PL/SQL wrap Utility..................................................................    A-3
Running the wrap Utility .................................................................................................................    A-3
Limitations of the wrap Utility........................................................................................................    A-4

Wrapping PL/QL Code with DBMS_DDL Subprograms................................................................    A-4
Using DBMS_DDL.CREATE_WRAPPED Procedure..................................................................    A-5
Limitation of the DBMS_DDL.WRAP Function ...........................................................................    A-6

B  How PL/SQL Resolves Identifier Names

What is Name Resolution? ....................................................................................................................    B-1
Examples of Qualified Names and Dot Notation .............................................................................    B-2
How Name Resolution Differs in PL/SQL and SQL ........................................................................    B-4
What is Capture?......................................................................................................................................    B-4

Inner Capture.....................................................................................................................................    B-4
Same-Scope Capture .........................................................................................................................    B-5
Outer Capture....................................................................................................................................    B-5

Avoiding Inner Capture in DML Statements ....................................................................................    B-5
Qualifying References to Attributes and Methods.......................................................................    B-6
Qualifying References to Row Expressions...................................................................................    B-7

C  PL/SQL Program Limits

D  PL/SQL Reserved Words and Keywords

Index



xx



xxi

List of Examples

1–1 PL/SQL Block Structure ............................................................................................................   1-4
1–2 PL/SQL Variable Declarations .................................................................................................   1-7
1–3 Assigning Values to Variables with the Assignment Operator ...........................................   1-7
1–4 Using SELECT INTO to Assign Values to Variables .............................................................   1-8
1–5 Assigning Values to Variables as Parameters of a Subprogram..........................................   1-8
1–6 Using %ROWTYPE with an Explicit Cursor........................................................................    1-10
1–7 Using a PL/SQL Collection Type ..........................................................................................    1-11
1–8 Declaring a Record Type.........................................................................................................    1-12
1–9 Defining an Object Type .........................................................................................................    1-13
1–10 Using the IF-THEN-ELSE and CASE Statement for Conditional Control ......................    1-14
1–11 Using the FOR-LOOP..............................................................................................................    1-15
1–12 Using WHILE-LOOP for Control ..........................................................................................    1-15
1–13 Using the EXIT-WHEN Statement ........................................................................................    1-16
1–14 Using the GOTO Statement....................................................................................................    1-17
1–15 PL/SQL Procedure ..................................................................................................................    1-17
1–16 Creating a Standalone PL/SQL Procedure ..........................................................................    1-18
1–17 Invoking a Standalone Procedure from SQL*Plus..............................................................    1-19
1–18 Creating a Trigger ....................................................................................................................    1-20
1–19 Creating a Package and Package Body.................................................................................    1-20
1–20 Invoking a Procedure in a Package .......................................................................................    1-22
1–21 Processing Query Results in a LOOP....................................................................................    1-23
2–1 NUMBER Literals .......................................................................................................................   2-7
2–2 Using BINARY_FLOAT and BINARY_DOUBLE..................................................................   2-7
2–3 Using DateTime Literals ............................................................................................................   2-8
2–4 Single-Line Comments ...............................................................................................................   2-9
2–5 Multiline Comment .................................................................................................................    2-10
2–6 Declaring Variables..................................................................................................................    2-11
2–7 Declaring Constants.................................................................................................................    2-11
2–8 Assigning Default Values to Variables with DEFAULT Keyword...................................    2-12
2–9 Declaring Variables with NOT NULL Constraint ..............................................................    2-12
2–10 Using %TYPE to Declare Variables of the Types of Other Variables...............................    2-13
2–11 Using %TYPE Incorrectly with NOT NULL Referenced Type .........................................    2-13
2–12 Using %TYPE Correctly with NOT NULL Referenced Type............................................    2-13
2–13 Using %TYPE to Declare Variables of the Types of Table Columns................................    2-14
2–14 Using %ROWTYPE to Declare a Record that Represents a Table Row...........................    2-15
2–15 Declaring a Record that Represents a Subset of Table Columns ......................................    2-15
2–16 Declaring a Record that Represents a Row from a Join .....................................................    2-16
2–17 Assigning One Record to Another, Correctly and Incorrectly..........................................    2-16
2–18 Using SELECT INTO for Aggregate Assignment ...............................................................    2-17
2–19 Using an Alias for an Expression Associated with %ROWTYPE .....................................    2-17
2–20 Duplicate Identifiers in Same Scope......................................................................................    2-19
2–21 Case Insensitivity of Identifiers .............................................................................................    2-20
2–22 Using a Block Label for Name Resolution............................................................................    2-20
2–23 Using a Subprogram Name for Name Resolution ..............................................................    2-21
2–24 Scope and Visibility of Identifiers .........................................................................................    2-23
2–25 Qualifying a Redeclared Global Identifier with a Block Label..........................................    2-23
2–26 Qualifying an Identifier with a Subprogram Name ...........................................................    2-24
2–27 Label and Subprogram with Same Name in Same Scope..................................................    2-25
2–28 Block with Multiple and Duplicate Labels...........................................................................    2-25
2–29 Variable Initialized to NULL by Default ..............................................................................    2-26
2–30 Assigning BOOLEAN Values ................................................................................................    2-27
2–31 Assigning Query Results to Variables ..................................................................................    2-27
2–32 Concatenation Operator..........................................................................................................    2-28
2–33 Operator Precedence ...............................................................................................................    2-29



xxii

2–34 AND Operator..........................................................................................................................    2-30
2–35 OR Operator..............................................................................................................................    2-31
2–36 NOT Operator ..........................................................................................................................    2-32
2–37 Changing Order of Evaluation of Logical Operators .........................................................    2-33
2–38 Short-Circuit Evaluation .........................................................................................................    2-34
2–39 Relational Operators................................................................................................................    2-35
2–40 LIKE Operator ..........................................................................................................................    2-36
2–41 Escape Character in Pattern....................................................................................................    2-36
2–42 BETWEEN Operator................................................................................................................    2-37
2–43 IN Operator...............................................................................................................................    2-37
2–44 Using the IN Operator with Sets with NULL Values .........................................................    2-38
2–45 Using BOOLEAN Variables in Conditional Tests...............................................................    2-40
2–46 Using the WHEN Clause with a CASE Statement ..............................................................    2-41
2–47 Using a Search Condition with a CASE Statement .............................................................    2-41
2–48 NULL Value in Unequal Comparison ..................................................................................    2-43
2–49 NULL Value in Equal Comparison .......................................................................................    2-43
2–50 NULL Value as Argument to DECODE Function ..............................................................    2-45
2–51 NULL Value as Argument to NVL Function.......................................................................    2-45
2–52 NULL Value as Second Argument to REPLACE Function ...............................................    2-46
2–53 NULL Value as Third Argument to REPLACE Function ..................................................    2-46
2–54 Using Static Constants.............................................................................................................    2-52
2–55 Using DBMS_DB_VERSION Constants ...............................................................................    2-53
2–56 Using Conditional Compilation with Database Versions..................................................    2-54
2–57 Using PRINT_POST_PROCESSED_SOURCE to Display Source Code ..........................    2-55
3–1 Comparing Two CHAR Values .............................................................................................    3-10
3–2 Comparing Two VARCHAR2 Values...................................................................................    3-11
3–3 Comparing CHAR Value and VARCHAR2 Value .............................................................    3-11
3–4 Assigning a Literal Value to a TIMESTAMP Variable .......................................................    3-17
3–5 Using the SCN_TO_TIMESTAMP and TIMESTAMP_TO_SCN Functions....................    3-17
3–6 Assigning a Literal to a TIMESTAMP WITH TIME ZONE Variable ...............................    3-18
3–7 Correct Assignment to TIMESTAMP WITH LOCAL TIME ZONE.................................    3-19
3–8 Incorrect Assigment to TIMESTAMP WITH LOCAL TIME ZONE.................................    3-20
3–9 Assigning Literals to an INTERVAL YEAR TO MONTH Variable .................................    3-20
3–10 Assigning Literals to an INTERVAL DAY TO SECOND Variable ..................................    3-21
3–11 Using Ranges with Subtypes..................................................................................................    3-25
3–12 Type Compatibility with the NUMBER Data Type ............................................................    3-26
3–13 Assigning Default Value to Subtype Variable .....................................................................    3-26
3–14 Subtype Constraints Inherited by Subprograms.................................................................    3-27
3–15 Column Constraints Inherited by Subtypes.........................................................................    3-27
3–16 Implicit Conversion .................................................................................................................    3-29
4–1 Simple IF-THEN Statement .......................................................................................................   4-2
4–2 Using a Simple IF-THEN-ELSE Statement..............................................................................   4-3
4–3 Nested IF-THEN-ELSE Statements ..........................................................................................   4-3
4–4 Using the IF-THEN-ELSIF Statement ......................................................................................   4-4
4–5 Extended IF-THEN Statement .................................................................................................   4-4
4–6 Simple CASE Statement .............................................................................................................   4-5
4–7 Searched CASE Statement .........................................................................................................   4-6
4–8 Using EXCEPTION Instead of ELSE Clause in CASE Statement ........................................   4-7
4–9 EXIT Statement............................................................................................................................   4-9
4–10 Using an EXIT-WHEN Statement..........................................................................................    4-10
4–11 CONTINUE Statement............................................................................................................    4-11
4–12 CONTINUE-WHEN Statement .............................................................................................    4-11
4–13 Labeled Loops ..........................................................................................................................    4-12
4–14 Simple FOR-LOOP Statement ................................................................................................    4-14
4–15 Reverse FOR-LOOP Statement ..............................................................................................    4-14



xxiii

4–16 Several Types of FOR-LOOP Bounds ...................................................................................    4-15
4–17 Changing the Increment of the Counter in a FOR-LOOP Statement ...............................    4-16
4–18 Specifying a LOOP Range at Run Time................................................................................    4-16
4–19 FOR-LOOP with Lower Bound > Upper Bound.................................................................    4-16
4–20 Referencing Counter Variable Outside Loop.......................................................................    4-17
4–21 Using Existing Variable as Loop Variable............................................................................    4-18
4–22 Referencing Global Variable with Same Name as Loop Counter.....................................    4-18
4–23 Referencing Outer Counter with Same Name as Inner Counter ......................................    4-18
4–24 EXIT in a FOR LOOP...............................................................................................................    4-19
4–25 EXIT with a Label in a FOR LOOP ........................................................................................    4-19
4–26 Simple GOTO Statement.........................................................................................................    4-20
4–27 Incorrect Label Placement.......................................................................................................    4-21
4–28 Using a NULL Statement to Allow a GOTO to a Label .....................................................    4-21
4–29 Using a GOTO Statement to Branch to an Enclosing Block...............................................    4-22
4–30 GOTO Statement Cannot Branch into IF Statement ...........................................................    4-22
4–31 Using the NULL Statement to Show No Action..................................................................    4-23
4–32 Using NULL as a Placeholder When Creating a Subprogram..........................................    4-24
4–33 Using the NULL Statement in WHEN OTHER Clause......................................................    4-24
5–1 Declaring and Using an Associative Array.............................................................................   5-2
5–2 Declaring an Associative Array ................................................................................................   5-7
5–3 Declaring Nested Tables, Varrays, and Associative Arrays .................................................   5-8
5–4 Declaring Collections with %TYPE ..........................................................................................   5-8
5–5 Declaring a Procedure Parameter as a Nested Table.............................................................   5-9
5–6 Invoking a Procedure with a Nested Table Parameter .........................................................   5-9
5–7 Specifying Collection Element Types with %TYPE and %ROWTYPE ...............................   5-9
5–8 VARRAY of Records................................................................................................................    5-10
5–9 NOT NULL Constraint on Collection Elements..................................................................    5-10
5–10 Constructor for a Nested Table..............................................................................................    5-10
5–11 Constructor for a Varray.........................................................................................................    5-11
5–12 Collection Constructor Including Null Elements................................................................    5-11
5–13 Combining Collection Declaration and Constructor ..........................................................    5-11
5–14 Empty Varray Constructor .....................................................................................................    5-11
5–15 Referencing a Nested Table Element ....................................................................................    5-12
5–16 Referencing an Element of an Associative Array................................................................    5-13
5–17 Data Type Compatibility for Collection Assignment .........................................................    5-14
5–18 Assigning a Null Value to a Nested Table ...........................................................................    5-14
5–19 Assigning Nested Tables with Set Operators ......................................................................    5-15
5–20 Assigning Values to VARRAYs with Complex Data Types..............................................    5-15
5–21 Assigning Values to Tables with Complex Data Types .....................................................    5-16
5–22 Checking if a Collection Is Null .............................................................................................    5-17
5–23 Comparing Two Nested Tables .............................................................................................    5-18
5–24 Comparing Nested Tables with Set Operators ....................................................................    5-18
5–25 Multilevel VARRAY ................................................................................................................    5-19
5–26 Multilevel Nested Table..........................................................................................................    5-19
5–27 Multilevel Associative Array .................................................................................................    5-20
5–28 Checking Whether a Collection Element EXISTS................................................................    5-21
5–29 Counting Collection Elements with COUNT ......................................................................    5-22
5–30 Checking the Maximum Size of a Collection with LIMIT .................................................    5-22
5–31 Using FIRST and LAST with a Collection ............................................................................    5-23
5–32 Using PRIOR and NEXT to Access Collection Elements ...................................................    5-24
5–33 Using NEXT to Access Elements of a Nested Table ...........................................................    5-24
5–34 Using EXTEND to Increase the Size of a Collection ...........................................................    5-25
5–35 Using TRIM to Decrease the Size of a Collection ................................................................    5-26
5–36 Using TRIM on Deleted Elements .........................................................................................    5-27
5–37 Using the DELETE Method on a Collection.........................................................................    5-27



xxiv

5–38 Collection Exceptions ..............................................................................................................    5-28
5–39 How Invalid Subscripts are Handled with DELETE(n) .....................................................    5-30
5–40 Incompatibility Between Package and Local Collection Types ........................................    5-30
5–41 Declaring and Initializing a Simple Record Type ...............................................................    5-31
5–42 Declaring and Initializing Record Types..............................................................................    5-31
5–43 Using %ROWTYPE to Declare a Record ..............................................................................    5-32
5–44 Returning a Record from a Function.....................................................................................    5-33
5–45 Using a Record as Parameter to a Procedure.......................................................................    5-33
5–46 Declaring a Nested Record .....................................................................................................    5-34
5–47 Assigning Default Values to a Record ..................................................................................    5-34
5–48 Assigning All the Fields of a Record in One Statement .....................................................    5-35
5–49 Using SELECT INTO to Assign Values in a Record ...........................................................    5-35
5–50 Inserting a PL/SQL Record Using %ROWTYPE ................................................................    5-36
5–51 Updating a Row Using a Record ...........................................................................................    5-37
5–52 Using the RETURNING INTO Clause with a Record ........................................................    5-37
5–53 Using BULK COLLECT with a SELECT INTO Statement.................................................    5-38
6–1 Data Manipulation with PL/SQL.............................................................................................   6-1
6–2 Checking SQL%ROWCOUNT After an UPDATE.................................................................   6-2
6–3 Substituting PL/SQL Variables ................................................................................................   6-2
6–4 Invoking the SQL COUNT Function in PL/SQL ...................................................................   6-3
6–5 Using CURRVAL and NEXTVAL ............................................................................................   6-4
6–6 Using ROWNUM........................................................................................................................   6-6
6–7 Using SQL%FOUND ..................................................................................................................   6-8
6–8 Using SQL%ROWCOUNT ........................................................................................................   6-8
6–9 Declaring a Cursor ...................................................................................................................    6-10
6–10 Fetching with a Cursor............................................................................................................    6-11
6–11 Referencing PL/SQL Variables Within Its Scope................................................................    6-12
6–12 Fetching the Same Cursor Into Different Variables ............................................................    6-12
6–13 Fetching Bulk Data with a Cursor .........................................................................................    6-12
6–14 Using %FOUND.......................................................................................................................    6-14
6–15 Using %ISOPEN.......................................................................................................................    6-14
6–16 Using %NOTFOUND..............................................................................................................    6-14
6–17 Using %ROWCOUNT.............................................................................................................    6-15
6–18 Using an Alias For Expressions in a Query..........................................................................    6-19
6–19 Using a Subquery in a Cursor ................................................................................................    6-19
6–20 Using a Subquery in a FROM Clause....................................................................................    6-20
6–21 Using a Correlated Subquery.................................................................................................    6-21
6–22 Passing Parameters to a Cursor FOR Loop..........................................................................    6-21
6–23 Passing Parameters to Explicit Cursors ................................................................................    6-21
6–24 Cursor Variable Returning a %ROWTYPE Variable ..........................................................    6-24
6–25 Using the %ROWTYPE Attribute to Provide the Data Type.............................................    6-24
6–26 Cursor Variable Returning a Record Type...........................................................................    6-24
6–27 Passing a REF CURSOR as a Parameter ...............................................................................    6-24
6–28 Checking If a Cursor Variable is Open .................................................................................    6-26
6–29 Stored Procedure to Open a Ref Cursor ...............................................................................    6-26
6–30 Stored Procedure to Open Ref Cursors with Different Queries........................................    6-26
6–31 Cursor Variable with Different Return Types .....................................................................    6-27
6–32 Fetching from a Cursor Variable into a Record...................................................................    6-28
6–33 Fetching from a Cursor Variable into Collections...............................................................    6-28
6–34 Declaration of Cursor Variables in a Package .....................................................................    6-30
6–35 Using a Cursor Expression .....................................................................................................    6-31
6–36 Using COMMIT with the WRITE Clause .............................................................................    6-33
6–37 Using ROLLBACK...................................................................................................................    6-34
6–38 Using SAVEPOINT with ROLLBACK..................................................................................    6-35
6–39 reusing a SAVEPOINT with ROLLBACK............................................................................    6-36



xxv

6–40 Using SET TRANSACTION to Begin a Read-only Transaction .......................................    6-37
6–41 Using CURRENT OF to Update the Latest Row Fetched from a Cursor ........................    6-38
6–42 Fetching Across COMMITs Using ROWID .........................................................................    6-40
6–43 Declaring an Autonomous Function in a Package..............................................................    6-42
6–44 Declaring an Autonomous Standalone Procedure..............................................................    6-42
6–45 Declaring an Autonomous PL/SQL Block...........................................................................    6-42
6–46 Declaring an Autonomous Trigger .......................................................................................    6-43
6–47 Using Autonomous Triggers..................................................................................................    6-45
6–48 Invoking an Autonomous Function ......................................................................................    6-46
7–1 Invoking a Subprogram from a Dynamic PL/SQL Block.....................................................   7-3
7–2 Unsupported Data Type in Native Dynamic SQL .................................................................   7-3
7–3 Uninitialized Variable for NULL in USING Clause ..............................................................   7-4
7–4 Native Dynamic SQL with OPEN-FOR, FETCH, and CLOSE Statements ........................   7-4
7–5 Repeated Placeholder Names in Dynamic PL/SQL Block ...................................................   7-6
7–6 Switching from DBMS_SQL Package to Native Dynamic SQL ...........................................   7-7
7–7 Switching from Native Dynamic SQL to DBMS_SQL Package ...........................................   7-8
7–8 Setup for SQL Injection Examples ............................................................................................   7-9
7–9 Procedure Vulnerable to Statement Modification...............................................................    7-10
7–10 Procedure Vulnerable to Statement Injection ......................................................................    7-11
7–11 Procedure Vulnerable to SQL Injection Through Data Type Conversion.......................    7-13
7–12 Using Bind Arguments to Guard Against SQL Injection...................................................    7-14
7–13 Using Validation Checks to Guard Against SQL Injection................................................    7-16
7–14 Using Explicit Format Models to Guard Against SQL Injection.......................................    7-17
8–1 Declaring, Defining, and Invoking a Simple PL/SQL Procedure .......................................   8-3
8–2 Declaring, Defining, and Invoking a Simple PL/SQL Function..........................................   8-5
8–3 Creating Nested Subprograms that Invoke Each Other........................................................   8-6
8–4 Formal Parameters and Actual Parameters ............................................................................   8-6
8–5 Using OUT Mode........................................................................................................................   8-8
8–6 Procedure with Default Parameter Values...........................................................................    8-10
8–7 Formal Parameter with Expression as Default Value.........................................................    8-10
8–8 Subprogram Calls Using Positional, Named, and Mixed Notation .................................    8-11
8–9 Overloading a Subprogram Name ........................................................................................    8-12
8–10 Package Specification with Overloading Violation that Causes Compile-Time Error ..    8-15
8–11 Package Specification with Overloading Violation that Compiles Without Error ........    8-15
8–12 Invocation of Improperly Overloaded Subprogram ..........................................................    8-15
8–13 Package Specification Without Overloading Violations ....................................................    8-16
8–14 Improper Invocation of Properly Overloaded Subprogram .............................................    8-16
8–15 Resolving PL/SQL Procedure Names ..................................................................................    8-17
8–16 Creating an Object Type with AUTHID CURRENT USER ...............................................    8-21
8–17 Invoking an IR Instance Methods..........................................................................................    8-22
8–18 Invoking an External Procedure from PL/SQL ..................................................................    8-24
8–19 Invoking a Java Function from PL/SQL ..............................................................................    8-24
8–20 RESTRICT_REFERENCES Pragma .......................................................................................    8-25
8–21 Aliasing from Passing Global Variable with NOCOPY Hint ............................................    8-25
8–22 Aliasing Passing Same Parameter Multiple Times .............................................................    8-26
8–23 Aliasing from Assigning Cursor Variables to Same Work Area.......................................    8-26
8–24 Declaration and Definition of Result-Cached Function .....................................................    8-28
8–25 Result-Cached Function that Returns Configuration Parameter Setting ........................    8-31
8–26 ....................................................................................................................................................    8-33
8–27 Result-Cached Function that Depends on Session-Specific Application Context..........    8-35
8–28 Caching One Name at a Time (Finer Granularity)..............................................................    8-36
8–29 Caching Translated Names One Language at a Time (Coarser Granularity) .................    8-36
9–1 CREATE TRIGGER Statement ..................................................................................................   9-5
9–2 Compound Trigger ..................................................................................................................    9-14
9–3 Compound Trigger Records Changes to One Table in Another Table............................    9-16



xxvi

9–4 Compound Trigger that Avoids Mutating-Table Error .....................................................    9-18
9–5 Monitoring Logons with a Trigger........................................................................................    9-19
9–6 Invoking a Java Subprogram from a Trigger.......................................................................    9-19
10–1 A Simple Package Specification Without a Body................................................................    10-4
10–2 Matching Package Specifications and Bodies ......................................................................    10-5
10–3 Creating the emp_admin Package.........................................................................................    10-6
10–4 Using PUT_LINE in the DBMS_OUTPUT Package..........................................................    10-10
10–5 Separating Cursor Specifications with Packages ..............................................................    10-12
11–1 Run-Time Error Handling ......................................................................................................    11-2
11–2 Managing Multiple Errors with a Single Exception Handler............................................    11-3
11–3 Scope of PL/SQL Exceptions .................................................................................................    11-7
11–4 Using PRAGMA EXCEPTION_INIT ....................................................................................    11-8
11–5 Raising an Application Error with RAISE_APPLICATION_ERROR ..............................    11-8
11–6 Using RAISE to Raise a User-Defined Exception................................................................    11-9
11–7 Using RAISE to Raise a Predefined Exception ..................................................................    11-10
11–8 Scope of an Exception............................................................................................................    11-12
11–9 Reraising a PL/SQL Exception ............................................................................................    11-13
11–10 Raising an Exception in a Declaration ................................................................................    11-14
11–11 Displaying SQLCODE and SQLERRM...............................................................................    11-15
11–12 Continuing After an Exception ............................................................................................    11-17
11–13 Retrying a Transaction After an Exception ........................................................................    11-18
11–14 Using a Locator Variable to Identify the Location of an Exception................................    11-18
11–15 Controlling the Display of PL/SQL Warnings..................................................................    11-20
11–16 Using the DBMS_WARNING Package to Display Warnings .........................................    11-20
12–1 Nesting a Query to Improve Performance ...........................................................................    12-4
12–2 Issuing DELETE Statements in a Loop ...............................................................................    12-10
12–3 Issuing INSERT Statements in a Loop ................................................................................    12-11
12–4 Using FORALL with Part of a Collection...........................................................................    12-11
12–5 Using FORALL with Nonconsecutive Index Values ........................................................    12-12
12–6 Using Rollbacks with FORALL............................................................................................    12-14
12–7 Using %BULK_ROWCOUNT with the FORALL Statement...........................................    12-14
12–8 Counting Rows Affected by FORALL with %BULK_ROWCOUNT .............................    12-15
12–9 Bulk Operation that Continues Despite Exceptions .........................................................    12-16
12–10 Retrieving Query Results with BULK COLLECT .............................................................    12-17
12–11 Using the Pseudocolumn ROWNUM to Limit Query Results........................................    12-18
12–12 Bulk-Fetching from a Cursor Into One or More Collections ...........................................    12-19
12–13 Bulk-Fetching from a Cursor Into a Collection of Records..............................................    12-20
12–14 Using LIMIT to Control the Number of Rows In a BULK COLLECT ...........................    12-20
12–15 Using BULK COLLECT with the RETURNING INTO Clause .......................................    12-21
12–16 Using FORALL with BULK COLLECT ..............................................................................    12-21
12–17 SELECT BULK COLLECT INTO Statement with Unexpected Results .........................    12-22
12–18 Workaround for Example 12–17 Using a Cursor ..............................................................    12-23
12–19 Workaround for Example 12–17 Using a Second Collection...........................................    12-25
12–20 Using NOCOPY with Parameters .......................................................................................    12-28
12–21 Assigning the Result of a Table Function...........................................................................    12-35
12–22 Using a Pipelined Table Function For a Transformation.................................................    12-36
12–23 Using Multiple REF CURSOR Input Variables .................................................................    12-39
12–24 Using a Pipelined Table Function as an Aggregate Function .........................................    12-40
13–1 Specifying that a Subprogram Is To Be Inlined.................................................................    13-74
13–2 Specifying that an Overloaded Subprogram Is To Be Inlined.........................................    13-74
13–3 Specifying that a Subprogram Is Not To Be Inlined .........................................................    13-75
13–4 Applying Two INLINE Pragmas to the Same Subprogram............................................    13-75
13–5 Creating a Serially Reusable Package ...............................................................................    13-111
A–1 Using DBMS_DDL.CREATE_WRAPPED Procedure to Wrap a Package.........................    A-5
B–1 Resolving Global and Local Variable Names ........................................................................    B-1



xxvii

B–2 Using the Dot Notation to Qualify Names.............................................................................    B-2



xxviii

List of Figures

1–1 PL/SQL Boosts Performance ....................................................................................................   1-2
1–2 PL/SQL Engine ........................................................................................................................    1-24
4–1 Control Structures.......................................................................................................................   4-1
5–1 Array and Nested Table.............................................................................................................   5-5
5–2 Varray of Size 10..........................................................................................................................   5-5
6–1 Transaction Control Flow .......................................................................................................    6-41
8–1 How the PL/SQL Compiler Resolves Calls .........................................................................    8-17
10–1 Package Scope...........................................................................................................................    10-4
11–1 Propagation Rules: Example 1 .............................................................................................    11-11
11–2 Propagation Rules: Example 2 .............................................................................................    11-11
11–3 Propagation Rules: Example 3 .............................................................................................    11-12



xxix

List of Tables

1–1  PL/SQL Compilation Parameters ........................................................................................    1-25
2–1  PL/SQL Delimiters ....................................................................................................................   2-3
2–2  Operator Precedence ..............................................................................................................    2-29
2–3  Logical Truth Table.................................................................................................................    2-30
2–4  Relational Operators...............................................................................................................    2-35
3–1  Categories of Predefined PL/SQL Data Types......................................................................   3-1
3–2  Categories of Predefined PL/SQL Scalar Data Types ..........................................................   3-2
3–3  Predefined PL/SQL Numeric Data Types .............................................................................   3-2
3–4  Predefined Subtypes of PLS_INTEGER Data Type ..............................................................   3-3
3–5  Predefined PL/SQL BINARY_FLOAT and BINARY_DOUBLE Constants .....................   3-5
3–6  Predefined Subtypes of NUMBER Data Type .......................................................................   3-7
3–7  Predefined PL/SQL Character Data Types............................................................................   3-7
3–8  Comparison of AL16UTF16 and UTF8 Encodings.............................................................    3-13
3–9  Predefined PL/SQL Large Object (LOB) Data Types........................................................    3-22
3–10  Possible Implicit PL/SQL Data Type Conversions............................................................    3-31
5–1  Characteristics of PL/SQL Collection Types .........................................................................   5-2
6–1  Cursor Attribute Values.........................................................................................................    6-15
8–1  Parameter Modes .......................................................................................................................   8-9
8–2  PL/SQL Subprogram Parameter Notations........................................................................    8-11
8–3  Comparison of Finer and Coarser Caching Granularity...................................................    8-35
9–1  Timing-Point Sections of a Compound Trigger Defined ..................................................    9-15
9–2   Comparison of Built-in Auditing and Trigger-Based Auditing......................................    9-31
9–3   System-Defined Event Attributes........................................................................................    9-47
9–4   Database Events .....................................................................................................................    9-50
9–5   Client Events...........................................................................................................................    9-51
11–1  Predefined PL/SQL Exceptions............................................................................................    11-4
11–2  PL/SQL Warning Categories ..............................................................................................    11-19
C–1  PL/SQL Compiler Limits ........................................................................................................    C-1
D–1  PL/SQL Reserved Words ........................................................................................................    D-1
D–2  PL/SQL Keywords ...................................................................................................................    D-2



xxx



xxxi

Preface

Oracle Database PL/SQL Language Reference describes and explains how to use PL/SQL, 
the Oracle procedural extension of SQL.

Preface topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

■ Syntax Descriptions

Audience
Oracle Database PL/SQL Language Reference is intended for anyone who is developing 
PL/SQL-based applications for an Oracle Database, including:

■ Programmers

■ Systems analysts

■ Project managers

■ Database administrators

To use this document effectively, you need a working knowledge of:

■ Oracle Database

■ Structured Query Language (SQL)

■ Basic programming concepts such as IF-THEN statements, loops, procedures, and 
functions

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible to all users, including users that are disabled. To that end, our 
documentation includes features that make information available to users of assistive 
technology. This documentation is available in HTML format, and contains markup to 
facilitate access by the disabled community. Accessibility standards will continue to 
evolve over time, and Oracle is actively engaged with other market-leading 
technology vendors to address technical obstacles so that our documentation can be 
accessible to all of our customers. For more information, visit the Oracle Accessibility 
Program Web site at http://www.oracle.com/accessibility/.



xxxii

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an 
otherwise empty line; however, some screen readers may not always read a line of text 
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or 
organizations that Oracle does not own or control. Oracle neither evaluates nor makes 
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call 
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle 
technical issues and provide customer support according to the Oracle service request 
process. Information about TRS is available at 
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone 
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see the following documents in the Oracle Database 11g Release 
1 (11.1) documentation set:

■ Oracle Database Administrator's Guide

■ Oracle Database Advanced Application Developer's Guide

■ Oracle Database SecureFiles and Large Objects Developer's Guide

■ Oracle Database Object-Relational Developer's Guide

■ Oracle Database Concepts

■ Oracle Database PL/SQL Packages and Types Reference

■ Oracle Database Sample Schemas

■ Oracle Database SQL Language Reference

Conventions
The following text conventions are used in this document:

*_view means all static data dictionary views whose names end with view. For 
example, *_ERRORS means ALL_ERRORS, DBA_ERRORS, and USER_ERRORS. For 

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.

{A|B|C} Choose either A, B, or C.



xxxiii

more information about any static dictionary view, or about static dictionary views in 
general, see Oracle Database Reference.

Syntax Descriptions
Syntax descriptions are provided in this book for various SQL, PL/SQL, or other 
command-line constructs in graphic form or Backus Naur Form (BNF). See Oracle 
Database SQL Language Reference for information about how to interpret these 
descriptions.



xxxiv



xxxv

What's New in PL/SQL?

This topic briefly describes the new PL/SQL features that this book documents and 
provides links to more information.

New PL/SQL Features for 11g Release 1 (11.1)
The new PL/SQL features for 11g Release 1 (11.1) are:

■ Enhancements to Regular Expression Built-in SQL Functions

■ SIMPLE_INTEGER, SIMPLE_FLOAT, and SIMPLE_DOUBLE Data Types

■ CONTINUE Statement

■ Sequences in PL/SQL Expressions

■ Dynamic SQL Enhancements

■ Named and Mixed Notation in PL/SQL Subprogram Invocations

■ PL/SQL Function Result Cache

■ Compound Triggers

■ More Control Over Triggers

■ Database Resident Connection Pool

■ Automatic Subprogram Inlining

■ PL/Scope

■ PL/SQL Hierarchical Profiler

■ PL/SQL Native Compiler Generates Native Code Directly

Enhancements to Regular Expression Built-in SQL Functions
The regular expression built-in functions REGEXP_INSTR and REGEXP_SUBSTR have 
increased functionality. A new regular expression built-in function, REGEXP_COUNT, 
returns the number of times a pattern appears in a string. These functions act the same 
in SQL and PL/SQL.

See Also:

■ Oracle Database Advanced Application Developer's Guide for 
information about the implementation of regular expressions

■ Oracle Database SQL Language Reference for detailed descriptions of 
the REGEXP_INSTR, REGEXP_SUBSTR, and REGEXP_COUNT 
functions



xxxvi

SIMPLE_INTEGER, SIMPLE_FLOAT, and SIMPLE_DOUBLE Data Types
The SIMPLE_INTEGER, SIMPLE_FLOAT, and SIMPLE_DOUBLE data types are 
predefined subtypes of PLS_INTEGER, BINARY_FLOAT, and BINARY_DOUBLE, 
respectively. Each subtype has the same range as its base type and has a NOT NULL 
constraint.

SIMPLE_INTEGER differs significantly from PLS_INTEGER in its overflow semantics, 
but SIMPLE_FLOAT and SIMPLE_DOUBLE are identical to their base types, except for 
their NOT NULL constraint.

You can use SIMPLE_INTEGER when the value will never be NULL and overflow 
checking is unnecessary. You can use SIMPLE_FLOAT and SIMPLE_DOUBLE when the 
value will never be NULL. Without the overhead of checking for nullness and overflow, 
these subtypes provide significantly better performance than their base types when 
PLSQL_CODE_TYPE='NATIVE', because arithmetic operations on SIMPLE_INTEGER 
values are done directly in the hardware. When PLSQL_CODE_
TYPE='INTERPRETED', the performance improvement is smaller.

For more information, see:

■ SIMPLE_INTEGER Subtype of PLS_INTEGER on page 3-3

■ BINARY_FLOAT and BINARY_DOUBLE Data Types on page 3-5

■ Use PLS_INTEGER or SIMPLE_INTEGER for Integer Arithmetic on page 12-6

■ Use BINARY_FLOAT, BINARY_DOUBLE, SIMPLE_FLOAT, and SIMPLE_
DOUBLE for Floating-Point Arithmetic on page 12-6

CONTINUE Statement
The CONTINUE statement exits the current iteration of a loop and transfers control to 
the next iteration (in contrast with the EXIT statement, which exits a loop and 
transfers control to the end of the loop). The CONTINUE statement has two forms: the 
unconditional CONTINUE and the conditional CONTINUE WHEN.

For more information, see:

■ Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)  on 
page 4-8

■ CONTINUE Statement on page 13-31

Sequences in PL/SQL Expressions
The pseudocolumns CURRVAL and NEXTVAL make writing PL/SQL source code easier 
for you and improve run-time performance and scalability. You can use sequence_
name.CURRVAL and sequence_name.NEXTVAL wherever you can use a NUMBER 
expression.

For more information, see CURRVAL and NEXTVAL on page 6-4.

Dynamic SQL Enhancements
Both native dynamic SQL and the DBMS_SQL package have been enhanced.

Native dynamic SQL now supports a dynamic SQL statement larger than 32 KB by 
allowing it to be a CLOB—see EXECUTE IMMEDIATE Statement on page 13-42 and 
OPEN-FOR Statement on page 13-87.

In the DBMS_SQL package:

■ All data types that native dynamic SQL supports are supported.



xxxvii

■ The DBMS_SQL.PARSE function accepts a CLOB argument, allowing dynamic SQL 
statements larger than 32 KB.

■ The new DBMS_SQL.TO_REFCURSOR Function on page 7-7 enables you to 
switch from the DBMS_SQL package to native dynamic SQL.

■ The new DBMS_SQL.TO_CURSOR_NUMBER Function on page 7-8 enables you 
to switch from native dynamic SQL to the DBMS_SQL package.

Named and Mixed Notation in PL/SQL Subprogram Invocations
Before Release 11.1, a SQL statement that invoked a PL/SQL subprogram had to 
specify the actual parameters in positional notation. As of Release 11.1, named and 
mixed notation are also allowed. This improves usability when a SQL statement 
invokes a PL/SQL subprogram that has many defaulted parameters, and few of the 
actual parameters must differ from their default values.

For an example, see the SELECT statements following Example 8–8 on page 8-11.

PL/SQL Function Result Cache
A function result cache can save significant space and time. Each time a result-cached 
function is invoked with different parameter values, those parameters and their result 
are stored in the cache. Subsequently, when the same function is invoked with the 
same parameter values, the result is retrieved from the cache, instead of being 
recomputed.

Before Release 11.1, if you wanted your PL/SQL application to cache the results of a 
function, you had to design and code the cache and cache-management subprograms. 
If multiple sessions ran your application, each session had to have its own copy of the 
cache and cache-management subprograms. Sometimes each session had to perform 
the same expensive computations.

As of Release 11.1, PL/SQL provides a function result cache. To use it, use the 
RESULT_CACHE clause in each PL/SQL function whose results you want cached. 
Because the function result cache is stored in a shared global area (SGA), it is available 
to any session that runs your application.

If you convert your application to PL/SQL function result caching, your application 
will use more SGA, but significantly less total system memory.

For more information, see:

■ Using the PL/SQL Function Result Cache on page 8-27

■ Table , "Function Declaration and Definition" on page 13-66

Compound Triggers
A compound trigger is a Database Manipulation Language (DML) trigger that can fire 
at more than one timing point.

The body of a compound trigger supports a common PL/SQL state that the code for 
all of its sections can access. The common state is established when the triggering 
statement starts and destroyed when the triggering statement completes, even when 
the triggering statement causes an error.

Before Release 11.1, application developers modeled the common state with an 
ancillary package. This approach was both cumbersome to program and subject to 
memory leak when the triggering statement caused an error and the after-statement 
trigger did not fire. Compound triggers make it easier to program an approach where 



xxxviii

you want the actions you implement for the various timing points to share common 
data.

For more information, see Compound Triggers on page 9-13.

More Control Over Triggers
The SQL statement CREATE TRIGGER now supports ENABLE, DISABLE, and FOLLOWS 
clauses that give you more control over triggers. The DISABLE clause lets you create a 
trigger in the disabled state, so that you can ensure that your code compiles 
successfully before you enable the trigger. The ENABLE clause explicitly specifies the 
default state. The FOLLOWS clause lets you control the firing order of triggers that are 
defined on the same table and have the same timing point.

For more information, see:

■ Ordering of Triggers on page 9-8

■ Enabling Triggers on page 9-29

■ Disabling Triggers on page 9-29

Database Resident Connection Pool
DBMS_CONNECTION_POOL package is meant for managing the Database Resident 
Connection Pool, which is shared by multiple middle-tier processes. The database 
administrator uses procedures in DBMS_CONNECTION_POOL to start and stop the 
Database Resident Connection Pool and to configure pool parameters such as size and 
time limit.

For more information, see DBMS_CONNECTION_POOL Package on page 10-11.

Automatic Subprogram Inlining
Subprogram inlining replaces a subprogram call (to a subprogram in the same 
PL/SQL unit) with a copy of the called subprogram, which almost always improves 
program performance.

You can use PRAGMA INLINE to specify that individual subprogram calls are, or are 
not, to be inlined. You can also turn on automatic inlining—that is, ask the compiler to 
search for inlining opportunities—by setting the compilation parameter PLSQL_
OPTIMIZE_LEVEL to 3 (the default is 2).

In the rare cases when automatic inlining does not improve program performance, you 
can use the PL/SQL hierarchical profiler to identify subprograms for which you want 
to turn off inlining.

For more information, see:

■ How PL/SQL Optimizes Your Programs on page 12-1

■ INLINE Pragma on page 13-73

PL/Scope
PL/Scope is a compiler-driven tool that collects and organizes data about user-defined 
identifiers from PL/SQL source code. Because PL/Scope is a compiler-driven tool, you 

See Also: CREATE TRIGGER Statement on page 14-47

See Also: Oracle Database Reference for information about the 
compilation parameter PLSQL_OPTIMIZE_LEVEL



xxxix

use it through interactive development environments (such as SQL Developer and 
JDeveloper), rather than directly.

PL/Scope enables the development of powerful and effective PL/Scope source code 
browsers that increase PL/SQL developer productivity by minimizing time spent 
browsing and understanding source code.

For more information, see Collecting Data About User-Defined Identifiers on 
page 12-7.

PL/SQL Hierarchical Profiler
The PL/SQL hierarchical profiler reports the dynamic execution profile of your 
PL/SQL program, organized by subprogram calls. It accounts for SQL and PL/SQL 
execution times separately. Each subprogram-level summary in the dynamic execution 
profile includes information such as number of calls to the subprogram, time spent in 
the subprogram itself, time spent in the subprogram's subtree (that is, in its descendent 
subprograms), and detailed parent-children information.

You can browse the generated HTML reports in any browser. The browser's 
navigational capabilities, combined with well chosen links, provide a powerful way to 
analyze performance of large applications, improve application performance, and 
lower development costs.

For more information, see Profiling and Tracing PL/SQL Programs on page 12-8.

PL/SQL Native Compiler Generates Native Code Directly
The PL/SQL native compiler now generates native code directly, instead of translating 
PL/SQL code to C code and having the C compiler generate the native code. An 
individual developer can now compile PL/SQL units for native execution without any 
set-up on the part of the DBA. Execution speed of natively compiled PL/SQL 
programs improves, in some cases by an order of magnitude.

For more information, see Compiling PL/SQL Units for Native Execution on 
page 12-30.

See Also: Oracle Database Advanced Application Developer's Guide

See Also: Oracle Database Advanced Application Developer's Guide



xl



1

Overview of PL/SQL 1-1

1 Overview of PL/SQL

PL/SQL, the Oracle procedural extension of SQL, is  a completely portable, 
high-performance transaction-processing language. This chapter explains its 
advantages and briefly describes its main features and its architecture.

Topics:

■ Advantages of PL/SQL

■ Main Features of PL/SQL

■ Architecture of PL/SQL

Advantages of PL/SQL
PL/SQL has these advantages:

■ Tight Integration with SQL

■ High Performance

■ High Productivity

■ Full Portability

■ Tight Security

■ Access to Predefined Packages

■ Support for Object-Oriented Programming

■ Support for Developing Web Applications and Server Pages

Tight Integration with SQL
SQL has become the standard database language because it is flexible, powerful, and 
easy to learn. A few English-like statements such as SELECT, INSERT, UPDATE, and 
DELETE make it easy to manipulate the data stored in a relational database.

PL/SQL is tightly integrated with SQL. With PL/SQL, you can use all SQL data 
manipulation, cursor control, and transaction control statements, and all SQL 
functions, operators, and pseudocolumns.

PL/SQL fully supports SQL data types. You need not convert between PL/SQL and  
SQL data types. For example, if your PL/SQL program retrieves a value from a 
database column of the SQL type VARCHAR2, it can store that value in a PL/SQL 
variable of the type VARCHAR2. Special PL/SQL language features let you work with 
table columns and rows without specifying the data types, saving on maintenance 
work when the table definitions change.



Advantages of PL/SQL

1-2 Oracle Database PL/SQL Language Reference

Running a SQL query and processing the result set is as easy in PL/SQL as opening a 
text file and processing each line in popular scripting languages. Using PL/SQL to 
access metadata about database objects and handle database error conditions, you can 
write utility programs for database administration that are reliable and produce 
readable output about the success of each operation. Many database features, such as 
triggers and object types, use PL/SQL. You can write the bodies of triggers and 
methods for object types in PL/SQL.

PL/SQL supports both static and dynamic SQL. Static SQL is SQL whose full text is 
known at compilation time. Dynamic SQL is SQL whose full text is not known until 
run time. Dynamic SQL enables you to make your applications more flexible and 
versatile. For information about using static SQL with PL/SQL, see Chapter 6, "Using 
Static SQL." For information about using dynamic SQL, see Chapter 7, "Using 
Dynamic SQL."

High Performance
With PL/SQL, an entire block of statements can be sent to the database at one time. 
This can drastically reduce network traffic between the database and an application. 
As Figure 1–1 shows, you can use PL/SQL blocks and subprograms (procedures and 
functions) to group SQL statements before sending them to the database for execution. 
PL/SQL also has language features to further speed up SQL statements that are issued 
inside a loop.

PL/SQL stored subprograms are compiled once and stored in executable form, so 
subprogram calls are efficient. Because stored subprograms execute in the database 
server, a single call over the network can start a large job. This division of work 
reduces network traffic and improves response times. Stored subprograms are cached 
and shared among users, which lowers memory requirements and call overhead.

Figure 1–1 PL/SQL Boosts Performance

High Productivity
PL/SQL lets you write very compact code for manipulating data. In the same way that 
scripting languages such as PERL can read, transform, and write data from files, 

SQL
IF ... THEN

SQL
ELSE

SQL
END IF;
SQL

RPC

SQL

SQL

SQL

SQL

Application

Application

Application

Other DBMSs 

Oracle
Database
with PL/SQL

Oracle
Database
with PL/SQL
and Stored
Procedures



Advantages of PL/SQL

Overview of PL/SQL 1-3

PL/SQL can query, transform, and update data in a database. PL/SQL saves time on 
design and debugging by offering a full range of software-engineering features, such 
as exception handling, encapsulation, data hiding, and object-oriented data types.

PL/SQL extends tools such as Oracle Forms. With PL/SQL in these tools, you can use 
familiar language constructs to build applications. For example, you can use an entire 
PL/SQL block in an Oracle Forms trigger, instead of multiple trigger steps, macros, or 
user exits. PL/SQL is the same in all environments. After you learn PL/SQL with one 
Oracle tool, you can transfer your knowledge to other tools.

Full Portability
Applications written in PL/SQL can run on any operating system and platform where 
the database runs. With PL/SQL, you can write portable program libraries and reuse 
them in different environments.

Tight Security
PL/SQL stored subprograms move application code from the client to the server, 
where you can protect it from tampering, hide the internal details, and restrict who has 
access. For example, you can grant users access to a subprogram that updates a table, 
but not grant them access to the table itself or to the text of the UPDATE statement. 
Triggers written in PL/SQL can control or record changes to data, making sure that all 
changes obey your business rules.

For information about wrapping, or hiding, the source of a PL/SQL unit, see 
Appendix A, "Wrapping PL/SQL Source Code".

Access to Predefined Packages
Oracle provides product-specific packages that define APIs you can invoke from 
PL/SQL to perform many useful tasks. These packages include DBMS_ALERT for using 
triggers, DBMS_FILE for reading and writing operating system text files, UTL_HTTP 
for making hypertext transfer protocol (HTTP) callouts, DBMS_OUTPUT for display 
output from PL/SQL blocks and subprograms, and DBMS_PIPE for communicating 
over named pipes. For more information about these packages, see Overview of 
Product-Specific PL/SQL Packages on page 10-10.

For complete information about the packages supplied by Oracle, see Oracle Database 
PL/SQL Packages and Types Reference. 

Support for Object-Oriented Programming
Object types are an ideal object-oriented modeling tool, which you can use to reduce 
the cost and time required to build complex applications. Besides enabling you to 
create software components that are modular, maintainable, and reusable, object types 
allow different teams of programmers to develop software components concurrently.

By encapsulating operations with data, object types let you move data-maintenance 
code out of SQL scripts and PL/SQL blocks into methods. Also, object types hide 
implementation details, so that you can change the details without affecting client 
programs.

In addition, object types allow for realistic data modeling. Complex real-world entities 
and relationships map directly into object types. This direct mapping helps your 
programs better reflect the world they are trying to simulate. For information about 
object types, see Oracle Database Object-Relational Developer's Guide.



Main Features of PL/SQL

1-4 Oracle Database PL/SQL Language Reference

Support for Developing Web Applications and Server Pages
You can use PL/SQL to develop Web applications and Server Pages (PSPs). For more 
information, see Using PL/SQL to Create Web Applications on page 2-56 and Using 
PL/SQL to Create Server Pages on page 2-57.

Main Features of PL/SQL
PL/SQL combines the data-manipulating power of SQL with the processing power of 
procedural languages.

When a problem can be solved using SQL, you can issue SQL statements from your 
PL/SQL programs, without learning new APIs.

Like other procedural programming languages, PL/SQL lets you declare constants 
and variables, control program flow, define subprograms, and trap run-time errors.

You can break complex problems into easily understandable subprograms, which you 
can reuse in multiple applications.

Topics:

■ PL/SQL Blocks

■ PL/SQL Error Handling

■ PL/SQL Input and Output

■ PL/SQL Variables and Constants

■ PL/SQL Data Abstraction

■ PL/SQL Control Structures

■ PL/SQL Subprograms

■ PL/SQL Packages (APIs Written in PL/SQL)

■ Conditional Compilation

■ Embedded SQL Statements

PL/SQL Blocks
The basic unit of a PL/SQL source program is the block, which groups related 
declarations and statements.

A PL/SQL block is defined by the keywords DECLARE, BEGIN, EXCEPTION, and END. 
These keywords partition the block into a declarative part, an executable part, and an 
exception-handling part. Only the executable part is required.

Declarations are local to the block and cease to exist when the block completes 
execution, helping to avoid cluttered namespaces for variables and subprograms.

Blocks can be nested: Because a block is an executable statement, it can appear in 
another block wherever an executable statement is allowed.

Example 1–1 shows the basic structure of a PL/SQL block. For the formal syntax 
description, see Block on page 13-8.

Example 1–1 PL/SQL Block Structure

DECLARE    -- Declarative part (optional)
  -- Declarations of local types, variables, & subprograms



Main Features of PL/SQL

Overview of PL/SQL 1-5

BEGIN      -- Executable part (required)
  -- Statements (which can use items declared in declarative part)

[EXCEPTION -- Exception-handling part (optional)
  -- Exception handlers for exceptions raised in executable part]
END;

A  PL/SQL block can be submitted to an interactive tool (such as SQL*Plus or 
Enterprise Manager) or embedded in an Oracle Precompiler or OCI program. The 
interactive tool or program executes the block only once. The block is not stored in the 
database.

A named PL/SQL block—a subprogram—can be invoked repeatedly (see PL/SQL 
Subprograms on page 1-17).

PL/SQL Error Handling
PL/SQL makes it easy to detect and process error conditions, which are called 
exceptions. When an error occurs, an exception is raised: normal execution stops and 
control transfers to special exception-handling code, which comes at the end of any 
PL/SQL block. Each different exception is processed by a particular exception handler.

PL/SQL exception handling differs from the manual checking that you do in C 
programming, where you insert a check to make sure that every operation succeeded. 
Instead, the checks and calls to error routines are performed automatically, similar to 
the exception mechanism in Java programming.

Predefined exceptions are raised automatically for certain common error conditions 
involving variables or database operations. For example, if you try to divide a number 
by zero, PL/SQL raises the predefined exception ZERO_DIVIDE automatically.

You can define exceptions of your own, for conditions that you decide are errors, or to 
correspond to database errors that normally result in ORA-n error messages. When 
you detect a user-defined error condition, you raise an exception with either a RAISE 
statement or the procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR. See the 
exception comm_missing in Example 1–16 on page 1-18. In the example, if the 
commission is null, the exception comm_missing is raised.

Typically, you put an exception handler at the end of a subprogram to handle 
exceptions that are raised anywhere inside the subprogram. To continue executing 
from the spot where an exception happens, enclose the code that might raise an 
exception inside another BEGIN-END block with its own exception handler. For 
example, you might put separate BEGIN-END blocks around groups of SQL statements 
that might raise NO_DATA_FOUND, or around arithmetic operations that might raise 
DIVIDE_BY_ZERO. By putting a BEGIN-END block with an exception handler inside a 
loop, you can continue executing the loop even if some loop iterations raise 
exceptions. See Example 5–38 on page 5-28.

For information about PL/SQL errors, see Overview of PL/SQL Run-Time Error 
Handling on page 11-1. For information about PL/SQL warnings, see Overview of 
PL/SQL Compile-Time Warnings on page 11-19.

Note:  A block that is not stored in the database is called an 
anonymous block, even if it has a label.



Main Features of PL/SQL

1-6 Oracle Database PL/SQL Language Reference

PL/SQL Input and Output
Most PL/SQL input and output (I/O) is through SQL statements that store data in 
database tables or query those tables. All other PL/SQL I/O is done through APIs, 
such as the PL/SQL package DBMS_OUTPUT.

To display output passed to DBMS_OUTPUT, you need another program, such as 
SQL*Plus. To see DBMS_OUTPUT output with SQL*Plus, you must first issue the 
SQL*Plus command SET SERVEROUTPUT ON. For information about SET 
SERVEROUTPUT ON, see SQL*Plus User's Guide and Reference.

Other PL/SQL APIs for processing I/O are provided by packages such as:

Although some of the preceding APIs can accept input as well as display output, they 
have cannot accept data directly from the keyboard. For that, use the SQL*Plus 
commands PROMPT and ACCEPT.

PL/SQL Variables and Constants
PL/SQL lets you declare variables and constants, and then use them in SQL and 
procedural statements anywhere an expression can be used. You must declare a 
variable or constant before referencing it in any other statements. For more 
information, see Declarations on page 2-10.

Topics:

■ Declaring PL/SQL Variables

■ Assigning Values to Variables

■ Declaring PL/SQL Constants

■ Bind Variables

Declaring PL/SQL Variables
A PL/SQL variable can have any SQL data type (such as CHAR, DATE, or NUMBER) or a 
PL/SQL-only data type (such as BOOLEAN or PLS_INTEGER).

Example 1–2 declares several PL/SQL variables. One has a PL/SQL-only data type; 
the others have SQL data types.

Package(s) PL/SQL uses package ...

HTF and HTP to display output on a web page

DBMS_PIPE to pass information between PL/SQL and operating-system commands

UTL_FILE to reads and write operating system files

UTL_HTTP to communicate with web servers

UTL_SMTP to communicate with mail servers

See Also:

■ SQL*Plus User's Guide and Reference for information about the 
SQL*Plus command PROMPT

■ SQL*Plus User's Guide and Reference for information about the 
SQL*Plus command ACCEPT

■ Oracle Database PL/SQL Packages and Types Reference for detailed 
information about all PL/SQL packages



Main Features of PL/SQL

Overview of PL/SQL 1-7

Example 1–2 PL/SQL Variable Declarations

SQL> DECLARE
  2    part_number       NUMBER(6);     -- SQL data type
  3    part_name         VARCHAR2(20);  -- SQL data type
  4    in_stock          BOOLEAN;       -- PL/SQL-only data type
  5    part_price        NUMBER(6,2);   -- SQL data type
  6    part_description  VARCHAR2(50);  -- SQL data type
  7  BEGIN
  8    NULL;
  9  END;
 10  /
 
PL/SQL procedure successfully completed.
 
SQL> 

For more information about PL/SQL data types, see Chapter 3, "PL/SQL Data Types."

PL/SQL also lets you declare composite data types, such as nested tables, variable-size 
arrays, and records. For more informations, see Chapter 5, "Using PL/SQL Collections 
and Records."

Assigning Values to Variables
You can assign a value to a variable in the following ways:

■ With the assignment operator (:=), as in Example 1–3.

■ By selecting (or fetching) database values into it, as in Example 1–4.

■ By passing it as an OUT or IN OUT parameter to a subprogram, and then assigning 
the value inside the subprogram, as in Example 1–5

Example 1–3 Assigning Values to Variables with the Assignment Operator

SQL> DECLARE  -- You can assign values here
  2    wages          NUMBER;
  3    hours_worked   NUMBER := 40;
  4    hourly_salary  NUMBER := 22.50;
  5    bonus          NUMBER := 150;
  6    country        VARCHAR2(128);
  7    counter        NUMBER := 0;
  8    done           BOOLEAN;
  9    valid_id       BOOLEAN;
 10    emp_rec1       employees%ROWTYPE;
 11    emp_rec2       employees%ROWTYPE;
 12    TYPE commissions IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
 13    comm_tab       commissions;
 14  
 15  BEGIN  -- You can assign values here too
 16     wages := (hours_worked * hourly_salary) + bonus;
 17     country := 'France';
 18     country := UPPER('Canada');
 19     done := (counter > 100);
 20     valid_id := TRUE;
 21     emp_rec1.first_name := 'Antonio';
 22     emp_rec1.last_name := 'Ortiz';
 23     emp_rec1 := emp_rec2;
 24     comm_tab(5) := 20000 * 0.15;
 25  END;
 26  /



Main Features of PL/SQL

1-8 Oracle Database PL/SQL Language Reference

 
PL/SQL procedure successfully completed.
 
SQL> 

In Example 1–4, 10% of an employee's salary is selected into the bonus variable. Now 
you can use the bonus variable in another computation or insert its value into a 
database table.

Example 1–4 Using SELECT INTO to Assign Values to Variables

SQL> DECLARE
  2    bonus   NUMBER(8,2);
  3    emp_id  NUMBER(6) := 100;
  4  BEGIN
  5    SELECT salary * 0.10 INTO bonus
  6      FROM employees
  7        WHERE employee_id = emp_id;
  8  END;
  9  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Example 1–5 passes the new_sal variable to a subprogram, and the subprogram 
updates the variable.

Example 1–5 Assigning Values to Variables as Parameters of a Subprogram

SQL> DECLARE
  2    new_sal  NUMBER(8,2);
  3    emp_id   NUMBER(6) := 126;
  4  
  5    PROCEDURE adjust_salary (
  6      emp_id      NUMBER,
  7      sal IN  OUT NUMBER
  8    ) IS
  9      emp_job  VARCHAR2(10);
 10      avg_sal  NUMBER(8,2);
 11    BEGIN
 12      SELECT job_id INTO emp_job
 13        FROM employees
 14          WHERE employee_id = emp_id;
 15  
 16      SELECT AVG(salary) INTO avg_sal
 17        FROM employees
 18          WHERE job_id = emp_job;
 19  
 20      DBMS_OUTPUT.PUT_LINE ('The average salary for '
 21                            || emp_job
 22                            || ' employees: '
 23                            || TO_CHAR(avg_sal)
 24                           );
 25  
 26      sal := (sal + avg_sal)/2;
 27    END;
 28  
 29  BEGIN
 30    SELECT AVG(salary) INTO new_sal



Main Features of PL/SQL

Overview of PL/SQL 1-9

 31      FROM employees;
 32  
 33    DBMS_OUTPUT.PUT_LINE ('The average salary for all employees: '
 34                          || TO_CHAR(new_sal)
 35                         );
 36  
 37    adjust_salary(emp_id, new_sal);
 38  END;
 39  /
The average salary for all employees: 6461.68
The average salary for ST_CLERK employees: 2785
 
PL/SQL procedure successfully completed.
 
SQL> 

Declaring PL/SQL Constants
Declaring a PL/SQL constant is like declaring a PL/SQL variable except that you must 
add the keyword CONSTANT and immediately assign a value to the constant. For 
example:

credit_limit CONSTANT NUMBER := 5000.00;

No further assignments to the constant are allowed.

Bind Variables
Bind variables improve performance by allowing the database to reuse SQL 
statements.

When you embed a SQL INSERT, UPDATE, DELETE, or SELECT statement directly in 
your PL/SQL code, PL/SQL turns the variables in the WHERE and VALUES clauses into 
bind variables automatically. The database can reuse these SQL statements each time 
the same code is executed. To run similar statements with different variable values, 
you can save parsing overhead by invoking a stored subprogram that accepts 
parameters and then issues the statements with the parameters substituted in the 
appropriate places.

PL/SQL does not create bind variables automatically when you use dynamic SQL, but 
you can use them with dynamic SQL by specifying them explicitly.

PL/SQL Data Abstraction
Data abstraction lets you work with the essential properties of data without being too 
involved with details. After you design a data structure, you can focus on designing 
algorithms that manipulate the data structure.

Topics:

■ Cursors

■ %TYPE Attribute

■ %ROWTYPE Attribute

■ Collections

■ Records

■ Object Types



Main Features of PL/SQL

1-10 Oracle Database PL/SQL Language Reference

Cursors
A cursor is a name for a specific private SQL area in which information for processing 
the specific statement is kept. PL/SQL uses both implicit and explicit cursors. PL/SQL 
implicitly declares a cursor for all SQL data manipulation statements on a set of rows, 
including queries that return only one row. For queries that return more than one row, 
you can explicitly declare a cursor to process the rows individually. For example, 
Example 1–6 on page 1-10 declares an explicit cursor.

For information about cursors, see Managing Cursors in PL/SQL on page 6-7.

%TYPE Attribute
The %TYPE attribute provides the data type of a variable or database column. This is 
particularly useful when declaring variables that will hold database values. For 
example, assume there is a column named last_name in a table named employees. 
To declare a variable named v_last_name that has the same data type as column 
last_name, use dot notation and the %TYPE attribute, as follows:

v_last_name employees.last_name%TYPE;

Declaring v_last_name with %TYPE has two advantages. First, you need not know 
the exact data type of last_name. Second, if you change the database definition of 
last_name, perhaps to make it a longer character string, the data type of v_last_
name changes accordingly at run time.

For more information about %TYPE, see Using the %TYPE Attribute on page 2-12 and 
%TYPE Attribute on page 13-119.

%ROWTYPE Attribute
In PL/SQL, records are used to group data. A record consists of a number of related 
fields in which data values can be stored. The %ROWTYPE attribute provides a record 
type that represents a row in a table. The record can store an entire row of data 
selected from the table or fetched from a cursor or cursor variable. See Cursors on 
page 1-10.

Columns in a row and corresponding fields in a record have the same names and data 
types. In the following example, you declare a record named dept_rec, whose fields 
have the same names and data types as the columns in the departments table:

dept_rec departments%ROWTYPE; -- declare record variable

You use dot notation to reference fields, as follows:

v_deptid := dept_rec.department_id;

If you declare a cursor that retrieves the last name, salary, hire date, and job class of an 
employee, you can use %ROWTYPE to declare a record that stores the same information.

The FETCH statement in Example 1–6 assigns the value in the last_name column of 
the employees table to the last_name field of employee_rec, the value in the 
salary column is to the salary field, and so on.

Example 1–6 Using %ROWTYPE with an Explicit Cursor

SQL> DECLARE
  2    CURSOR c1 IS
  3      SELECT last_name, salary, hire_date, job_id
  4        FROM employees
  5          WHERE employee_id = 120;
  6  



Main Features of PL/SQL

Overview of PL/SQL 1-11

  7     employee_rec c1%ROWTYPE;
  8  
  9  BEGIN
 10    OPEN c1;
 11    FETCH c1 INTO employee_rec;
 12    DBMS_OUTPUT.PUT_LINE('Employee name: ' || employee_rec.last_name);
 13  END;
 14  /
Employee name: Weiss
 
PL/SQL procedure successfully completed.
 
SQL> 

For more information about %ROWTYPE, see Using the %ROWTYPE Attribute on 
page 2-15 and %ROWTYPE Attribute on page 13-105.

Collections
PL/SQL collection types let you declare high-level data types similar to arrays, sets, 
and hash tables found in other languages. In PL/SQL, array types are known as 
varrays (short for variable-size arrays), set types are known as nested tables, and hash 
table types are known as associative arrays. Each kind of collection is an ordered 
group of elements, all of the same type. Each element has a unique subscript that 
determines its position in the collection. When declaring collections, you use a TYPE 
definition. See Defining Collection Types on page 5-6.

To reference an element, use subscript notation with parentheses, as shown in 
Example 1–7.

Example 1–7 Using a PL/SQL Collection Type

SQL> DECLARE
  2    TYPE staff_list IS TABLE OF employees.employee_id%TYPE;
  3    staff  staff_list;
  4    lname  employees.last_name%TYPE;
  5    fname  employees.first_name%TYPE;
  6  BEGIN
  7    staff := staff_list(100, 114, 115, 120, 122);
  8  
  9    FOR i IN staff.FIRST..staff.LAST LOOP
 10      SELECT last_name, first_name INTO lname, fname
 11        FROM employees
 12          WHERE employees.employee_id = staff(i);
 13  
 14       DBMS_OUTPUT.PUT_LINE (TO_CHAR(staff(i))
 15                             || ': '
 16                             || lname
 17                             || ', '
 18                             || fname
 19                            );
 20    END LOOP;
 21  END;
 22  /
100: King, Steven
114: Raphaely, Den
115: Khoo, Alexander
120: Weiss, Matthew
122: Kaufling, Payam
 



Main Features of PL/SQL

1-12 Oracle Database PL/SQL Language Reference

PL/SQL procedure successfully completed.
 
SQL> 

Collections can be passed as parameters, so that subprograms can process arbitrary 
numbers of elements.You can use collections to move data into and out of database 
tables using high-performance language features known as bulk SQL. 

For information about collections, see Chapter 5, "Using PL/SQL Collections and 
Records."

Records
Records are composite data structures whose fields can have different data types. You 
can use records to hold related items and pass them to subprograms with a single 
parameter. When declaring records, you use a TYPE definition, as in Example 1–8. See 
Defining and Declaring Records on page 5-31. 

Example 1–8 Declaring a Record Type

SQL> DECLARE
  2    TYPE timerec IS RECORD (
  3      hours   SMALLINT,
  4      minutes SMALLINT
  5    );
  6  
  7    TYPE meeting_type IS RECORD (
  8      date_held  DATE,
  9      duration   timerec,  -- nested record
 10      location   VARCHAR2(20),
 11      purpose    VARCHAR2(50)
 12    );
 13  
 14  BEGIN
 15    NULL;
 16  END;
 17  /
 
PL/SQL procedure successfully completed.
 
SQL> 

You can use the %ROWTYPE attribute to declare a record that represents a row in a table 
or a row from a query result set, without specifying the names and types for the fields.

For information about records, see Chapter 5, "Using PL/SQL Collections and 
Records."

Object Types
PL/SQL supports object-oriented programming through object types. An object type 
encapsulates a data structure along with the subprograms needed to manipulate the 
data. The variables that form the data structure are known as attributes. The 
subprograms that manipulate the attributes are known as methods. 

Object types reduce complexity by breaking down a large system into logical entities. 
This lets you create software components that are modular, maintainable, and 
reusable. Object-type definitions, and the code for the methods, are stored in the 
database. Instances of these object types can be stored in tables or used as variables 
inside PL/SQL code. Example 1–9 shows an object type definition for a bank account.



Main Features of PL/SQL

Overview of PL/SQL 1-13

Example 1–9 Defining an Object Type

SQL> CREATE TYPE bank_account AS OBJECT (
  2    acct_number NUMBER(5),
  3    balance     NUMBER,
  4    status      VARCHAR2(10),
  5  
  6    MEMBER PROCEDURE open
  7      (SELF IN OUT NOCOPY bank_account,
  8       amount IN NUMBER),
  9  
 10    MEMBER PROCEDURE close
 11      (SELF IN OUT NOCOPY bank_account,
 12       num IN NUMBER,
 13       amount OUT NUMBER),
 14  
 15    MEMBER PROCEDURE deposit
 16      (SELF IN OUT NOCOPY bank_account,
 17       num IN NUMBER,
 18       amount IN NUMBER),
 19  
 20    MEMBER PROCEDURE withdraw
 21      (SELF IN OUT NOCOPY bank_account,
 22       num IN NUMBER,
 23       amount IN NUMBER),
 24  
 25    MEMBER FUNCTION curr_bal (num IN NUMBER) RETURN NUMBER
 26  );
 27  /
 
Type created.
 
SQL> 

For information about object types, see Oracle Database Object-Relational Developer's 
Guide.

PL/SQL Control Structures
Control structures are the most important PL/SQL extension to SQL. Not only does 
PL/SQL let you manipulate database data, it lets you process the data using 
flow-of-control statements.

Topics:

■ Conditional Control

■ Iterative Control

■ Sequential Control

For more information, see Chapter 4, "Using PL/SQL Control Structures."

Conditional Control
Often, it is necessary to take alternative actions depending on circumstances. The 
IF-THEN-ELSE statement lets you execute a sequence of statements conditionally. 
The IF clause checks a condition, the THEN clause defines what to do if the condition 
is true and the ELSE clause defines what to do if the condition is false or null. 
Example 1–10 shows the use of IF-THEN-ELSE to determine the salary raise an 
employee receives based on the current salary of the employee.



Main Features of PL/SQL

1-14 Oracle Database PL/SQL Language Reference

To choose among several values or courses of action, you can use CASE constructs. The 
CASE expression evaluates a condition and returns a value for each case. The case 
statement evaluates a condition and performs an action for each case, as in 
Example 1–10.

Example 1–10 Using the IF-THEN-ELSE and CASE Statement for Conditional Control

SQL> DECLARE
  2     jobid      employees.job_id%TYPE;
  3     empid      employees.employee_id%TYPE := 115;
  4     sal        employees.salary%TYPE;
  5     sal_raise  NUMBER(3,2);
  6  BEGIN
  7    SELECT job_id, salary INTO jobid, sal
  8      FROM employees
  9        WHERE employee_id = empid;
 10  
 11    CASE
 12      WHEN jobid = 'PU_CLERK' THEN
 13        IF sal < 3000 THEN
 14          sal_raise := .12;
 15        ELSE
 16          sal_raise := .09;
 17        END IF;
 18  
 19      WHEN jobid = 'SH_CLERK' THEN
 20        IF sal < 4000 THEN
 21          sal_raise := .11;
 22        ELSE
 23          sal_raise := .08;
 24        END IF;
 25  
 26      WHEN jobid = 'ST_CLERK' THEN
 27        IF sal < 3500 THEN
 28          sal_raise := .10;
 29        ELSE
 30          sal_raise := .07;
 31        END IF;
 32  
 33      ELSE
 34        BEGIN
 35          DBMS_OUTPUT.PUT_LINE('No raise for this job: ' || jobid);
 36        END;
 37     END CASE;
 38  
 39     UPDATE employees
 40       SET salary = salary + salary * sal_raise
 41         WHERE employee_id = empid;
 42  END;
 43  /
 
PL/SQL procedure successfully completed.
 
SQL>

A sequence of statements that uses query results to select alternative actions is 
common in database applications. Another common sequence inserts or deletes a row 
only if an associated entry is found in another table. You can bundle these common 
sequences into a PL/SQL block using conditional logic.



Main Features of PL/SQL

Overview of PL/SQL 1-15

Iterative Control
LOOP statements let you execute a sequence of statements multiple times. You place 
the keyword LOOP before the first statement in the sequence and the keywords END 
LOOP after the last statement in the sequence. The following example shows the 
simplest kind of loop, which repeats a sequence of statements continually:

LOOP
  -- sequence of statements
END LOOP;

The FOR-LOOP statement lets you specify a range of integers, then execute a sequence 
of statements once for each integer in the range. In Example 1–11 the loop inserts 100 
numbers, square roots, squares, and the sum of squares into a database table.

Example 1–11 Using the FOR-LOOP

SQL> CREATE TABLE sqr_root_sum (
  2    num NUMBER,
  3    sq_root NUMBER(6,2),
  4    sqr NUMBER,
  5    sum_sqrs NUMBER
  6  );
 
Table created.
 
SQL> 
SQL> DECLARE
  2     s  PLS_INTEGER;
  3  BEGIN
  4    FOR i in 1..100 LOOP
  5      s := (i * (i + 1) * (2*i +1)) / 6;  -- sum of squares
  6  
  7      INSERT INTO sqr_root_sum
  8        VALUES (i, SQRT(i), i*i, s );
  9    END LOOP;
 10  END;
 11  /
 
PL/SQL procedure successfully completed.
 
SQL> 

The WHILE-LOOP statement associates a condition with a sequence of statements. 
Before each iteration of the loop, the condition is evaluated. If the condition is true, the 
sequence of statements is executed, then control resumes at the top of the loop. If the 
condition is false or null, the loop is bypassed and control passes to the next statement.

In Example 1–12, you find the first employee who has a salary over $15000 and is 
higher in the chain of command than employee 120.

Example 1–12 Using WHILE-LOOP for Control

SQL> CREATE TABLE temp (
  2    tempid   NUMBER(6),
  3    tempsal  NUMBER(8,2),
  4    tempname VARCHAR2(25)
  5  );
 
Table created.
 



Main Features of PL/SQL

1-16 Oracle Database PL/SQL Language Reference

SQL> 
SQL> DECLARE
  2    sal             employees.salary%TYPE := 0;
  3    mgr_id          employees.manager_id%TYPE;
  4    lname           employees.last_name%TYPE;
  5    starting_empid  employees.employee_id%TYPE := 120;
  6  
  7  BEGIN
  8     SELECT manager_id INTO mgr_id
  9       FROM employees
 10         WHERE employee_id = starting_empid;
 11  
 12     WHILE sal <= 15000 LOOP
 13       SELECT salary, manager_id, last_name INTO sal, mgr_id, lname
 14         FROM employees
 15           WHERE employee_id = mgr_id;
 16     END LOOP;
 17  
 18     INSERT INTO temp
 19        VALUES (NULL, sal, lname);
 20  
 21  EXCEPTION
 22    WHEN NO_DATA_FOUND THEN
 23      INSERT INTO temp VALUES (NULL, NULL, 'Not found');
 24  END;
 25  /
 
PL/SQL procedure successfully completed.
 
SQL>

The EXIT-WHEN statement lets you complete a loop if further processing is impossible 
or undesirable. When the EXIT statement is encountered, the condition in the WHEN 
clause is evaluated. If the condition is true, the loop completes and control passes to 
the next statement. In Example 1–13, the loop completes when the value of total 
exceeds 25,000:

Similarly, the CONTINUE-WHEN statement immediately transfers control to the next 
iteration of the loop when there is no need to continue working on this iteration.

Example 1–13 Using the EXIT-WHEN Statement

SQL> CREATE TABLE temp (
  2    tempid   NUMBER(6),
  3    tempsal  NUMBER(8,2),
  4    tempname VARCHAR2(25)
  5  );
 
Table created.
 
SQL> 
SQL> DECLARE
  2    total    NUMBER(9) := 0;
  3    counter  NUMBER(6) := 0;
  4  BEGIN
  5    LOOP
  6      counter := counter + 1;
  7      total   := total + counter * counter;
  8      EXIT WHEN total > 25000;
  9    END LOOP;



Main Features of PL/SQL

Overview of PL/SQL 1-17

 10  
 11    DBMS_OUTPUT.PUT_LINE ('Counter: '
 12                          || TO_CHAR(counter)
 13                          || ' Total: '
 14                          || TO_CHAR(total)
 15                         );
 16  END;
 17  /
Counter: 42 Total: 25585
 
PL/SQL procedure successfully completed.
 
SQL>

Sequential Control
The GOTO statement lets you branch to a label unconditionally. The label, an 
undeclared identifier enclosed by double angle brackets, must precede an executable 
statement or a PL/SQL block. When executed, the GOTO statement transfers control to 
the labeled statement or block, as in Example 1–14.

Example 1–14 Using the GOTO Statement

SQL> DECLARE
  2    total    NUMBER(9) := 0;
  3    counter  NUMBER(6) := 0;
  4  BEGIN
  5    <<calc_total>>
  6    counter := counter + 1;
  7    total := total + counter * counter;
  8  
  9    IF total > 25000 THEN
 10      GOTO print_total;
 11    ELSE
 12      GOTO calc_total;
 13    END IF;
 14  
 15    <<print_total>>
 16    DBMS_OUTPUT.PUT_LINE
 17      ('Counter: ' || TO_CHAR(counter) || ' Total: ' || TO_CHAR(total));
 18  END;
 19  /
Counter: 42 Total: 25585
 
PL/SQL procedure successfully completed.
 
SQL> 

PL/SQL Subprograms
A PL/SQL subprogram is a named PL/SQL block that can be invoked with a set of 
parameters, like double in Example 1–15. PL/SQL has two types of subprograms, 
procedures and functions. A function returns a result.

Example 1–15 PL/SQL Procedure

SQL> DECLARE
  2    in_string   VARCHAR2(100) := 'Test string';
  3    out_string  VARCHAR2(200);
  4  



Main Features of PL/SQL

1-18 Oracle Database PL/SQL Language Reference

  5    PROCEDURE double (
  6      original    IN  VARCHAR2,
  7      new_string  OUT VARCHAR2
  8    ) AS
  9    BEGIN
 10      new_string := original || original;
 11    END;
 12  
 13  BEGIN
 14    DBMS_OUTPUT.PUT_LINE ('in_string: ' || in_string);
 15    double (in_string, out_string);
 16    DBMS_OUTPUT.PUT_LINE ('out_string: ' || out_string);
 17  END;
 18  /
in_string: Test string
out_string: Test stringTest string
 
PL/SQL procedure successfully completed.
 
SQL> 

Topics:

■ Standalone PL/SQL Subprograms

■ Triggers

For more information about PL/SQL subprograms, see Chapter 8, "Using PL/SQL 
Subprograms."

Standalone PL/SQL Subprograms
You create standalone subprograms at schema level with the SQL statements CREATE 
PROCEDURE and CREATE FUNCTION. They are compiled and stored in the database, 
where they can be used by any number of applications connected to the database. 
When invoked, they are loaded and processed immediately. Subprograms use shared 
memory, so that only one copy of a subprogram is loaded into memory for execution 
by multiple users.

Example 1–16 creates a standalone procedure that  accepts an employee ID and a 
bonus amount, uses the ID to select the employee's commission percentage from a 
database table and to convert the commission percentage to a decimal amount, and 
then checks the commission amount. If the commission is null, the procedure raises an 
exception; otherwise, it updates the employee's salary.

Example 1–16 Creating a Standalone PL/SQL Procedure

SQL> CREATE OR REPLACE PROCEDURE award_bonus (
  2    emp_id NUMBER, bonus NUMBER) AS
  3    commission    REAL;
  4    comm_missing  EXCEPTION;
  5  BEGIN
  6    SELECT commission_pct / 100 INTO commission
  7      FROM employees
  8        WHERE employee_id = emp_id;
  9  
 10    IF commission IS NULL THEN
 11      RAISE comm_missing;
 12    ELSE
 13      UPDATE employees
 14        SET salary = salary + bonus*commission



Main Features of PL/SQL

Overview of PL/SQL 1-19

 15          WHERE employee_id = emp_id;
 16    END IF;
 17  EXCEPTION
 18    WHEN comm_missing THEN
 19      DBMS_OUTPUT.PUT_LINE
 20        ('This employee does not receive a commission.');
 21      commission := 0;
 22    WHEN OTHERS THEN
 23      NULL;
 24  END award_bonus;
 25  /
 
Procedure created.
 
SQL> 

A PL/SQL subprogram can be invoked from an interactive tool (such as SQL*Plus or 
Enterprise Manager), from an Oracle Precompiler or OCI program, from another 
PL/SQL subprogram, or from a trigger.

For information, about the CREATE PROCEDURE statment, see CREATE PROCEDURE 
Statement on page 14-42.

For more information about the SQL CREATE FUNCTION, see CREATE FUNCTION 
Statement on page 14-27.

Example 1–17 invokes the stored subprogram in Example 1–16 with the CALL 
statement and then from inside a block.

Example 1–17 Invoking a Standalone Procedure from SQL*Plus

SQL> -- Invoke standalone procedure with CALL statement
SQL> 
SQL> CALL award_bonus(179, 1000);
Call completed.
 
SQL> 
SQL> -- Invoke standalone procedure from within block
SQL> 
SQL> BEGIN
  2    award_bonus(179, 10000);
  3  END;
  4  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Using the BEGIN-END block is recommended in several situations. For example, using 
the CALL statement can suppress an ORA-n error that was not handled in the PL/SQL 
subprogram.

For additional examples of invoking PL/SQL subprograms, see Example 8–8 on 
page 8-11. For information about the CALL statement, see Oracle Database SQL Language 
Reference

Triggers
A trigger is a stored subprogram associated with a table, view, or event. The trigger 
can be invoked once, when some event occurs, or many times, once for each row 



Main Features of PL/SQL

1-20 Oracle Database PL/SQL Language Reference

affected by an INSERT, UPDATE, or DELETE statement. The trigger can be invoked 
before or after the event.

The trigger in Example 1–18 is invoked whenever salaries in the employees table are 
updated. For each update, the trigger writes a record to the emp_audit table.  
(Example 1–10 on page 1-14 would invoke this trigger.)

Example 1–18 Creating a Trigger

SQL> CREATE TABLE emp_audit (
  2    emp_audit_id  NUMBER(6),
  3    up_date       DATE,
  4    new_sal       NUMBER(8,2),
  5    old_sal       NUMBER(8,2)
  6  );
 
Table created.
 
SQL> 
SQL> CREATE OR REPLACE TRIGGER audit_sal
  2    AFTER UPDATE OF salary
  3      ON employees
  4        FOR EACH ROW
  5  BEGIN
  6    INSERT INTO emp_audit
  7      VALUES(:old.employee_id, SYSDATE, :new.salary, :old.salary);
  8  END;
  9  /
 
Trigger created.
 
SQL> 

For more information about triggers, see Chapter 9, "Using Triggers."

PL/SQL Packages (APIs Written in PL/SQL)
A PL/SQL package bundles logically related types, variables, cursors, and 
subprograms into a database object called a package. The package defines a simple, 
clear, interface to a set of related subprograms and types that can be accessed by SQL 
statements.

PL/SQL lets you access many predefined packages (see Access to Predefined Packages 
on page 1-3) and to create your own packages.

A package usually has two parts: a specification and a body.

The specification defines the application programming interface (API); it declares the 
types, constants, variables, exceptions, cursors, and subprograms. To create a package 
specification, use the CREATE PACKAGE Statement on page 14-36.

The body contains the SQL queries for cursors and the code for subprograms.To create 
a package body, use the CREATE PACKAGE BODY Statement on page 14-39.

In Example 1–19, the emp_actions package contains two procedures that update the 
employees table and one function that provides information.

Example 1–19 Creating a Package and Package Body

SQL> -- Package specification:
SQL> 



Main Features of PL/SQL

Overview of PL/SQL 1-21

SQL> CREATE OR REPLACE PACKAGE emp_actions AS
  2  
  3    PROCEDURE hire_employee (
  4      employee_id     NUMBER,
  5      last_name       VARCHAR2,
  6      first_name      VARCHAR2,
  7      email           VARCHAR2,
  8      phone_number    VARCHAR2,
  9      hire_date       DATE,
 10      job_id          VARCHAR2,
 11      salary          NUMBER,
 12      commission_pct  NUMBER,
 13      manager_id      NUMBER,
 14      department_id   NUMBER
 15    );
 16  
 17    PROCEDURE fire_employee (emp_id NUMBER);
 18  
 19    FUNCTION num_above_salary (emp_id NUMBER) RETURN NUMBER;
 20  END emp_actions;
 21  /
 
Package created.
 
SQL> -- Package body:
SQL> 
SQL> CREATE OR REPLACE PACKAGE BODY emp_actions AS
  2  
  3    -- Code for procedure hire_employee:
  4  
  5    PROCEDURE hire_employee (
  6      employee_id     NUMBER,
  7      last_name       VARCHAR2,
  8      first_name      VARCHAR2,
  9      email           VARCHAR2,
 10      phone_number    VARCHAR2,
 11      hire_date       DATE,
 12      job_id          VARCHAR2,
 13      salary          NUMBER,
 14      commission_pct  NUMBER,
 15      manager_id      NUMBER,
 16      department_id   NUMBER
 17    ) IS
 18    BEGIN
 19      INSERT INTO employees
 20        VALUES (employee_id,
 21                last_name,
 22                first_name,
 23                email,
 24                phone_number,
 25                hire_date,
 26                job_id,
 27                salary,
 28                commission_pct,
 29                manager_id,
 30                department_id);
 31    END hire_employee;
 32  
 33    -- Code for procedure fire_employee:
 34  



Main Features of PL/SQL

1-22 Oracle Database PL/SQL Language Reference

 35    PROCEDURE fire_employee (emp_id NUMBER) IS
 36    BEGIN
 37      DELETE FROM employees
 38        WHERE employee_id = emp_id;
 39    END fire_employee;
 40  
 41    -- Code for function num_above_salary:
 42  
 43    FUNCTION num_above_salary (emp_id NUMBER) RETURN NUMBER IS
 44      emp_sal NUMBER(8,2);
 45      num_count NUMBER;
 46    BEGIN
 47      SELECT salary INTO emp_sal
 48        FROM employees
 49          WHERE employee_id = emp_id;
 50  
 51      SELECT COUNT(*) INTO num_count
 52        FROM employees
 53          WHERE salary > emp_sal;
 54  
 55      RETURN num_count;
 56    END num_above_salary;
 57  END emp_actions;
 58  /
 
Package body created.
 
SQL>

To invoke a packaged subprogram, you must know only name of the package and the 
name and parameters of the subprogram (therefore, you can change the 
implementation details inside the package body without affecting the invoking 
applications).

Example 1–20 invokes the emp_actions package procedures hire_employee and 
fire_employee.

Example 1–20 Invoking a Procedure in a Package

SQL> CALL emp_actions.hire_employee (300, 'Belden', 'Enrique',
  2    'EBELDEN', '555.111.2222',
  3    '31-AUG-04', 'AC_MGR', 9000,
  4    .1, 101, 110);
 
Call completed.
 
SQL> BEGIN
  2    DBMS_OUTPUT.PUT_LINE
  3      ('Number of employees with higher salary: ' ||
  4        TO_CHAR(emp_actions.num_above_salary(120)));
  5  
  6    emp_actions.fire_employee(300);
  7  END;
  8  /
Number of employees with higher salary: 34
 
PL/SQL procedure successfully completed.
 
SQL> 



Main Features of PL/SQL

Overview of PL/SQL 1-23

Packages are stored in the database, where they can be shared by many applications. 
Invoking a packaged subprogram for the first time loads the whole package and 
caches it in memory, saving on disk I/O for subsequent invocations. Thus, packages 
enhance reuse and improve performance in a multiuser, multi-application 
environment.

For more information about packages, see Chapter 10, "Using PL/SQL Packages."

Conditional Compilation
PL/SQL provides conditional compilation, which lets you customize the functionality 
in a PL/SQL application without having to remove any source code. For example, you 
can:

■ Use the latest functionality with the latest database release and disable the new 
features to run the application against an older release of the database.

■ Activate debugging or tracing functionality in the development environment and 
hide that functionality in the application while it runs at a production site.

For more information, see Conditional Compilation on page 2-48.

Embedded SQL Statements
Processing a SQL query with PL/SQL is like processing files with other languages. For 
example, a PERL program opens a file, reads the file contents, processes each line, then 
closes the file. In the same way, a PL/SQL program issues a query and processes the 
rows from the result set as shown in Example 1–21.

Example 1–21 Processing Query Results in a LOOP

SQL> BEGIN
  2    FOR someone IN (SELECT * FROM employees WHERE employee_id < 120)
  3    LOOP
  4      DBMS_OUTPUT.PUT_LINE('First name = ' || someone.first_name ||
  5                           ', Last name = ' || someone.last_name);
  6    END LOOP;
  7  END;
  8  /
First name = Steven, Last name = King
First name = Neena, Last name = Kochhar
First name = Lex, Last name = De Haan
First name = Alexander, Last name = Hunold
First name = Bruce, Last name = Ernst
First name = David, Last name = Austin
First name = Valli, Last name = Pataballa
First name = Diana, Last name = Lorentz
First name = Nancy, Last name = Greenberg
First name = Daniel, Last name = Faviet
First name = John, Last name = Chen
First name = Ismael, Last name = Sciarra
First name = Jose Manuel, Last name = Urman
First name = Luis, Last name = Popp
First name = Den, Last name = Raphaely
First name = Alexander, Last name = Khoo
First name = Shelli, Last name = Baida
First name = Sigal, Last name = Tobias
First name = Guy, Last name = Himuro
First name = Karen, Last name = Colmenares
 



Architecture of PL/SQL

1-24 Oracle Database PL/SQL Language Reference

PL/SQL procedure successfully completed.
 
SQL> 

You can use a simple loop like the one shown here, or you can control the process 
precisely by using individual statements to perform the query, retrieve data, and finish 
processing. 

Architecture of PL/SQL
Topics:

■ PL/SQL Engine

■ PL/SQL Units and Compilation Parameters

PL/SQL Engine
The PL/SQL compilation and run-time system is an engine that compiles and executes 
PL/SQL units. The engine can be installed in the database or in an application 
development tool, such as Oracle Forms.

In either environment, the PL/SQL engine accepts as input any valid PL/SQL unit. 
The engine executes procedural statements, but sends SQL statements to the SQL 
engine in the database, as shown in Figure 1–2.

Figure 1–2 PL/SQL Engine

Typically, the database processes PL/SQL units.

When an application development tool processes PL/SQL units, it passes them to its 
local PL/SQL engine. If a PL/SQL unit contains no SQL statements, the local engine 
processes the entire PL/SQL unit. This is useful if the application development tool  
can benefit from conditional and iterative control.

For example, Oracle Forms applications frequently use SQL statements to test the 
values of field entries and do simple computations. By using PL/SQL instead of SQL, 
these applications can avoid calls to the database.

PL/SQL Engine

Database Server 

SQL Statement Executor

PL/SQL
Block

Procedural
Statement
Executor

SQL

procedural
PL/SQL
Block



Architecture of PL/SQL

Overview of PL/SQL 1-25

PL/SQL Units and Compilation Parameters
A PL/SQL unit is any one of the following:

■ PL/SQL block

■ FUNCTION

■ PACKAGE

■ PACKAGE BODY

■ PROCEDURE

■ TRIGGER

■ TYPE

■ TYPE BODY

PL/SQL units are affected by PL/SQL compilation parameters (a category of database 
initialization parameters). Different PL/SQL units—for example, a package 
specification and its body—can have different compilation parameter settings.

Table 1–1 lists and briefly describes the PL/SQL compilation parameters. For more 
information about these parameters, see Oracle Database Reference.

To display the values of these parameters, use the static data dictionary view ALL_
PLSQL_OBJECT_SETTINGS. For more information about this view, see Oracle Database 
Reference.

Table 1–1 PL/SQL Compilation Parameters

Parameter Description

PLSCOPE_SETTINGS1 Controls the compile-time collection, cross 
reference, and storage of PL/SQL source code 
identifier data. Used by the PL/Scope tool, 
which is described in Oracle Database Advanced 
Application Developer's Guide.

PLSQL_CCFLAGS 1 Enables you to control conditional 
compilation of each PL/SQL unit 
independently.

PLSQL_CODE_TYPE 1 Specifies the compilation mode for PL/SQL 
units—INTERPRETED (the default) or 
NATIVE.

If the optimization level (set by PLSQL_
OPTIMIZE_LEVEL) is less than 2:

■ The compiler generates interpreted code, 
regardless of PLSQL_CODE_TYPE.

■ If you specify NATIVE, the compiler 
warns you that NATIVE was ignored.

PLSQL_DEBUG 1 Specifies whether or not PL/SQL units will be 
compiled for debugging. See note following 
table.

PLSQL_NATIVE_LIBRARY_DIR Has no effect. See note following table.

PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT Has no effect. See note following table.



Architecture of PL/SQL

1-26 Oracle Database PL/SQL Language Reference

The compile-time values of most of the parameters in Table 1–1 are stored with the 
metadata of the PL/SQL unit, which means you can reuse those values when you 
explicitly recompile the program unit by doing the following:

1. Use one of the following statements to recompile the program unit:

■ ALTER FUNCTION COMPILE

■ ALTER PACKAGE COMPILE

■ ALTER PROCEDURE COMPILE

2. Include the REUSE SETTINGS clause in the statement.

This clause preserves the existing settings and uses them for the recompilation of 
any parameters for which values are not specified elsewhere in the statement.

If you use the SQL statement CREATE OR REPLACE to explicitly compile a PL/SQL 
subprogram, or if you do not include the REUSE SETTINGS clause in the ALTER 
COMPILE statement, then the value of the compilation parameter is its value for the 
session.

PLSQL_OPTIMIZE_LEVEL 1 Specifies the optimization level at which to 
compile PL/SQL units (the higher the level, 
the more optimizations the compiler tries to 
make).

If PLSQL_OPTIMIZE_LEVEL=1, PL/SQL 
units will be compiled for debugging.

PLSQL_WARNINGS 1 Enables or disables the reporting of warning 
messages by the PL/SQL compiler, and 
specifies which warning messages to show as 
errors.

NLS_LENGTH_SEMANTICS 1 Enables you to create CHAR and VARCHAR2 
columns using either byte or character length 
semantics.

1 The compile-time value of this parameter is stored with the metadata of the PL/SQL unit.

Note: The following compilation parameters are deprecated and 
might be unavailable in future Oracle Database releases:

■ PLSQL_DEBUG

For Release 11.1, it has the same effect as it had for Release 
10.2—described in Table 1–1—but the compiler warns you that it is 
deprecated.

Instead of PLSQL_DEBUG, Oracle recommends using PLSQL_OPTIMIZE_
LEVEL=1.

■ PLSQL_NATIVE_LIBRARY_DIR

For Release 11.1, it has no effect. The compiler does not warn you that it is 
deprecated.

■ PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT

For Release 11.1, it has no effect. The compiler does not warn you that it is 
deprecated.

Table 1–1 (Cont.) PL/SQL Compilation Parameters

Parameter Description



Architecture of PL/SQL

Overview of PL/SQL 1-27

See Also:

■ ALTER FUNCTION Statement on page 14-3

■ ALTER PACKAGE Statement on page 14-6

■ ALTER PROCEDURE Statement on page 14-9



Architecture of PL/SQL

1-28 Oracle Database PL/SQL Language Reference



2

PL/SQL Language Fundamentals 2-1

2 PL/SQL Language Fundamentals

This chapter explains the following aspects of the PL/SQL language:

■ Character Sets and Lexical Units

■ Declarations

■ Naming Conventions

■ Scope and Visibility of PL/SQL Identifiers

■ Assigning Values to Variables

■ PL/SQL Expressions and Comparisons

■ PL/SQL Error-Reporting Functions

■ Using SQL Functions in PL/SQL

■ Conditional Compilation

■ Using PL/SQL to Create Web Applications

■ Using PL/SQL to Create Server Pages

Character Sets and Lexical Units
PL/SQL supports two character sets: the database character set, which is used for 
identifiers and source code, and the national character set, which is used for national 
language data. This topic applies only to the database character set. For information 
about the national character set, see NCHAR and NVARCHAR2 Data Types on 
page 3-12.

PL/SQL programs are written as lines of text using the following characters:

■ Upper- and lower-case letters A .. Z and a .. z

■ Numerals 0 .. 9

■ Symbols ( ) + - * / < > = ! ~ ^ ; : . ' @ % , " # $ & _ | { } ? [ ]

■ Tabs, spaces, and carriage returns

PL/SQL keywords are not case-sensitive, so lower-case letters are equivalent to 
corresponding upper-case letters except within string and character literals.

A line of PL/SQL text contains groups of characters known as lexical units:

■ Delimiters (simple and compound symbols)

■ Identifiers, which include reserved words

■ Literals



Character Sets and Lexical Units

2-2 Oracle Database PL/SQL Language Reference

■ Comments

You must separate adjacent identifiers by a space or punctuation. For example:

SQL> BEGIN
  2    IF x > y THEN high := x; END IF;  -- correct
  3    IF x > y THEN high := x; ENDIF;   -- incorrect
  4  END;
  5  /
END;
   *
ERROR at line 4:
ORA-06550: line 4, column 4:
PLS-00103: Encountered the symbol ";" when expecting one of the following:
if
 
SQL> 

You cannot embed spaces inside lexical units (except string literals and comments). For 
example:

SQL> BEGIN
  2    count := count + 1;   -- correct
  3    count : = count + 1;  -- incorrect
  4  END;
  5  /
  count : = count + 1;  -- incorrect
        *
ERROR at line 3:
ORA-06550: line 3, column 9:
PLS-00103: Encountered the symbol ":" when expecting one of the following:
:= . ( @ % ;
 
SQL> 

To show structure, you can split lines using carriage returns, and indent lines using 
spaces or tabs. For example:

SQL> DECLARE
  2    x    NUMBER := 10;
  3    y    NUMBER := 5;
  4    max  NUMBER;
  5  BEGIN
  6    IF x>y THEN max:=x;ELSE max:=y;END IF;  -- correct but hard to read
  7  
  8    -- Easier to read:
  9  
 10    IF x > y THEN
 11      max:=x;
 12    ELSE
 13      max:=y;
 14    END IF;
 15  END;
 16  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Topics:

■ Delimiters



Character Sets and Lexical Units

PL/SQL Language Fundamentals 2-3

■ Identifiers

■ Literals

■ Comments

Delimiters
A delimiter is a simple or compound symbol that has a special meaning to PL/SQL.  
Table 2–1 lists the PL/SQL delimiters.

Table 2–1 PL/SQL Delimiters

Symbol Meaning

+ addition operator

% attribute indicator

' character string delimiter

. component selector

/ division operator

( expression or list delimiter

) expression or list delimiter

: host variable indicator

, item separator

* multiplication operator

" quoted identifier delimiter

= relational operator

< relational operator

> relational operator

@ remote access indicator

; statement terminator

- subtraction/negation operator

:= assignment operator

=> association operator

|| concatenation operator

** exponentiation operator

<< label delimiter (begin)

>> label delimiter (end)

/* multi-line comment delimiter (begin)

*/ multi-line comment delimiter (end)

.. range operator

<> relational operator

!= relational operator

~= relational operator

^= relational operator



Character Sets and Lexical Units

2-4 Oracle Database PL/SQL Language Reference

Identifiers
You use identifiers to name PL/SQL program items and units, which include 
constants, variables, exceptions, cursors, cursor variables, subprograms, and packages.

The minimum length of an identifier is one character; the maximum length is 30 
characters. The first character must be a letter, but each later character can be either a 
letter, numeral, dollar sign ($), underscore (_), or number sign (#). For example, the 
following are acceptable identifiers:

X
t2
phone#
credit_limit
LastName
oracle$number
money$$$tree
SN##
try_again_

Characters other than the aforementioned are not allowed in identifiers. For example, 
the following are not acceptable identifiers:

mine&yours  -- ampersand (&) is not allowed
debit-amount -- hyphen (-) is not allowed
on/off       -- slash (/) is not allowed
user id      -- space is not allowed

PL/SQL is not case-sensitive with respect to identifiers. For example, PL/SQL 
considers the following to be the same:

lastname
LastName
LASTNAME

Every character, alphabetic or not, is significant. For example, PL/SQL considers the 
following to be different:

lastname
last_name

Make your identifiers meaningful rather than obscure. For example, the meaning of 
cost_per_thousand is obvious, while the meaning of cpt is not. 

Topics:

■ Reserved Words and Keywords

■ Predefined Identifiers

■ Quoted Identifiers

<= relational operator

>= relational operator

-- single-line comment indicator

Table 2–1 (Cont.) PL/SQL Delimiters

Symbol Meaning



Character Sets and Lexical Units

PL/SQL Language Fundamentals 2-5

Reserved Words and Keywords
Both reserved words and keywords have special meaning in PL/SQL. The difference 
between reserved words and keywords is that you cannot use reserved words as 
identifiers. You can use keywords as as identifiers, but it is not recommended. 

Trying to redefine a reserved word causes a compilation error. For example:

SQL> DECLARE
  2    end BOOLEAN;
  3  BEGIN
  4    NULL;
  5  END;
  6  /
  end BOOLEAN;
  *
ERROR at line 2:
ORA-06550: line 2, column 3:
PLS-00103: Encountered the symbol "END" when expecting one of the following:
begin function pragma procedure subtype type <an identifier>
<a double-quoted delimited-identifier> current cursor delete
exists prior
The symbol "begin was inserted before "END" to continue.
ORA-06550: line 5, column 4:
PLS-00103: Encountered the symbol "end-of-file" when expecting one of the
following:
( begin case declare end exception exit for goto if loop mod
null pragma raise return select update while with
<an identifier> <a double-quoted
 
SQL> 

The PL/SQL reserved words are listed in Table D–1 on page D-1.

Keywords also have special meaning in PL/SQL, but you can redefine them (this is 
not recommended). The PL/SQL keywords are listed inTable D–2 on page D-2.

Predefined Identifiers
Identifiers globally declared in package STANDARD, such as the exception INVALID_
NUMBER, can be redeclared. However, redeclaring predefined identifiers is error prone 
because your local declaration overrides the global declaration. 

Quoted Identifiers
For flexibility, PL/SQL lets you enclose identifiers within double quotes. Quoted 
identifiers are seldom needed, but occasionally they can be useful. They can contain 
any sequence of printable characters including spaces but excluding double quotes. 
Thus, the following identifiers are valid:

"X+Y"
"last name"
"on/off switch"
"employee(s)"
"*** header info ***"

The maximum size of a quoted identifier is 30 characters not counting the double 
quotes. Though allowed, using PL/SQL reserved words as quoted identifiers is a poor 
programming practice.



Character Sets and Lexical Units

2-6 Oracle Database PL/SQL Language Reference

Literals
A literal is an explicit numeric, character, string, or BOOLEAN value not represented by 
an identifier. The numeric literal 147 and the BOOLEAN literal FALSE are examples. 
For information about the PL/SQL data types, see Predefined PL/SQL Scalar Data 
Types and Subtypes on page 3-1.

Topics:

■ Numeric Literals

■ Character Literals

■ String Literals

■ BOOLEAN Literals

■ Date and Time Literals

Numeric Literals
Two kinds of numeric literals can be used in arithmetic expressions: integers and reals. 
An integer literal is an optionally signed whole number without a decimal point. For 
example:

030   6   -14   0   +32767

A real literal is an optionally signed whole or fractional number with a decimal point. 
For example:

6.6667   0.0   -12.0   3.14159   +8300.00   .5   25.

PL/SQL considers numbers such as 12.0 and 25. to be reals even though they have 
integral values.

A numeric literal value that is composed only of digits and falls in the range 
-2147483648 to 2147483647 has a PLS_INTEGER data type; otherwise this literal has the 
NUMBER data type. You can add the f of d suffix to a literal value that is composed 
only of digits to specify the BINARY_FLOAT or BINARY_TABLE respectively. For the 
properties of the data types, see Predefined PL/SQL Numeric Data Types and 
Subtypes on page 3-2.

Numeric literals cannot contain dollar signs or commas, but can be written using 
scientific notation. Simply suffix the number with an E (or e) followed by an 
optionally signed integer. For example:

2E5   1.0E-7   3.14159e0   -1E38   -9.5e-3

xEy stands for "x times ten to the power of y." As the next example shows, the number 
after E is the power of ten by which the number before E is multiplied (the double 
asterisk (**) is the exponentiation operator):

5E3 = 5 * 10**3 = 5 * 1000 = 5000

The number after E also corresponds to the number of places the decimal point shifts. 
In the preceding example, the implicit decimal point shifted three places to the right. 
In the following example, it shifts three places to the left:

5E-3 = 5 * 10**-3 = 5 * 0.001 = 0.005

The absolute value of a NUMBER literal can be in the range 1.0E-130 up to (but not 
including) 1.0E126. The literal can also be 0. For information about results outside the 
valid range, see NUMBER Data Type on page 3-6.



Character Sets and Lexical Units

PL/SQL Language Fundamentals 2-7

Example 2–1 NUMBER Literals

SQL> DECLARE
  2    n NUMBER;
  3  BEGIN
  4    n := -9.999999E-130;
  5    n :=  9.999E125;
  6    n := 10.0E125;
  7  END;
  8  /
  n := 10.0E125;
       *
ERROR at line 6:
ORA-06550: line 6, column 8:
PLS-00569: numeric overflow or underflow
ORA-06550: line 6, column 3:
PL/SQL: Statement ignored
 
SQL> 

Real literals can also use the trailing letters f and d to specify the types BINARY_
FLOAT and BINARY_DOUBLE, as shown in Example 2–2.

Example 2–2 Using BINARY_FLOAT and BINARY_DOUBLE

SQL> DECLARE
  2    x BINARY_FLOAT := sqrt(2.0f);
  3      -- single-precision floating-point number
  4    y BINARY_DOUBLE := sqrt(2.0d);
  5      -- double-precision floating-point number
  6  BEGIN
  7    NULL;
  8  END;
  9  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Character Literals
A character literal is an individual character enclosed by single quotes ('). Character 
literals include all the printable characters in the PL/SQL character set: letters, 
numerals, spaces, and special symbols. For example:

'Z'   '%'   '7'   ' '   'z'   '('

PL/SQL is case sensitive within character literals. For example, PL/SQL considers the 
literals 'Z' and 'z' to be different. Also, the character literals '0'..'9' are not 
equivalent to integer literals but can be used in arithmetic expressions because they are 
implicitly convertible to integers.

String Literals
A character value can be represented by an identifier or explicitly written as a string 
literal, which is a sequence of zero or more characters enclosed by single quotes. All 
string literals except the null string ('') have data type CHAR.  For example:

'Hello, world!'
'XYZ Corporation'
'10-NOV-91'



Character Sets and Lexical Units

2-8 Oracle Database PL/SQL Language Reference

'He said "Life is like licking honey from a thorn."'
'$1,000,000'

PL/SQL is case sensitive within string literals. For example, PL/SQL considers the 
following literals to be different:

'baker'
'Baker'

To represent an apostrophe within a string, you can write two single quotes, which is 
not the same as writing a double quote:

'I''m a string, you''re a string.'

You can also use the following notation to define your own delimiter characters for the 
literal. You choose a character that is not present in the string, and then need not 
escape other single quotation marks inside the literal:

-- q'!...!' notation allows use of single quotes inside literal
string_var := q'!I'm a string, you're a string.!';

You can use delimiters [, {, <, and (, pair them with ], }, >, and ), pass a string literal 
representing a SQL statement to a subprogram, without doubling the quotation marks 
around 'INVALID' as follows:

func_call(q'[SELECT index_name FROM user_indexes
  WHERE status ='INVALID']');

For NCHAR and NVARCHAR2 literals, use the prefix nq instead of q, as in the following 
example, where 00E0 represents the character é:

where_clause := nq'#WHERE COL_VALUE LIKE '%\00E9'#';

For more information about the NCHAR data type and unicode strings, see Oracle 
Database Globalization Support Guide.

BOOLEAN Literals
BOOLEAN literals are the predefined values TRUE, FALSE, and NULL. NULL stands for a 
missing, unknown, or inapplicable value. Remember, BOOLEAN literals are values, not 
strings. For example, TRUE is no less a value than the number 25.

Date and Time Literals
Datetime literals have various formats depending on the data type, as in Example 2–3.

Example 2–3 Using DateTime Literals

SQL> DECLARE
  2    d1 DATE      := DATE '1998-12-25';
  3    t1 TIMESTAMP := TIMESTAMP '1997-10-22 13:01:01';
  4  
  5    t2 TIMESTAMP WITH TIME ZONE :=
  6       TIMESTAMP '1997-01-31 09:26:56.66 +02:00';
  7  
  8    -- Three years and two months
  9    -- For greater precision, use the day-to-second interval
 10  
 11    i1 INTERVAL YEAR TO MONTH := INTERVAL '3-2' YEAR TO MONTH;
 12  
 13    -- Five days, four hours, three minutes, two and 1/100 seconds
 14  



Character Sets and Lexical Units

PL/SQL Language Fundamentals 2-9

 15     i2 INTERVAL DAY TO SECOND :=
 16       INTERVAL '5 04:03:02.01' DAY TO SECOND;
 17  
 18  BEGIN
 19    NULL;
 20  END;
 21  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Comments
The PL/SQL compiler ignores comments. Adding comments to your program 
promotes readability and aids understanding. Typically, you use comments to describe 
the purpose and use of each code segment. You can also disable obsolete or unfinished 
pieces of code by turning them into comments.

Topics:

■ Single-Line Comments

■ Multiline Comments

Single-Line Comments
A single-line comment begins with --. It can appear anywhere on a line, and it 
extends to the end of the line, as in Example 2–4.

Example 2–4 Single-Line Comments

SQL> DECLARE
  2    howmany     NUMBER;
  3    num_tables  NUMBER;
  4  BEGIN
  5    -- Begin processing
  6    SELECT COUNT(*) INTO howmany
  7      FROM USER_OBJECTS
  8        WHERE OBJECT_TYPE = 'TABLE'; -- Check number of tables
  9     num_tables := howmany;          -- Compute some other value
 10  END;
 11  /
 
PL/SQL procedure successfully completed.
 
SQL> 

While testing or debugging a program, you might want to disable a line of code by 
making it a comment. For example:

See Also:

■ Oracle Database SQL Language Reference for syntax of date and time 
types

■ Oracle Database Advanced Application Developer's Guide for 
examples of date and time arithmetic

See Also: Comment on page 13-27



Declarations

2-10 Oracle Database PL/SQL Language Reference

-- DELETE FROM employees WHERE comm_pct IS NULL

Multiline Comments
A multiline comments begins with /*, ends with */, and can span multiple lines, as in 
Example 2–5. You can use multiline comment delimiters to "comment out" sections of 
code.

Example 2–5 Multiline Comment

SQL> DECLARE
  2     some_condition  BOOLEAN;
  3     pi              NUMBER := 3.1415926;
  4     radius          NUMBER := 15;
  5     area            NUMBER;
  6  BEGIN
  7    /* Perform some simple tests and assignments */
  8    IF 2 + 2 = 4 THEN
  9      some_condition := TRUE;
 10      /* We expect this THEN to always be performed */
 11    END IF;
 12    /* The following line computes the area of a circle using pi,
 13    which is the ratio between the circumference and diameter.
 14    After the area is computed, the result is displayed. */
 15    area := pi * radius**2;
 16    DBMS_OUTPUT.PUT_LINE('The area is: ' || TO_CHAR(area));
 17  END;
 18  /
The area is: 706.858335
 
PL/SQL procedure successfully completed.
 
SQL>

Declarations
Your program stores values in variables and constants. As the program executes, the 
values of variables can change, but the values of constants cannot.

You can declare variables and constants in the declarative part of any PL/SQL block, 
subprogram, or package. Declarations allocate storage space for a value, specify its 
data type, and name the storage location so that you can reference it.

Topics:

■ Variables

■ Constants

■ Using DEFAULT

■ Using NOT NULL

■ Using the %TYPE Attribute

■ Using the %ROWTYPE Attribute

■ Restrictions on Declarations



Declarations

PL/SQL Language Fundamentals 2-11

Variables
Example 2–6 declares a variable of type DATE, a variable of type SMALLINT (to which 
it assigns the initial value zero), and three variables of type REAL. The expression 
following the assignment operator can be arbitrarily complex, and can refer to 
previously initialized variables, as in the declaration of the variable area.

Variables are initialized every time a block or subprogram is entered. By default, 
variables are initialized to NULL.

Example 2–6 Declaring Variables

SQL> DECLARE
  2    birthday   DATE;
  3    emp_count  SMALLINT := 0;
  4    pi         REAL := 3.14159;
  5    radius     REAL := 1;
  6    area       REAL := pi * radius**2;
  7  BEGIN
  8    NULL;
  9  END;
 10  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Constants
To declare a constant, put the keyword CONSTANT before the type specifier. The 
following declaration names a constant of type REAL and assigns an unchangeable 
value of 5000 to the constant. A constant must be initialized in its declaration. 
Constants are initialized every time a block or subprogram is entered.

Example 2–7 Declaring Constants

SQL> DECLARE
  2    credit_limit      CONSTANT REAL    := 5000.00;
  3    max_days_in_year  CONSTANT INTEGER := 366;
  4    urban_legend      CONSTANT BOOLEAN := FALSE;
  5  BEGIN
  6    NULL;
  7  END;
  8  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Using DEFAULT
You can use the keyword DEFAULT instead of the assignment operator to initialize 
variables. You can also use DEFAULT to initialize subprogram parameters, cursor 
parameters, and fields in a user-defined record.

Use DEFAULT for variables that have a typical value. Use the assignment operator for 
variables (such as counters and accumulators) that have no typical value.



Declarations

2-12 Oracle Database PL/SQL Language Reference

Example 2–8 Assigning Default Values to Variables with DEFAULT Keyword

SQL> DECLARE
  2    blood_type CHAR DEFAULT 'O';         -- Same as blood_type CHAR := 'O';
  3  
  4    hours_worked    INTEGER DEFAULT 40;  -- Typical value
  5    employee_count  INTEGER := 0;        -- No typical value
  6  
  7  BEGIN
  8    NULL;
  9  END;
 10  /
 
PL/SQL procedure successfully completed.
 
SQL>

Using NOT NULL
A declaration can impose the NOT NULL constraint, which prevents you from assigning 
a null value to the variable. Because variables are initialized to NULL by default, a 
declaration that specifies NOT NULL must also specify a default value.

PL/SQL subtypes NATURALN, POSITIVEN, and SIMPLE_INTEGER are predefined as 
NOT NULL. When declaring a variable of one of these subtypes, you can omit the NOT 
NULL constraint, and you must specify a default value.

Example 2–9 Declaring Variables with NOT NULL Constraint

SQL> DECLARE
  2    acct_id INTEGER(4) NOT NULL := 9999;
  3    a NATURALN                  := 9999;
  4    b POSITIVEN                 := 9999;
  5    c SIMPLE_INTEGER            := 9999;
  6  BEGIN
  7    NULL;
  8  END;
  9  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Using the %TYPE Attribute
The %TYPE attribute lets you declare a constant, variable, field, or parameter to be of 
the same data type a previously declared variable, field, record, nested table, or 
database column. If the referenced item changes, your declaration is automatically 
updated. You need not change your code when, for example, the length of a 
VARCHAR2 column increases.

An item declared with %TYPE (the referencing item) always inherits the data type of 
the referenced item. The referencing item inherits the constraints only if the referenced 
item is not a database column. The referencing item inherits the default value only if 
the referencing item is not a database column and does not have the NOT NULL 
constraint.

In Example 2–10, the variable debit inherits the data type of the variable credit. 
The variables upper_name, lower_name, and init_name inherit the data type and 
default value of the variable name.



Declarations

PL/SQL Language Fundamentals 2-13

Example 2–10 Using %TYPE to Declare Variables of the Types of Other Variables

SQL> DECLARE
  2    credit  PLS_INTEGER RANGE 1000..25000;
  3    debit   credit%TYPE;  -- inherits data type
  4  
  5    name        VARCHAR2(20) := 'JoHn SmItH';
  6    upper_name  name%TYPE;  -- inherits data type and default value
  7    lower_name  name%TYPE;  -- inherits data type and default value
  8    init_name   name%TYPE;  -- inherits data type and default value
  9  BEGIN
 10    DBMS_OUTPUT.PUT_LINE ('name: ' || name);
 11    DBMS_OUTPUT.PUT_LINE ('upper_name: ' || UPPER(name));
 12    DBMS_OUTPUT.PUT_LINE ('lower_name: ' || LOWER(name));
 13    DBMS_OUTPUT.PUT_LINE ('init_name:  ' || INITCAP(name));
 14  END;
 15  /
name: JoHn SmItH
upper_name: JOHN SMITH
lower_name: john smith
init_name:  John Smith
 
PL/SQL procedure successfully completed.
 
SQL> 

If you add a NOT NULL constraint to the variable name in Example 2–10, and declare 
another variable that references it, you must specify a default value for the new item, 
as Example 2–11 shows.

Example 2–11 Using %TYPE Incorrectly with NOT NULL Referenced Type

SQL> DECLARE
  2    name    VARCHAR2(20) NOT NULL := 'JoHn SmItH';
  3    same_name   name%TYPE;
  4  BEGIN
  5    NULL;
  6  END;
  7  /
  same_name   name%TYPE;
              *
ERROR at line 3:
ORA-06550: line 3, column 15:
PLS-00218: a variable declared NOT NULL must have an initialization assignment
 
SQL> 

In Example 2–12, the variables upper_name, lower_name, and init_name inherit 
the data type and NOT NULL constraint of the variable name, but not its default value. 
To avoid the error shown in Example 2–11, they are assigned their own default values.

Example 2–12 Using %TYPE Correctly with NOT NULL Referenced Type

SQL> DECLARE
  2    name        VARCHAR2(20) NOT NULL := 'JoHn SmItH';
  3    upper_name  name%TYPE := UPPER(name);
  4    lower_name  name%TYPE := LOWER(name);
  5    init_name   name%TYPE := INITCAP(name);
  6  BEGIN
  7    DBMS_OUTPUT.PUT_LINE('name: ' || name);
  8    DBMS_OUTPUT.PUT_LINE('upper_name: ' || upper_name);



Declarations

2-14 Oracle Database PL/SQL Language Reference

  9    DBMS_OUTPUT.PUT_LINE('lower_name: ' || lower_name);
 10    DBMS_OUTPUT.PUT_LINE('init_name:  ' || init_name);
 11  END;
 12  /
name: JoHn SmItH
upper_name: JOHN SMITH
lower_name: john smith
init_name:  John Smith
 
PL/SQL procedure successfully completed.
 
SQL> 

The %TYPE attribute is particularly useful when declaring variables that refer to 
database columns. When you use table_name.column_name.%TYPE to declare a 
data item, you need not know the referenced data type or its attributes (such as 
precision, scale, and length), and if they change, you need not update your code.

Example 2–13 shows that referencing items do not inherit column constraints or 
default values from database columns.

Example 2–13 Using %TYPE to Declare Variables of the Types of Table Columns

SQL> CREATE TABLE employees_temp (
  2    empid  NUMBER(6) NOT NULL PRIMARY KEY,
  3    deptid NUMBER(6) CONSTRAINT c_employees_temp_deptid
  4      CHECK (deptid BETWEEN 100 AND 200),
  5    deptname VARCHAR2(30) DEFAULT 'Sales'
  6  );
 
Table created.
 
SQL> 
SQL> DECLARE
  2    v_empid    employees_temp.empid%TYPE;
  3    v_deptid   employees_temp.deptid%TYPE;
  4    v_deptname employees_temp.deptname%TYPE;
  5  BEGIN
  6    v_empid := NULL;  -- Null constraint not inherited
  7    v_deptid := 50;   -- Check constraint not inherited
  8    DBMS_OUTPUT.PUT_LINE
  9      ('v_deptname: ' || v_deptname);  -- Default value not inherited
 10  END;
 11  /
v_deptname:
 
PL/SQL procedure successfully completed.
 
SQL> 

See Also:

■ Constraints and Default Values with Subtypes on page 3-26 for 
information about column constraints that are inherited by 
subtypes declared using %TYPE

■ %TYPE Attribute on page 13-119 for the syntax of the %TYPE 
attribute



Declarations

PL/SQL Language Fundamentals 2-15

Using the %ROWTYPE Attribute
The %ROWTYPE attribute lets you declare a record that represents a row in a table or 
view. For each column in the referenced table or view, the record has a field with the 
same name and data type. To reference a field in the record, use record_
name.field_name. The record fields do not inherit the constraints or default values 
of the corresponding columns, as Example 2–14 shows.

If the referenced item table or view changes, your declaration is automatically 
updated. You need not change your code when, for example, columns are added or 
dropped from the table or view.

Example 2–14 Using %ROWTYPE to Declare a Record that Represents a Table Row

SQL> CREATE TABLE employees_temp (
  2    empid  NUMBER(6) NOT NULL PRIMARY KEY,
  3    deptid NUMBER(6) CONSTRAINT c_employees_temp_deptid
  4      CHECK (deptid BETWEEN 100 AND 200),
  5    deptname VARCHAR2(30) DEFAULT 'Sales'
  6  );
 
Table created.
 
SQL> 
SQL> DECLARE
  2    emprec  employees_temp%ROWTYPE;
  3  BEGIN
  4    emprec.empid := NULL;  -- Null constraint not inherited
  5    emprec.deptid := 50;   -- Check constraint not inherited
  6    DBMS_OUTPUT.PUT_LINE
  7      ('emprec.deptname: ' || emprec.deptname);
  8        -- Default value not inherited
  9  END;
 10  /
emprec.deptname:
 
PL/SQL procedure successfully completed.
 
SQL> 

The record emprec in Example 2–14 has a field for every column in the table 
employees_temp. The record dept_rec in Example 2–15 has columns for a subset 
of columns in the departments table.

Example 2–15 Declaring a Record that Represents a Subset of Table Columns

SQL> DECLARE
  2    CURSOR c1 IS
  3      SELECT department_id, department_name
  4        FROM departments;
  5  
  6    dept_rec c1%ROWTYPE;  -- includes subset of columns in table
  7  
  8  BEGIN
  9    NULL;
 10  END;
 11  /
 

See Also: Example 3–15 on page 3-27



Declarations

2-16 Oracle Database PL/SQL Language Reference

PL/SQL procedure successfully completed.
 
SQL> 

The record join_rec in Example 2–15 has columns from two tables, employees and 
departments.

Example 2–16 Declaring a Record that Represents a Row from a Join

SQL> DECLARE
  2    CURSOR c2 IS
  3      SELECT employee_id, email, employees.manager_id, location_id
  4        FROM employees, departments
  5          WHERE employees.department_id = departments.department_id;
  6  
  7     join_rec  c2%ROWTYPE;  -- includes columns from two tables
  8  
  9  BEGIN
 10    NULL;
 11  END;
 12  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Topics:

■ Aggregate Assignment

■ Using Aliases

Aggregate Assignment
A %ROWTYPE declaration cannot include an initialization clause, but there are two 
ways to assign values to all fields of a record at once:

■ If their declarations refer to the same table or cursor, you can assign one record to 
another, as in Example 2–17.

■ Use the SELECT or FETCH statement to assign a list of column values to a record.

The column names must appear in the order in which they were defined in the 
CREATE TABLE or CREATE VIEW statement that created the referenced table or 
view. There is no constructor for a record type, so you cannot assign a list of 
column values to a record by using an assignment statement.

Example 2–17 Assigning One Record to Another, Correctly and Incorrectly

SQL> DECLARE
  2    dept_rec1  departments%ROWTYPE;
  3    dept_rec2  departments%ROWTYPE;
  4  
  5    CURSOR c1 IS SELECT department_id, location_id
  6      FROM departments;
  7  
  8    dept_rec3 c1%ROWTYPE;
  9    dept_rec4 c1%ROWTYPE;
 10  
 11  BEGIN
 12    dept_rec1 := dept_rec2;  -- declarations refer to same table
 13    dept_rec3 := dept_rec4;  -- declarations refer to same cursor



Declarations

PL/SQL Language Fundamentals 2-17

 14    dept_rec2 := dept_rec3;
 15  END;
 16  /
  dept_rec2 := dept_rec3;
               *
ERROR at line 14:
ORA-06550: line 14, column 16:
PLS-00382: expression is of wrong type
ORA-06550: line 14, column 3:
PL/SQL: Statement ignored
 
SQL> 

Example 2–18 uses the SELECT INTO statement to assign a list of column values to a 
record.

Example 2–18 Using SELECT INTO for Aggregate Assignment

SQL> DECLARE
  2    dept_rec departments%ROWTYPE;
  3  BEGIN
  4    SELECT * INTO dept_rec
  5      FROM departments
  6        WHERE department_id = 30
  7          AND ROWNUM < 2;
  8  END;
  9  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Using Aliases
Select-list items fetched from a cursor associated with %ROWTYPE must have simple 
names or, if they are expressions, must have aliases, such as complete_name in 
Example 2–19.

Example 2–19 Using an Alias for an Expression Associated with %ROWTYPE

SQL> BEGIN
  2    FOR item IN
  3      (SELECT (first_name || ' ' || last_name) complete_name
  4        FROM employees
  5           WHERE ROWNUM < 11
  6      ) LOOP
  7        DBMS_OUTPUT.PUT_LINE
  8          ('Employee name: ' || item.complete_name);
  9      END LOOP;
 10  END;
 11  /
Employee name: Ellen Abel
Employee name: Sundar Ande
Employee name: Mozhe Atkinson
Employee name: David Austin
Employee name: Hermann Baer
Employee name: Shelli Baida
Employee name: Amit Banda
Employee name: Elizabeth Bates
Employee name: Sarah Bell



Declarations

2-18 Oracle Database PL/SQL Language Reference

Employee name: David Bernstein
 
PL/SQL procedure successfully completed.
 
SQL> 

Restrictions on Declarations
PL/SQL does not allow forward references. You must declare a variable or constant 
before referencing it in other statements, including other declarative statements.

PL/SQL does allow the forward declaration of subprograms. For more information, 
see Creating Nested Subprograms that Invoke Each Other on page 8-5.

Some languages enable you to declare a list of variables that have the same data type. 
PL/SQL does not allow this. You must declare each variable separately. To save space, 
you can put more than one declaration on a line. For example:

SQL> DECLARE
  2    i, j, k, l SMALLINT;
  3  BEGIN
  4    NULL;
  5  END;
  6  /
  i, j, k, l SMALLINT;
   *
ERROR at line 2:
ORA-06550: line 2, column 4:
PLS-00103: Encountered the symbol "," when expecting one of the following:
constant exception <an identifier>
<a double-quoted delimited-identifier> table long double ref
char time timestamp interval date binary national character
nchar
ORA-06550: line 2, column 14:
PLS-00103: Encountered the symbol "SMALLINT" when expecting one of the
following:
. ( ) , * @ % & = - + < / > at in is mod remainder not rem =>
<an exponent (**)> <> or != or ~= >= <= <> and or like like2
like4 likec between ||
ORA-06550: line 5, column 4:
PLS-00103: Encountered the symbol "end-of-file" when expecting one of the
following:
( begin case declare end exception exit for goto if loop mod
null pragma raise return select update while with
<an identifier> <a double-quoted
 
 
SQL> DECLARE
  2    i SMALLINT; j SMALLINT; k SMALLINT; l SMALLINT;
  3  BEGIN
  4    NULL;
  5  END;
  6  /
 
PL/SQL procedure successfully completed.
 
SQL> 



Naming Conventions

PL/SQL Language Fundamentals 2-19

Naming Conventions
The same naming conventions apply to PL/SQL constants, variables, cursors, cursor 
variables, exceptions, procedures, functions, and packages. Names can be simple, 
qualified, remote, or both qualified and remote. For example:

■ Simple—procedure name only:

raise_salary(employee_id, amount);

■ Qualified—procedure name preceded by the name of the package that contains it 
(this is called dot notation because a dot separates the package name from the 
procedure name):

emp_actions.raise_salary(employee_id, amount);

■ Remote—procedure name followed by the remote access indicator (@) and a link 
to the database on which the procedure is stored:

raise_salary@newyork(employee_id, amount);

■ Qualified and remote:

emp_actions.raise_salary@newyork(employee_id, amount);

Topics:

■ Scope

■ Case Sensitivity

■ Name Resolution

■ Synonyms

Scope
Within the same scope, all declared identifiers must be unique. Even if their data types 
differ, variables and parameters cannot share the same name. An error occurs when 
the duplicate identifier is referenced, as in Example 2–20.

Example 2–20 Duplicate Identifiers in Same Scope

SQL> DECLARE
  2    id  BOOLEAN;
  3    id  VARCHAR2(5);  -- duplicate identifier
  4  BEGIN
  5    id := FALSE;
  6  END;
  7  /
  id := FALSE;
  *
ERROR at line 5:
ORA-06550: line 5, column 3:
PLS-00371: at most one declaration for 'ID' is permitted
ORA-06550: line 5, column 3:
PL/SQL: Statement ignored
 
SQL> 

For the scoping rules that apply to identifiers, see Scope and Visibility of PL/SQL 
Identifiers on page 2-22.



Naming Conventions

2-20 Oracle Database PL/SQL Language Reference

Case Sensitivity
Like all identifiers, the names of constants, variables, and parameters are not case 
sensitive, as Example 2–21 shows.

Example 2–21 Case Insensitivity of Identifiers

SQL> DECLARE
  2     zip_code INTEGER;
  3     Zip_Code INTEGER;
  4  BEGIN
  5    zip_code := 90120;
  6  END;
  7  /
  zip_code := 90120;
  *
ERROR at line 5:
ORA-06550: line 5, column 3:
PLS-00371: at most one declaration for 'ZIP_CODE' is permitted
ORA-06550: line 5, column 3:
PL/SQL: Statement ignored
 
SQL> 

Name Resolution
In ambiguous SQL statements, the names of database columns take precedence over 
the names of local variables and formal parameters. For example, if a variable and a 
column with the same name are used in a WHERE clause, SQL considers both names to 
refer to the column.

Example 2–22 Using a Block Label for Name Resolution

SQL> CREATE TABLE employees2 AS
  2    SELECT last_name FROM employees;
 
Table created.
 
SQL> 
SQL> -- Deletes everyone, because both LAST_NAMEs refer to the column:
SQL> 
SQL> BEGIN
  2    DELETE FROM employees2
  3      WHERE last_name = last_name;
  4    DBMS_OUTPUT.PUT_LINE('Deleted ' || SQL%ROWCOUNT || ' rows.');
  5  END;
  6  /
Deleted 107 rows.
 
PL/SQL procedure successfully completed.
 
SQL> ROLLBACK;
 
Rollback complete.
 

Caution: When a variable name is interpreted as a column name, 
data can be deleted unintentionally, as Example 2–22 shows. 
Example 2–22 also shows two ways to avoid this error.



Naming Conventions

PL/SQL Language Fundamentals 2-21

SQL> 
SQL> -- Avoid error by giving column and variable different names:
SQL> 
SQL> DECLARE
  2    last_name    VARCHAR2(10) := 'King';
  3    v_last_name  VARCHAR2(10) := 'King';
  4  BEGIN
  5    DELETE FROM employees2
  6      WHERE last_name = v_last_name;
  7    DBMS_OUTPUT.PUT_LINE('Deleted ' || SQL%ROWCOUNT || ' rows.');
  8  END;
  9  /
Deleted 2 rows.
 
PL/SQL procedure successfully completed.
 
SQL> ROLLBACK;
 
Rollback complete.
 
SQL> 
SQL> -- Avoid error by qualifying variable with block name:
SQL> 
SQL> <<main>> -- Label block for future reference
  2  DECLARE
  3    last_name    VARCHAR2(10) := 'King';
  4    v_last_name  VARCHAR2(10) := 'King';
  5  BEGIN
  6    DELETE FROM employees2
  7      WHERE last_name = main.last_name;
  8    DBMS_OUTPUT.PUT_LINE('Deleted ' || SQL%ROWCOUNT || ' rows.');
  9  END;
 10  /
Deleted 2 rows.
 
PL/SQL procedure successfully completed.
 
SQL> ROLLBACK;
 
Rollback complete.
 
SQL> 

You can use a subprogram name to qualify references to local variables and formal 
parameters, as in Example 2–23.

Example 2–23 Using a Subprogram Name for Name Resolution

SQL> DECLARE
  2    FUNCTION dept_name (department_id IN NUMBER)
  3      RETURN departments.department_name%TYPE
  4    IS
  5      department_name  departments.department_name%TYPE;
  6    BEGIN
  7      SELECT department_name INTO dept_name.department_name
  8        --   ^column              ^local variable
  9        FROM departments
 10          WHERE department_id = dept_name.department_id;
 11          --    ^column         ^formal parameter
 12      RETURN department_name;



Scope and Visibility of PL/SQL Identifiers

2-22 Oracle Database PL/SQL Language Reference

 13    END;
 14  BEGIN
 15    FOR item IN (SELECT department_id FROM departments)
 16    LOOP
 17      DBMS_OUTPUT.PUT_LINE
 18        ('Department: ' || dept_name(item.department_id));
 19    END LOOP;
 20  END;
 21  /
Department: Administration
Department: Marketing
Department: Purchasing
Department: Human Resources
Department: Shipping
Department: IT
Department: Public Relations
Department: Sales
Department: Executive
Department: Finance
Department: Accounting
Department: Treasury
Department: Corporate Tax
Department: Control And Credit
Department: Shareholder Services
Department: Benefits
Department: Manufacturing
Department: Construction
Department: Contracting
Department: Operations
Department: IT Support
Department: NOC
Department: IT Helpdesk
Department: Government Sales
Department: Retail Sales
Department: Recruiting
Department: Payroll
 
PL/SQL procedure successfully completed.
 
SQL>

Synonyms
You can use the SQL statement CREATE SYNONYM to create synonyms to provide 
location transparency for remote schema objects. You cannot create synonyms for 
items declared within PL/SQL subprograms or packages.

Scope and Visibility of PL/SQL Identifiers
References to an identifier are resolved according to its scope and visibility. The scope 
of an identifier is the region of a PL/SQL unit from which you can reference the 
identifier. The visibility of an identifier is the region of a PL/SQL unit from which you 
can reference the identifier without qualifying it.

See Also: Appendix B, "How PL/SQL Resolves Identifier Names" 
for more information about name resolution

See: Oracle Database SQL Language Reference for information about 
the SQL statement CREATE SYNONYM



Scope and Visibility of PL/SQL Identifiers

PL/SQL Language Fundamentals 2-23

An identifier declared in a PL/SQL unit is local to that unit and global to its subunits. 
If a subunit redeclares a global identifier, then inside the subunit, both identifiers are in 
scope, but only the local identifier is visible. To reference the global identifier, the 
subunit must qualify it.

You cannot declare an identifier twice in the same PL/SQL unit, but you can declare 
the same identifier in two different units. The two items represented by the identifier 
are distinct, and changing one does not affect the other.

A PL/SQL unit cannot reference identifiers declared in other units at the same level, 
because those identifiers are neither local nor global to the block.

Example 2–24 shows the scope and visibility of several global and local identifiers. The 
global identifier a is redeclared in the first sub-block.

Example 2–24 Scope and Visibility of Identifiers

SQL> DECLARE
  2    a CHAR;  -- Scope of a (CHAR) begins
  3    b REAL;  -- Scope of b begins
  4  BEGIN
  5    -- Visible: a (CHAR), b
  6  
  7    DECLARE
  8      a INTEGER;  -- Scope of a (INTEGER) begins
  9      c REAL;     -- Scope of c begins
 10    BEGIN
 11      -- Visible: a (INTEGER), b, c
 12      NULL;
 13    END;          -- Scopes of a (INTEGER) and c end
 14  
 15    DECLARE
 16      d REAL;     -- Scope of d begins
 17    BEGIN
 18      -- Visible: a (CHAR), b, d
 19      NULL;
 20    END;          -- Scope of d ends
 21  
 22    -- Visible: a (CHAR), b
 23  END;            -- Scopes of a (CHAR) and b end
 24  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Example 2–25 declares the variable birthdate in a labeled block, outer, redeclares it 
in a sub-block, and then references it in the sub-block by qualifying its name with the 
block label.

Example 2–25 Qualifying a Redeclared Global Identifier with a Block Label

SQL> <<outer>>
  2  DECLARE
  3    birthdate DATE := '09-AUG-70';
  4  BEGIN
  5    DECLARE
  6      birthdate DATE;
  7    BEGIN
  8      birthdate := '29-SEP-70';
  9  



Scope and Visibility of PL/SQL Identifiers

2-24 Oracle Database PL/SQL Language Reference

 10      IF birthdate = outer.birthdate THEN
 11        DBMS_OUTPUT.PUT_LINE ('Same Birthday');
 12      ELSE
 13        DBMS_OUTPUT.PUT_LINE ('Different Birthday');
 14      END IF;
 15    END;
 16  END;
 17  /
Different Birthday
 
PL/SQL procedure successfully completed.
 
SQL>

Example 2–26 declares the variable rating in a procedure, check_credit, 
redeclares it in a function within the procedure, and then references it in the function 
by qualifying its name with the procedure name. (The built-in SQL function TO_CHAR 
returns the character equivalent of its argument. For more information about TO_
CHAR, see Oracle Database SQL Language Reference.)

Example 2–26 Qualifying an Identifier with a Subprogram Name

SQL> CREATE OR REPLACE PROCEDURE check_credit (limit NUMBER) AS
  2    rating NUMBER := 3;
  3  
  4    FUNCTION check_rating RETURN BOOLEAN IS
  5      rating  NUMBER := 1;
  6      over_limit  BOOLEAN;
  7    BEGIN
  8      IF check_credit.rating <= limit THEN
  9        over_limit := FALSE;
 10      ELSE
 11        over_limit := TRUE;
 12        rating := limit;
 13      END IF;
 14      RETURN over_limit;
 15    END check_rating;
 16  BEGIN
 17    IF check_rating THEN
 18      DBMS_OUTPUT.PUT_LINE
 19        ('Credit rating over limit (' || TO_CHAR(limit) || ').  '
 20        || 'Rating: ' || TO_CHAR(rating));
 21      ELSE
 22        DBMS_OUTPUT.PUT_LINE
 23          ('Credit rating OK.  ' || 'Rating: ' || TO_CHAR(rating));
 24     END IF;
 25  END;
 26  /
 
Procedure created.
 
SQL> BEGIN
  2    check_credit(1);
  3  END;
  4  /
Credit rating over limit (1).  Rating: 3
 
PL/SQL procedure successfully completed.
 
SQL> 



Scope and Visibility of PL/SQL Identifiers

PL/SQL Language Fundamentals 2-25

Within the same scope, give labels and subprograms unique names to avoid confusion 
and unexpected results.

Example 2–27 has both a block and a subprogram named echo. Both the block and the 
subprogram declare a variable named x. Within the subprogram, echo.x refers to the 
local variable x, not to the global variable x.

Example 2–27 Label and Subprogram with Same Name in Same Scope

SQL> <<echo>>
  2  DECLARE
  3    x  NUMBER := 5;
  4  
  5    PROCEDURE echo AS
  6      x  NUMBER := 0;
  7    BEGIN
  8      DBMS_OUTPUT.PUT_LINE('x = ' || x);
  9      DBMS_OUTPUT.PUT_LINE('echo.x = ' || echo.x);
 10    END;
 11  
 12  BEGIN
 13     echo;
 14  END;
 15  /
x = 0
echo.x = 0
 
PL/SQL procedure successfully completed.
 
SQL> 

Example 2–28 has both a block and a subprogram named echo. Both the block and the 
subprogram declare a variable named x. Within the subprogram, echo.x refers to the 
local variable x, not to the global variable x.

Example 2–28 has two labels for the outer block, compute_ratio and another_
label. The second label is reused in the inner block. Within the inner block, 
another_label.denominator refers to the local variable denominator, not to the 
global variable denominator, which results in the error ZERO_DIVIDE.

Example 2–28 Block with Multiple and Duplicate Labels

SQL> <<compute_ratio>>
  2  <<another_label>>
  3  DECLARE
  4    numerator   NUMBER := 22;
  5    denominator NUMBER := 7;
  6  BEGIN
  7    <<another_label>>
  8    DECLARE
  9      denominator NUMBER := 0;
 10    BEGIN
 11      DBMS_OUTPUT.PUT_LINE('Ratio with compute_ratio.denominator = ');
 12      DBMS_OUTPUT.PUT_LINE(numerator/compute_ratio.denominator);
 13  
 14      DBMS_OUTPUT.PUT_LINE('Ratio with another_label.denominator = ');
 15      DBMS_OUTPUT.PUT_LINE(numerator/another_label.denominator);
 16  
 17    EXCEPTION



Assigning Values to Variables

2-26 Oracle Database PL/SQL Language Reference

 18      WHEN ZERO_DIVIDE THEN
 19        DBMS_OUTPUT.PUT_LINE('Divide-by-zero error: can''t divide '
 20          || numerator || ' by ' || denominator);
 21      WHEN OTHERS THEN
 22        DBMS_OUTPUT.PUT_LINE('Unexpected error.');
 23    END inner_label;
 24  END compute_ratio;
 25  /
Ratio with compute_ratio.denominator =
3.14285714285714285714285714285714285714
Ratio with another_label.denominator =
Divide-by-zero error: cannot divide 22 by 0
 
PL/SQL procedure successfully completed.
 
SQL> 

Assigning Values to Variables
You can assign a default value to a variable when you declare it (as explained in 
Variables on page 2-11) or after you have declared it, with an assignment statement. 
For example, the following statement assigns a new value to the variable bonus, 
overwriting its old value:

bonus := salary * 0.15;

The expression following the assignment operator (:=) can be arbitrarily complex, but 
it must yield a data type that is the same as, or convertible to, the data type of the 
variable.

Variables are initialized every time a block or subprogram is entered. By default, 
variables are initialized to NULL. Unless you explicitly initialize a variable, its value is 
NULL, as Example 2–29 shows.

Example 2–29 Variable Initialized to NULL by Default

SQL> DECLARE
  2    counter INTEGER;
  3  BEGIN
  4     counter := counter + 1;
  5  
  6     IF counter IS NULL THEN
  7        DBMS_OUTPUT.PUT_LINE('counter is NULL.');
  8     END IF;
  9  END;
 10  /
counter is NULL.
 
PL/SQL procedure successfully completed.
 
SQL> 

To avoid unexpected results, never reference a variable before assigning it a value.

Topics:

■ Assigning BOOLEAN Values

■ Assigning SQL Query Results to PL/SQL Variables



Assigning Values to Variables

PL/SQL Language Fundamentals 2-27

Assigning BOOLEAN Values
Only the values TRUE, FALSE, and NULL can be assigned to a BOOLEAN variable, either 
as literals or as the results of expressions.

In Example 2–30, the BOOLEAN variable done is initialized to NULL by default, 
assigned the literal value FALSE, compared to a literal BOOLEAN value, and assigned 
the value of a BOOLEAN expression.

Example 2–30 Assigning BOOLEAN Values

SQL> DECLARE
  2    done    BOOLEAN;            -- Initialize to NULL by default
  3    counter NUMBER := 0;
  4  BEGIN
  5    done := FALSE;              -- Assign literal value
  6    WHILE done != TRUE          -- Compare to literal value
  7    LOOP
  8      counter := counter + 1;
  9      done := (counter > 500);  -- Assign value of BOOLEAN expression
 10    END LOOP;
 11  END;
 12  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Assigning SQL Query Results to PL/SQL Variables
You can use the SELECT INTO statement to assign values to a variable. For each item 
in the SELECT list, there must be a corresponding, type-compatible variable in the 
INTO list, as in Example 2–31.

Example 2–31 Assigning Query Results to Variables

SQL> DECLARE
  2    emp_id    employees.employee_id%TYPE := 100;
  3    emp_name  employees.last_name%TYPE;
  4    wages     NUMBER(7,2);
  5  BEGIN
  6    SELECT last_name, salary + (salary * nvl(commission_pct,0))
  7      INTO emp_name, wages
  8        FROM employees
  9          WHERE employee_id = emp_id;
 10  
 11    DBMS_OUTPUT.PUT_LINE
 12      ('Employee ' || emp_name || ' might make ' || wages);
 13  END;
 14  /
Employee King might make 24000
 
PL/SQL procedure successfully completed.
 
SQL> 

Because SQL does not have a BOOLEAN type, you cannot select column values into a 
BOOLEAN variable. For more information about assigning variables with the DML 
statements, including situations when the value of a variable is undefined, see Data 
Manipulation Language (DML) Statements on page 6-1.



PL/SQL Expressions and Comparisons

2-28 Oracle Database PL/SQL Language Reference

PL/SQL Expressions and Comparisons
The simplest PL/SQL expression consists of a single variable, which yields a value 
directly. You can build arbitrarily complex PL/SQL expressions from operands and 
operators. An operand is a variable, constant, literal, placeholder, or function call. An 
operator is  either unary or binary, operating on either one operand or two operands, 
respectively. An example of a unary operator is negation (-). An example of a binary 
operator is addition (+).

An example of a simple arithmetic expression is:

-X / 2 + 3

PL/SQL evaluates an expression by combining the values of the operands as specified 
by the operators. An expression always returns a single value. PL/SQL determines the 
data type of this value by examining the expression and the context in which it 
appears.

Topics:

■ Concatenation Operator

■ Operator Precedence

■ Logical Operators

■ BOOLEAN Expressions

■ CASE Expressions

■ Handling NULL Values in Comparisons and Conditional Statements

Concatenation Operator
The concatenation operator (||) appends one string operand to another. Each string 
can be CHAR, VARCHAR2, CLOB, or the equivalent Unicode-enabled type. If either 
string is a CLOB, the result is a temporary CLOB; otherwise, it is a VARCHAR2 value.

Example 2–32 and many other examples in this book use the concatenation operator.

Example 2–32 Concatenation Operator

SQL> DECLARE
  2    x VARCHAR2(4) := 'suit';
  3    y VARCHAR2(4) := 'case';
  4  BEGIN
  5    DBMS_OUTPUT.PUT_LINE (x || y);
  6  END;
  7  /
suitcase
 
PL/SQL procedure successfully completed.
 
SQL> 

Operator Precedence
The operations within an expression are evaluated in order of precedence. Table 2–2 
shows operator precedence from highest to lowest. Operators with equal precedence 
are applied in no particular order.



PL/SQL Expressions and Comparisons

PL/SQL Language Fundamentals 2-29

You can use parentheses to control the order of evaluation. When parentheses are 
nested, the most deeply nested subexpression is evaluated first. You can use 
parentheses to improve readability, even when you do not need them to control the 
order of evaluation. (In Example 2–33, the built-in SQL function TO_CHAR returns the 
character equivalent of its argument. For more information about TO_CHAR, see Oracle 
Database SQL Language Reference.)

Example 2–33 Operator Precedence

SQL> DECLARE
  2    salary      NUMBER := 60000;
  3    commission  NUMBER := 0.10;
  4  BEGIN
  5    -- Division has higher precedence than addition:
  6  
  7    DBMS_OUTPUT.PUT_LINE('5 + 12 / 4 = ' || TO_CHAR(5 + 12 / 4));
  8    DBMS_OUTPUT.PUT_LINE('12 / 4 + 5 = ' || TO_CHAR(12 / 4 + 5));
  9  
 10    -- Parentheses override default operator precedence:
 11  
 12    DBMS_OUTPUT.PUT_LINE('8 + 6 / 2 = ' || TO_CHAR(8 + 6 / 2));
 13    DBMS_OUTPUT.PUT_LINE('(8 + 6) / 2 = ' || TO_CHAR((8 + 6) / 2));
 14  
 15    -- Most deeply nested subexpression is evaluated first:
 16  
 17    DBMS_OUTPUT.PUT_LINE('100 + (20 / 5 + (7 - 3)) = '
 18                         || TO_CHAR(100 + (20 / 5 + (7 - 3))));
 19  
 20    -- Parentheses, even when unnecessary, improve readability:
 21  
 22    DBMS_OUTPUT.PUT_LINE('(salary * 0.05) + (commission * 0.25) = '
 23                         || TO_CHAR((salary * 0.05) + (commission * 0.25))
 24                        );
 25  
 26    DBMS_OUTPUT.PUT_LINE('salary * 0.05 + commission * 0.25 = '
 27                         || TO_CHAR(salary * 0.05 + commission * 0.25)
 28                        );
 29  END;
 30  /
5 + 12 / 4 = 8
12 / 4 + 5 = 8
8 + 6 / 2 = 11

Table 2–2 Operator Precedence

Operator Operation

** exponentiation

+, - identity, negation

*, / multiplication, division

+, -, || addition, subtraction, 
concatenation

=, <, >, <=, >=, <>, !=, ~=, ^=, IS NULL, LIKE, BETWEEN, IN comparison

NOT logical negation

AND conjunction

OR inclusion



PL/SQL Expressions and Comparisons

2-30 Oracle Database PL/SQL Language Reference

(8 + 6) / 2 = 7
100 + (20 / 5 + (7 - 3)) = 108
(salary * 0.05) + (commission * 0.25) = 3000.025
salary * 0.05 + commission * 0.25 = 3000.025
 
PL/SQL procedure successfully completed.
 
SQL> 

Logical Operators
The logical operators AND, OR, and NOT follow the tri-state logic shown in Table 2–3. 
AND and OR are binary operators; NOT is a unary operator. 

Be careful to avoid unexpected results in expressions involving NULL. For more 
information, see Handling NULL Values in Comparisons and Conditional Statements 
on page 2-42.

As Table 2–3 and Example 2–34 show, AND returns TRUE if and only if both operands 
are TRUE. (Several examples use the print_boolean procedure that Example 2–34 
creates.)

Example 2–34 AND Operator

SQL> CREATE OR REPLACE PROCEDURE print_boolean (
  2    name   VARCHAR2,
  3    value  BOOLEAN
  4  ) IS
  5  BEGIN
  6    IF value IS NULL THEN
  7      DBMS_OUTPUT.PUT_LINE (name || ' = NULL');
  8    ELSIF value = TRUE THEN
  9      DBMS_OUTPUT.PUT_LINE (name || ' = TRUE');
 10    ELSE
 11      DBMS_OUTPUT.PUT_LINE (name || ' = FALSE');
 12    END IF;
 13  END;
 14  /
 
Procedure created.
 
SQL> DECLARE

Table 2–3 Logical Truth Table

 x y x AND y x OR y NOT x

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE FALSE

TRUE NULL NULL TRUE FALSE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE TRUE

FALSE NULL FALSE NULL TRUE

NULL TRUE NULL TRUE NULL

NULL FALSE FALSE NULL NULL

NULL NULL NULL NULL NULL



PL/SQL Expressions and Comparisons

PL/SQL Language Fundamentals 2-31

  2  
  3    PROCEDURE print_x_and_y (
  4      x  BOOLEAN,
  5      y  BOOLEAN
  6    ) IS
  7    BEGIN
  8      print_boolean ('x', x);
  9      print_boolean ('y', y);
 10      print_boolean ('x AND y', x AND y);
 11    END;
 12  
 13  BEGIN
 14    print_x_and_y (FALSE, FALSE);
 15    print_x_and_y (TRUE, FALSE);
 16    print_x_and_y (FALSE, TRUE);
 17    print_x_and_y (TRUE, TRUE);
 18  
 19    print_x_and_y (TRUE, NULL);
 20    print_x_and_y (FALSE, NULL);
 21    print_x_and_y (NULL, TRUE);
 22    print_x_and_y (NULL, FALSE);
 23  END;
 24  /
x = FALSE
y = FALSE
x AND y = FALSE
x = TRUE
y = FALSE
x AND y = FALSE
x = FALSE
y = TRUE
x AND y = FALSE
x = TRUE
y = TRUE
x AND y = TRUE
x = TRUE
y = NULL
x AND y = NULL
x = FALSE
y = NULL
x AND y = FALSE
x = NULL
y = TRUE
x AND y = NULL
x = NULL
y = FALSE
x AND y = FALSE
 
PL/SQL procedure successfully completed.
 
SQL>

As Table 2–3 and Example 2–35 show, OR returns TRUE if either operand is TRUE. 
(Example 2–35 invokes the print_boolean procedure created in Example 2–34.)

Example 2–35 OR Operator

SQL> DECLARE
  2  
  3    PROCEDURE print_x_or_y (



PL/SQL Expressions and Comparisons

2-32 Oracle Database PL/SQL Language Reference

  4      x  BOOLEAN,
  5      y  BOOLEAN
  6    ) IS
  7    BEGIN
  8      print_boolean ('x', x);
  9      print_boolean ('y', y);
 10      print_boolean ('x OR y', x OR y);
 11    END;
 12  
 13  BEGIN
 14    print_x_or_y (FALSE, FALSE);
 15    print_x_or_y (TRUE, FALSE);
 16    print_x_or_y (FALSE, TRUE);
 17    print_x_or_y (TRUE, TRUE);
 18  
 19    print_x_or_y (TRUE, NULL);
 20    print_x_or_y (FALSE, NULL);
 21    print_x_or_y (NULL, TRUE);
 22    print_x_or_y (NULL, FALSE);
 23  END;
 24  /
x = FALSE
y = FALSE
x OR y = FALSE
x = TRUE
y = FALSE
x OR y = TRUE
x = FALSE
y = TRUE
x OR y = TRUE
x = TRUE
y = TRUE
x OR y = TRUE
x = TRUE
y = NULL
x OR y = TRUE
x = FALSE
y = NULL
x OR y = NULL
x = NULL
y = TRUE
x OR y = TRUE
x = NULL
y = FALSE
x OR y = NULL
 
PL/SQL procedure successfully completed.
 
SQL> 

As Table 2–3 and Example 2–36 show, NOT returns the opposite of its operand, unless 
the operand is NULL. NOT NULL returns NULL, because NULL is an indeterminate value. 
(Example 2–36 invokes the print_boolean procedure created in Example 2–34.)

Example 2–36 NOT Operator

SQL> DECLARE
  2  
  3    PROCEDURE print_not_x (
  4      x  BOOLEAN



PL/SQL Expressions and Comparisons

PL/SQL Language Fundamentals 2-33

  5    ) IS
  6    BEGIN
  7      print_boolean ('x', x);
  8      print_boolean ('NOT x', NOT x);
  9    END;
 10  
 11  BEGIN
 12    print_not_x (TRUE);
 13    print_not_x (FALSE);
 14    print_not_x (NULL);
 15  END;
 16  /
x = TRUE
NOT x = FALSE
x = FALSE
NOT x = TRUE
x = NULL
NOT x = NULL
 
PL/SQL procedure successfully completed.
 
SQL> 

Topics:

■ Order of Evaluation

■ Short-Circuit Evaluation

■ Comparison Operators

Order of Evaluation
As with all operators, the order of evaluation for logical operators is determined by the 
operator precedence shown in Table 2–2, and can be changed by parentheses, as in 
Example 2–37. (Example 2–37 invokes the print_boolean procedure created in 
Example 2–34.)

Example 2–37 Changing Order of Evaluation of Logical Operators

SQL> DECLARE
  2    x  BOOLEAN := FALSE;
  3    y  BOOLEAN := FALSE;
  4  
  5  BEGIN
  6    print_boolean ('NOT x AND y', NOT x AND y);
  7    print_boolean ('NOT (x AND y)', NOT (x AND y));
  8    print_boolean ('(NOT x) AND y', (NOT x) AND y);
  9  END;
 10  /
NOT x AND y = FALSE
NOT (x AND y) = TRUE
(NOT x) AND y = FALSE
 
PL/SQL procedure successfully completed.
 
SQL>



PL/SQL Expressions and Comparisons

2-34 Oracle Database PL/SQL Language Reference

Short-Circuit Evaluation
When evaluating a logical expression, PL/SQL uses short-circuit evaluation. That is, 
PL/SQL stops evaluating the expression as soon as the result can be determined. This 
lets you write expressions that might otherwise cause errors.

In Example 2–38, short-circuit evaluation prevents the expression in line 8 from 
causing an error.

Example 2–38 Short-Circuit Evaluation

SQL> DECLARE
  2    on_hand  INTEGER := 0;
  3    on_order INTEGER := 100;
  4  BEGIN
  5    -- Does not cause divide-by-zero error;
  6    -- evaluation stops after first expression
  7  
  8    IF (on_hand = 0) OR ((on_order / on_hand) < 5) THEN
  9      DBMS_OUTPUT.PUT_LINE('On hand quantity is zero.');
 10    END IF;
 11  END;
 12  /
On hand quantity is zero.
 
PL/SQL procedure successfully completed.
 
SQL> 

When the value of on_hand is zero, the left operand yields TRUE, so PL/SQL does not 
evaluate the right operand. If PL/SQL evaluated both operands before applying the 
OR operator, the right operand would cause a division by zero error.

Short-circuit evaluation applies to IF statements, CASE statements, and CASE 
expressions in PL/SQL.

Comparison Operators
Comparison operators compare one expression to another. The result is always either 
TRUE, FALSE, OR NULL. Typically, you use comparison operators in conditional 
control statements and in the WHERE clauses of SQL data manipulation statements.

The comparison operators are:

■ The relational operators summarized in Table 2–4

■ IS NULL Operator on page 2-35

■ LIKE Operator on page 2-35

■ BETWEEN Operator on page 2-37

■ IN Operator on page 2-37

Note: Using CLOB values with comparison operators can create 
temporary LOB values. Be sure that your temporary tablespace is large 
enough to handle them.



PL/SQL Expressions and Comparisons

PL/SQL Language Fundamentals 2-35

Example 2–39 invokes the print_boolean procedure created in Example 2–34 to 
print values of some expressions that include relational operators.

Example 2–39 Relational Operators

SQL> BEGIN
  2    print_boolean ('(2 + 2 =  4)', 2 + 2 = 4);
  3  
  4    print_boolean ('(2 + 2 <> 4)', 2 + 2 <> 4);
  5    print_boolean ('(2 + 2 != 4)', 2 + 2 != 4);
  6    print_boolean ('(2 + 2 ~= 4)', 2 + 2 ~= 4);
  7    print_boolean ('(2 + 2 ^= 4)', 2 + 2 ^= 4);
  8  
  9    print_boolean ('(1 < 2)', 1 < 2);
 10  
 11    print_boolean ('(1 > 2)', 1 > 2);
 12  
 13    print_boolean ('(1 <= 2)', 1 <= 2);
 14  
 15    print_boolean ('(1 >= 1)', 1 >= 1);
 16  END;
 17  /
(2 + 2 =  4) = TRUE
(2 + 2 <> 4) = FALSE
(2 + 2 != 4) = FALSE
(2 + 2 ~= 4) = FALSE
(2 + 2 ^= 4) = FALSE
(1 < 2) = TRUE
(1 > 2) = FALSE
(1 <= 2) = TRUE
(1 >= 1) = TRUE
 
PL/SQL procedure successfully completed.
 
SQL>

IS NULL Operator  The IS NULL operator returns the BOOLEAN value TRUE if its operand 
is NULL or FALSE if it is not NULL. Comparisons involving NULL values always yield 
NULL.

To test whether a value is NULL, use IF value IS NULL, as the procedure print_
boolean in Example 2–34 does at line 6.

LIKE Operator  The LIKE operator compares a character, string, or CLOB value to a 
pattern and returns TRUE if the value matches the pattern and FALSE if it does not.

Table 2–4 Relational Operators

Operator Meaning

= equal to

<>, !=, ~=, ^= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to



PL/SQL Expressions and Comparisons

2-36 Oracle Database PL/SQL Language Reference

The pattern can include the two "wildcard" characters underscore (_) and percent sign 
(%). Underscore matches exactly one character. Percent sign (%) matches zero or more 
characters.

 Case is significant. The string 'Johnson' matches the pattern 'J%s_n' but not 
'J%S_N', as Example 2–40 shows.

Example 2–40 LIKE Operator

SQL> DECLARE
  2  
  3    PROCEDURE compare (
  4      value   VARCHAR2,
  5      pattern VARCHAR2
  6    ) IS
  7    BEGIN
  8      IF value LIKE pattern THEN
  9        DBMS_OUTPUT.PUT_LINE ('TRUE');
 10      ELSE
 11        DBMS_OUTPUT.PUT_LINE ('FALSE');
 12      END IF;
 13    END;
 14  
 15  BEGIN
 16    compare('Johnson', 'J%s_n');
 17    compare('Johnson', 'J%S_N');
 18  END;
 19  /
TRUE
FALSE
 
PL/SQL procedure successfully completed.
 
SQL> 

To search for the percent sign or underscore, define an escape character and put it 
before the percent sign or underscore.

Example 2–41 uses the backslash as the escape character, so that the percent sign in the 
string does not act as a wildcard.

Example 2–41 Escape Character in Pattern

SQL> DECLARE
  2  
  3    PROCEDURE half_off (sale_sign VARCHAR2) IS
  4    BEGIN
  5      IF sale_sign LIKE '50\% off!' ESCAPE '\' THEN
  6        DBMS_OUTPUT.PUT_LINE ('TRUE');
  7      ELSE
  8        DBMS_OUTPUT.PUT_LINE ('FALSE');
  9      END IF;
 10    END;
 11  
 12  BEGIN
 13    half_off('Going out of business!');
 14    half_off('50% off!');
 15  END;
 16  /
FALSE
TRUE



PL/SQL Expressions and Comparisons

PL/SQL Language Fundamentals 2-37

 
PL/SQL procedure successfully completed.
 
SQL> 

BETWEEN Operator  The BETWEEN operator tests whether a value lies in a specified 
range. x BETWEEN a AND b means that x >= a and x <= b.

Example 2–42 invokes the print_boolean procedure created in Example 2–34 to 
print values of some expressions that include the BETWEEN operator.

Example 2–42 BETWEEN Operator

SQL> BEGIN
  2    print_boolean ('2 BETWEEN 1 AND 3', 2 BETWEEN 1 AND 3);
  3    print_boolean ('2 BETWEEN 2 AND 3', 2 BETWEEN 2 AND 3);
  4    print_boolean ('2 BETWEEN 1 AND 2', 2 BETWEEN 1 AND 2);
  5    print_boolean ('2 BETWEEN 3 AND 4', 2 BETWEEN 3 AND 4);
  6  END;
  7  /
2 BETWEEN 1 AND 3 = TRUE
2 BETWEEN 2 AND 3 = TRUE
2 BETWEEN 1 AND 2 = TRUE
2 BETWEEN 3 AND 4 = FALSE
 
PL/SQL procedure successfully completed.
 
SQL> 

IN Operator  The IN operator tests set membership. x IN (set) means that x is equal to 
any member of set.

Example 2–43 invokes the print_boolean procedure created in Example 2–34 to 
print values of some expressions that include the IN operator.

Example 2–43 IN Operator

SQL> DECLARE
  2    letter VARCHAR2(1) := 'm';
  3  BEGIN
  4    print_boolean (
  5      'letter IN (''a'', ''b'', ''c'')',
  6      letter IN ('a', 'b', 'c')
  7    );
  8  
  9    print_boolean (
 10      'letter IN (''z'', ''m'', ''y'', ''p'')',
 11      letter IN ('z', 'm', 'y', 'p')
 12    );
 13  END;
 14  /
letter IN ('a', 'b', 'c') = FALSE
letter IN ('z', 'm', 'y', 'p') = TRUE
 
PL/SQL procedure successfully completed.
 
SQL> 
Example 2–44 shows what happens when set contains a NULL value. (Example 2–44 
invokes the print_boolean procedure created in Example 2–34.)



PL/SQL Expressions and Comparisons

2-38 Oracle Database PL/SQL Language Reference

Example 2–44 Using the IN Operator with Sets with NULL Values

SQL> DECLARE
  2    a INTEGER; -- Initialized to NULL by default
  3    b INTEGER := 10;
  4    c INTEGER := 100;
  5  BEGIN
  6    print_boolean ('100 IN (a, b, c)', 100 IN (a, b, c));
  7    print_boolean ('100 NOT IN (a, b, c)', 100 NOT IN (a, b, c));
  8  
  9    print_boolean ('100 IN (a, b)', 100 IN (a, b));
 10    print_boolean ('100 NOT IN (a, b)', 100 NOT IN (a, b));
 11  
 12    print_boolean ('a IN (a, b)', a IN (a, b));
 13    print_boolean ('a NOT IN (a, b)', a NOT IN (a, b));
 14  END;
 15  /
100 IN (a, b, c) = TRUE
100 NOT IN (a, b, c) = FALSE
100 IN (a, b) = NULL
100 NOT IN (a, b) = NULL
a IN (a, b) = NULL
a NOT IN (a, b) = NULL
 
PL/SQL procedure successfully completed.
 
SQL> 

BOOLEAN Expressions
PL/SQL lets you compare variables and constants in both SQL and procedural 
statements. These comparisons, called BOOLEAN expressions, consist of simple or 
complex expressions separated by relational operators. Often, BOOLEAN expressions 
are connected by the logical operators AND, OR, and NOT. A BOOLEAN expression 
always yields TRUE, FALSE, or NULL.

In a SQL statement, BOOLEAN expressions let you specify the rows in a table that are 
affected by the statement. In a procedural statement, BOOLEAN expressions are the 
basis for conditional control.

Topics:

■ BOOLEAN Arithmetic Expressions

■ BOOLEAN Character Expressions

■ BOOLEAN Date Expressions

■ Guidelines for BOOLEAN Expressions

BOOLEAN Arithmetic Expressions
You can use the relational operators to compare numbers for equality or inequality. 
Comparisons are quantitative; that is, one number is greater than another if it 
represents a larger quantity. For example, given the assignments:

number1 := 75;
number2 := 70;

The following expression is true:

number1 > number2



PL/SQL Expressions and Comparisons

PL/SQL Language Fundamentals 2-39

In general, do not compare real numbers for exact equality or inequality. Real numbers 
are stored as approximate values. For example, the following IF condition might not 
yield TRUE:

DECLARE
   fraction BINARY_FLOAT := 1/3;
BEGIN
   IF fraction = 11/33 THEN
      DBMS_OUTPUT.PUT_LINE('Fractions are equal (luckily!)');
   END IF;
END;
/

BOOLEAN Character Expressions
You can compare character values for equality or inequality. By default, comparisons 
are based on the binary values of each byte in the string. For example, given the 
assignments:

string1 := 'Kathy';
string2 := 'Kathleen';

The following expression is true:

string1 > string2

By setting the initialization parameter NLS_COMP=ANSI, you can make comparisons 
use the collating sequence identified by the NLS_SORT initialization parameter. A 
collating sequence is an internal ordering of the character set in which a range of 
numeric codes represents the individual characters. One character value is greater than 
another if its internal numeric value is larger. Each language might have different rules 
about where such characters occur in the collating sequence. For example, an accented 
letter might be sorted differently depending on the database character set, even 
though the binary value is the same in each case.

Depending on the value of the NLS_SORT parameter, you can perform comparisons 
that are case-insensitive and even accent-insensitive. A case-insensitive comparison 
still returns true if the letters of the operands are different in terms of uppercase and 
lowercase. An accent-insensitive comparison is case-insensitive, and also returns true 
if the operands differ in accents or punctuation characters. For example, the character 
values 'True' and 'TRUE' are considered identical by a case-insensitive comparison; 
the character values 'Cooperate', 'Co-Operate', and 'coöperate' are all 
considered the same. To make comparisons case-insensitive, add _CI to the end of 
your usual value for the NLS_SORT parameter. To make comparisons 
accent-insensitive, add _AI to the end of the NLS_SORT value.

There are semantic differences between the CHAR and VARCHAR2 base types that come 
into play when you compare character values. For more information, see Differences 
Between CHAR and VARCHAR2 Data Types on page 3-9.

Many types can be converted to character types. For example, you can compare, 
assign, and do other character operations using CLOB variables. For details on the 
possible conversions, see PL/SQL Data Type Conversion on page 3-28.

BOOLEAN Date Expressions
You can also compare dates. Comparisons are chronological; that is, one date is greater 
than another if it is more recent. For example, given the assignments:

date1 := '01-JAN-91';



PL/SQL Expressions and Comparisons

2-40 Oracle Database PL/SQL Language Reference

date2 := '31-DEC-90';

The following expression is true:

date1 > date2

Guidelines for BOOLEAN Expressions
It is a good idea to use parentheses when doing comparisons. For example, the 
following expression is not allowed because 100 < tax yields a BOOLEAN value, which 
cannot be compared with the number 500:

100 < tax < 500  -- not allowed

The debugged version follows:

(100 < tax) AND (tax < 500)

You can use a BOOLEAN variable itself as a condition; you need not compare it to the 
value TRUE or FALSE. In Example 2–45, the loops are equivalent.

Example 2–45 Using BOOLEAN Variables in Conditional Tests

SQL> DECLARE
  2    done BOOLEAN;
  3  BEGIN
  4    -- The following WHILE loops are equivalent
  5  
  6    done := FALSE;
  7    WHILE done = FALSE
  8    LOOP
  9      done := TRUE;
 10    END LOOP;
 11  
 12    done := FALSE;
 13    WHILE NOT (done = TRUE)
 14    LOOP
 15      done := TRUE;
 16    END LOOP;
 17  
 18    done := FALSE;
 19    WHILE NOT done
 20    LOOP
 21      done := TRUE;
 22    END LOOP;
 23  END;
 24  /
 
PL/SQL procedure successfully completed.
 
SQL> 

CASE Expressions
There are two types of expressions used in CASE statements: simple and searched. 
These expressions correspond to the type of CASE statement in which they are used. 
See Using the Simple CASE Statement on page 4-5.

Topics:

■ Simple CASE Expression



PL/SQL Expressions and Comparisons

PL/SQL Language Fundamentals 2-41

■ Searched CASE Expression

Simple CASE Expression
A simple CASE expression selects a result from one or more alternatives, and returns 
the result. Although it contains a block that might stretch over several lines, it really is 
an expression that forms part of a larger statement, such as an assignment or a 
subprogram call. The CASE expression uses a selector, an expression whose value 
determines which alternative to return.

A CASE expression has the form illustrated in Example 2–46. The selector (grade) is 
followed by one or more WHEN clauses, which are checked sequentially. The value of 
the selector determines which clause is evaluated. The first WHEN clause that matches 
the value of the selector determines the result value, and subsequent WHEN clauses are 
not evaluated. If there are no matches, then the optional ELSE clause is performed.

Example 2–46 Using the WHEN Clause with a CASE Statement

SQL> DECLARE
  2    grade CHAR(1) := 'B';
  3    appraisal VARCHAR2(20);
  4  BEGIN
  5    appraisal :=
  6      CASE grade
  7        WHEN 'A' THEN 'Excellent'
  8        WHEN 'B' THEN 'Very Good'
  9        WHEN 'C' THEN 'Good'
 10        WHEN 'D' THEN 'Fair'
 11        WHEN 'F' THEN 'Poor'
 12        ELSE 'No such grade'
 13      END;
 14    DBMS_OUTPUT.PUT_LINE
 15      ('Grade ' || grade || ' is ' || appraisal);
 16  END;
 17  /
Grade B is Very Good
 
PL/SQL procedure successfully completed.
 
SQL>

The optional ELSE clause works similarly to the ELSE clause in an IF statement. If the 
value of the selector is not one of the choices covered by a WHEN clause, the ELSE 
clause is executed. If no ELSE clause is provided and none of the WHEN clauses are 
matched, the expression returns NULL.

Searched CASE Expression
A searched CASE expression lets you test different conditions instead of comparing a 
single expression to various values. It has the form shown in Example 2–47.

A searched CASE expression has no selector. Each WHEN clause contains a search 
condition that yields a BOOLEAN value, so you can test different variables or multiple 
conditions in a single WHEN clause.

Example 2–47 Using a Search Condition with a CASE Statement

SQL> DECLARE
  2    grade      CHAR(1) := 'B';
  3    appraisal  VARCHAR2(120);



PL/SQL Expressions and Comparisons

2-42 Oracle Database PL/SQL Language Reference

  4    id         NUMBER  := 8429862;
  5    attendance NUMBER := 150;
  6    min_days   CONSTANT NUMBER := 200;
  7  
  8    FUNCTION attends_this_school (id NUMBER)
  9     RETURN BOOLEAN IS
 10    BEGIN
 11      RETURN TRUE;
 12    END;
 13  
 14  BEGIN
 15    appraisal :=
 16      CASE
 17        WHEN attends_this_school(id) = FALSE
 18          THEN 'Student not enrolled'
 19        WHEN grade = 'F' OR attendance < min_days
 20          THEN 'Poor (poor performance or bad attendance)'
 21        WHEN grade = 'A' THEN 'Excellent'
 22        WHEN grade = 'B' THEN 'Very Good'
 23        WHEN grade = 'C' THEN 'Good'
 24        WHEN grade = 'D' THEN 'Fair'
 25        ELSE 'No such grade'
 26      END;
 27    DBMS_OUTPUT.PUT_LINE
 28      ('Result for student ' || id || ' is ' || appraisal);
 29  END;
 30  /
Result for student 8429862 is Poor (poor performance or bad attendance)
 
PL/SQL procedure successfully completed.
 
SQL>

The search conditions are evaluated sequentially. The BOOLEAN value of each search 
condition determines which WHEN clause is executed. If a search condition yields 
TRUE, its WHEN clause is executed. After any WHEN clause is executed, subsequent 
search conditions are not evaluated. If none of the search conditions yields TRUE, the 
optional ELSE clause is executed. If no WHEN clause is executed and no ELSE clause is 
supplied, the value of the expression is NULL.

Handling NULL Values in Comparisons and Conditional Statements
When using NULL values, remember the following rules: 

■ Comparisons involving NULL values always yield NULL.

■ Applying the logical operator NOT to a NULL value yields NULL.

■ In conditional control statements, if the condition yields NULL, its associated 
sequence of statements is not executed.

■ If the expression in a simple CASE statement or CASE expression yields NULL, it 
cannot be matched by using WHEN NULL. Instead, use a searched CASE syntax with 
WHEN expression IS NULL.

In Example 2–48, you might expect the sequence of statements to execute because x 
and y seem unequal. But, NULL values are indeterminate. Whether or not x is equal to 
y is unknown. Therefore, the IF condition yields NULL and the sequence of statements 
is bypassed.



PL/SQL Expressions and Comparisons

PL/SQL Language Fundamentals 2-43

Example 2–48 NULL Value in Unequal Comparison

SQL> DECLARE
  2    x NUMBER := 5;
  3    y NUMBER := NULL;
  4  BEGIN
  5    IF x != y THEN  -- yields NULL, not TRUE
  6      DBMS_OUTPUT.PUT_LINE('x != y');  -- not executed
  7    ELSIF x = y THEN -- also yields NULL
  8      DBMS_OUTPUT.PUT_LINE('x = y');
  9    ELSE
 10      DBMS_OUTPUT.PUT_LINE
 11        ('Can''t tell if x and y are equal or not.');
 12     END IF;
 13  END;
 14  /
Can't tell if x and y are equal or not.
 
PL/SQL procedure successfully completed.
 
SQL> 

In Example 2–49, you might expect the sequence of statements to execute because a 
and b seem equal. But, again, that is unknown, so the IF condition yields NULL and 
the sequence of statements is bypassed.

Example 2–49 NULL Value in Equal Comparison

SQL> DECLARE
  2    a NUMBER := NULL;
  3    b NUMBER := NULL;
  4  BEGIN
  5    IF a = b THEN  -- yields NULL, not TRUE
  6      DBMS_OUTPUT.PUT_LINE('a = b');  -- not executed
  7    ELSIF a != b THEN  -- yields NULL, not TRUE
  8      DBMS_OUTPUT.PUT_LINE('a != b');  -- not executed
  9    ELSE
 10      DBMS_OUTPUT.PUT_LINE('Can''t tell if two NULLs are equal');
 11    END IF;
 12  END;
 13  /
Can't tell if two NULLs are equal
 
PL/SQL procedure successfully completed.
 
SQL> 

Topics:

■ NULL Values and the NOT Operator

■ NULL Values and Zero-Length Strings

■ NULL Values and the Concatenation Operator

■ NULL Values as Arguments to Built-In Functions

NULL Values and the NOT Operator
Applying the logical operator NOT to a null yields NULL. Therefore, the following two 
IF statements are not always equivalent:

SQL> DECLARE



PL/SQL Expressions and Comparisons

2-44 Oracle Database PL/SQL Language Reference

  2    x    INTEGER := 2;
  3    Y    INTEGER := 5;
  4    high INTEGER;
  5  BEGIN
  6    IF x > y THEN high := x;
  7    ELSE high := y;
  8    END IF;
  9  
 10    IF NOT x > y THEN high := y;
 11    ELSE high := x;
 12    END IF;
 13  END;
 14  /
 
PL/SQL procedure successfully completed.
 
SQL> 

The sequence of statements in the ELSE clause is executed when the IF condition 
yields FALSE or NULL. If neither x nor y is null, both IF statements assign the same 
value to high. However, if either x or y is null, the first IF statement assigns the value 
of y to high, but the second IF statement assigns the value of x to high.

NULL Values and Zero-Length Strings
PL/SQL treats any zero-length string like a NULL value. This includes values returned 
by character functions and BOOLEAN expressions. For example, the following 
statements assign nulls to the target variables:

SQL> DECLARE
  2     null_string  VARCHAR2(80) := TO_CHAR('');
  3     address      VARCHAR2(80);
  4     zip_code     VARCHAR2(80) := SUBSTR(address, 25, 0);
  5     name         VARCHAR2(80);
  6     valid        BOOLEAN      := (name != '');
  7  BEGIN
  8    NULL;
  9  END;
 10  /
 
PL/SQL procedure successfully completed.
 
SQL> 

Use the IS NULL operator to test for null strings, as follows:

IF v_string IS NULL THEN ...

NULL Values and the Concatenation Operator
The concatenation operator ignores null operands. For example:

SQL> BEGIN
  2    DBMS_OUTPUT.PUT_LINE ('apple' || NULL || NULL || 'sauce');
  3  END;
  4  /
applesauce
 
PL/SQL procedure successfully completed.
 
SQL> 



PL/SQL Expressions and Comparisons

PL/SQL Language Fundamentals 2-45

NULL Values as Arguments to Built-In Functions
If a NULL argument is passed to a built-in function, a NULL value is returned except in 
the following cases.

The function DECODE compares its first argument to one or more search expressions, 
which are paired with result expressions. Any search or result expression can be NULL. 
If a search is successful, the corresponding result is returned. In Example 2–50, if the 
column manager_id is NULL, DECODE returns the value 'nobody'.

Example 2–50 NULL Value as Argument to DECODE Function

SQL> DECLARE
  2    manager  VARCHAR2(40);
  3    name     employees.last_name%TYPE;
  4  BEGIN
  5    -- NULL is a valid argument to DECODE.
  6    -- In this case, manager_id is NULL
  7    -- and the DECODE function returns 'nobody'.
  8  
  9    SELECT DECODE(manager_id, NULL, 'nobody', 'somebody'), last_name
 10      INTO manager, name
 11        FROM employees
 12          WHERE employee_id = 100;
 13  
 14    DBMS_OUTPUT.PUT_LINE
 15      (name || ' is managed by ' || manager);
 16  END;
 17  /
King is managed by nobody
 
PL/SQL procedure successfully completed.
 
SQL>

The function NVL returns the value of its second argument if its first argument is NULL. 
In Example 2–51, if the column specified in the query is NULL, the function returns the 
value -1 to signify a nonexistent employee in the output.

Example 2–51 NULL Value as Argument to NVL Function

SQL> DECLARE
  2    manager employees.manager_id%TYPE;
  3    name    employees.last_name%TYPE;
  4  BEGIN
  5    -- NULL is a valid argument to NVL.
  6    -- In this case, manager_id is null
  7    -- and the NVL function returns -1.
  8  
  9    SELECT NVL(manager_id, -1), last_name
 10      INTO manager, name
 11        FROM employees
 12          WHERE employee_id = 100;
 13  
 14     DBMS_OUTPUT.PUT_LINE
 15       (name || ' is managed by employee Id: ' || manager);
 16  END;
 17  /
King is managed by employee Id: -1
 
PL/SQL procedure successfully completed.



PL/SQL Expressions and Comparisons

2-46 Oracle Database PL/SQL Language Reference

 
SQL>

The function REPLACE returns the value of its first argument if its second argument is 
NULL, whether the optional third argument is present or not. For example, the call to 
REPLACE in Example 2–52 does not make any change to the value of old_string.

Example 2–52 NULL Value as Second Argument to REPLACE Function

SQL> DECLARE
  2    string_type  VARCHAR2(60);
  3    old_string   string_type%TYPE := 'Apples and oranges';
  4    v_string     string_type%TYPE := 'more apples';
  5  
  6    -- NULL is a valid argument to REPLACE,
  7    -- but does not match anything,
  8    -- so no replacement is done.
  9  
 10    new_string string_type%TYPE := REPLACE(old_string, NULL, v_string);
 11  BEGIN
 12    DBMS_OUTPUT.PUT_LINE('Old string = ' || old_string);
 13    DBMS_OUTPUT.PUT_LINE('New string = ' || new_string);
 14  END;
 15  /
Old string = Apples and oranges
New string = Apples and oranges
 
PL/SQL procedure successfully completed.
 
SQL>

If its third argument is NULL, REPLACE returns its first argument with every 
occurrence of its second argument removed. For example, the call to REPLACE in 
Example 2–53 removes all the dashes from dashed_string, instead of changing 
them to another character.

Example 2–53 NULL Value as Third Argument to REPLACE Function

SQL> DECLARE
  2    string_type  VARCHAR2(60);
  3    dashed       string_type%TYPE := 'Gold-i-locks';
  4  
  5    -- When the substitution text for REPLACE is NULL,
  6    -- the text being replaced is deleted.
  7  
  8    name         string_type%TYPE := REPLACE(dashed, '-', NULL);
  9  BEGIN
 10     DBMS_OUTPUT.PUT_LINE('Dashed name    = ' || dashed);
 11     DBMS_OUTPUT.PUT_LINE('Dashes removed = ' || name);
 12  END;
 13  /
Dashed name    = Gold-i-locks
Dashes removed = Goldilocks
 
PL/SQL procedure successfully completed.
 
SQL>

If its second and third arguments are NULL, REPLACE just returns its first argument.



Using SQL Functions in PL/SQL

PL/SQL Language Fundamentals 2-47

PL/SQL Error-Reporting Functions
PL/SQL has two built-in error-reporting functions, SQLCODE and SQLERRM, for use in 
PL/SQL exception-handling code. For their descriptions, see SQLCODE Function on 
page 13-116 and SQLERRM Function on page 13-117.

You cannot use the  SQLCODE and SQLERRM functions in SQL statements.

Using SQL Functions in PL/SQL
You can use all SQL functions except the following in PL/SQL expressions:

■ Aggregate functions (such as AVG and COUNT)

■ Analytic functions (such as LAG and RATIO_TO_REPORT)

■ Collection functions (such as CARDINALITY and SET)

■ Data mining functions (such as CLUSTER_ID and FEATURE_VALUE)

■ Encoding and decoding functions (such as DECODE and DUMP)

■ Model functions (such as ITERATION_NUMBER and PREVIOUS)

■ Object reference functions (such as REF and VALUE)

■ XML functions (such as APPENDCHILDXML and EXISTSNODE)

■ The following conversion functions:

– BIN_TO_NUM

– CAST

– RAWTONHEX

– ROWIDTONCHAR

■ The following miscellaneous functions:

– CUBE_TABLE

– DATAOBJ_TO_PARTITION

– LNNVL

– SYS_CONNECT_BY_PATH

– SYS_TYPEID

– WIDTH_BUCKET

PL/SQL supports an overload of BITAND for which the arguments and result are 
BINARY_INTEGER.

When used in a PL/SQL expression,the RAWTOHEX function accepts an argument of 
data type RAW and returns a VARCHAR2 value with the hexadecimal representation of 
bytes that make up the value of the argument. Arguments of types other than RAW can 
be specified only if they can be implicitly converted to RAW. This conversion is possible 
for CHAR, VARCHAR2, and LONG values that are valid arguments of the HEXTORAW 
function, and for LONG RAW and BLOB values of up to 16380 bytes.

See Also: Oracle Database SQL Language Reference for information 
about SQL functions



Conditional Compilation

2-48 Oracle Database PL/SQL Language Reference

Conditional Compilation
Using conditional compilation, you can customize the functionality in a PL/SQL 
application without having to remove any source code. For example, using conditional 
compilation you can customize a PL/SQL application to:

■ Utilize the latest functionality with the latest database release and disable the new 
features to run the application against an older release of the database

■ Activate debugging or tracing functionality in the development environment and 
hide that functionality in the application while it runs at a production site

Topics:

■ How Does Conditional Compilation Work?

■ Conditional Compilation Examples

■ Conditional Compilation Restrictions

How Does Conditional Compilation Work?
Conditional compilation uses selection directives, inquiry directives, and error 
directives to specify source text for compilation. Inquiry directives access values set up 
through name-value pairs in the PLSQL_CCFLAGS compilation parameter, which is 
described in PL/SQL Units and Compilation Parameters on page 1-25. Selection 
directives can test inquiry directives or static package constants.

The DBMS_DB_VERSION package provides database version and release constants that 
can be used for conditional compilation. The DBMS_PREPROCESSOR package provides 
subprograms for accessing the post-processed source text that is selected by 
conditional compilation directives in a PL/SQL unit.

Topics:

■ Conditional Compilation Control Tokens

■ Using Conditional Compilation Selection Directives

■ Using Conditional Compilation Error Directives

■ Using Conditional Compilation Inquiry Directives

■ Using Predefined Inquiry Directives with Conditional Compilation

■ Using Static Expressions with Conditional Compilation

■ Using DBMS_DB_VERSION Package Constants

Conditional Compilation Control Tokens
The conditional compilation trigger character, $, identifies code that is processed 
before the application is compiled. A conditional compilation control token has the 
form:

preprocessor_control_token ::= $plsql_identifier

Note: The conditional compilation feature and related PL/SQL 
packages are available for Oracle Database release 10.1.0.4 and later 
releases.



Conditional Compilation

PL/SQL Language Fundamentals 2-49

The $ must be at the beginning of the identifier name and there cannot be a space 
between the $ and the name. The $ can also be embedded in the identifier name, but it 
has no special meaning. The reserved preprocessor control tokens are $IF, $THEN, 
$ELSE, $ELSIF, $END, and $ERROR. For an example of the use of the conditional 
compilation control tokens, see Example 2–56 on page 2-54.

Using Conditional Compilation Selection Directives
The conditional compilation selection directive evaluates static expressions to 
determine which text to include in the compilation. The selection directive is of the 
form:

$IF boolean_static_expression $THEN text
  [$ELSIF boolean_static_expression $THEN text]
  [$ELSE text]
$END

boolean_static_expression must be a BOOLEAN static expression. For a 
description of BOOLEAN static expressions, see Using Static Expressions with 
Conditional Compilation on page 2-50. For information about PL/SQL IF-THEN 
control structures, see Testing Conditions (IF and CASE Statements) on page 4-2.

Using Conditional Compilation Error Directives
The error directive $ERROR raises a user-defined exception and is of the form:

$ERROR varchar2_static_expression $END

varchar2_static_expression must be a VARCHAR2 static expression. For a 
description of VARCHAR2 static expressions, see Using Static Expressions with 
Conditional Compilation on page 2-50. See Example 2–55.

Using Conditional Compilation Inquiry Directives
The inquiry directive is used to check the compilation environment. The inquiry 
directive is of the form:

inquiry_directive ::= $$id

An inquiry directive can be predefined as described in Using Predefined Inquiry 
Directives with Conditional Compilation on page 2-50 or be user-defined. The 
following describes the order of the processing flow when conditional compilation 
attempts to resolve an inquiry directive:

1. The id is used as an inquiry directive in the form $$id for the search key.

2. The two-pass algorithm proceeds as follows:

The string in the PLSQL_CCFLAGS compilation parameter is scanned from right to 
left, searching with id for a matching name (case-insensitive); done if found.

The predefined inquiry directives are searched; done if found.

3. If the $$id cannot be resolved to a value, then the PLW-6003 warning message is 
reported if the source text is not wrapped. The literal NULL is substituted as the 
value for undefined inquiry directives. If the PL/SQL code is wrapped, then the 
warning message is disabled so that the undefined inquiry directive is not 
revealed.

For example, consider the following session setting:

ALTER SESSION SET



Conditional Compilation

2-50 Oracle Database PL/SQL Language Reference

  PLSQL_CCFLAGS = 'plsql_ccflags:true, debug:true, debug:0';

The value of $$debug is 0 and the value of $$plsql_ccflags is true. The value of 
$$plsql_ccflags resolves to the user-defined PLSQL_CCFLAGS inside the value of 
the PLSQL_CCFLAGS compiler parameter. This occurs because a user-defined directive 
overrides the predefined one.

Consider the following session setting:

ALTER SESSION SET PLSQL_CCFLAGS = 'debug:true'

Now the value of $$debug is true, the value of $$plsql_ccflags is 
'debug:true', the value of $$my_id is the literal NULL, and the use of $$my_id 
raises PLW-6003 if the source text is not wrapped.

For an example of the use of an inquiry directive, see Example 2–56 on page 2-54.

Using Predefined Inquiry Directives with Conditional Compilation
Predefined inquiry directive names, which can be used in conditional expressions, 
include:

■ PLSQL_LINE, a PLS_INTEGER literal whose value indicates the line number 
reference to $$PLSQL_LINE in the current PL/SQL unit

An example of $$PLSQL_LINE in a conditional expression is:

$IF $$PLSQL_LINE = 32 $THEN ...

■ PLSQL_UNIT, a VARCHAR2 literal whose value indicates the current PL/SQL unit

For a named PL/SQL unit, $$PLSQL_UNIT contains, but might not be limited to, 
the unit name. For an anonymous block, $$PLSQL_UNIT contains the empty 
string.

An example of $$PLSQL_UNIT in a conditional expression is:

IF $$PLSQL_UNIT = 'AWARD_BONUS' THEN ...

The preceding example shows the use of PLSQL_UNIT in regular PL/SQL. 
Because $$PLSQL_UNIT = 'AWARD_BONUS' is a VARCHAR2 comparison, not a 
static expression, it is not supported with $IF. One valid use of $IF with PLSQL_
UNIT is to determine an anonymous block, as follows:

$IF $$PLSQL_UNIT IS NULL $THEN ...

■ PL/SQL compilation parameters

The values of the literals PLSQL_LINE and PLSQL_UNIT can be defined explicitly 
with the compilation parameter PLSQL_CCFLAGS. For information about compilation 
parameters, see PL/SQL Units and Compilation Parameters on page 1-25.

Using Static Expressions with Conditional Compilation
Only static expressions which can be fully evaluated by the compiler are allowed 
during conditional compilation processing. Any expression that contains references to 
variables or functions that require the execution of the PL/SQL are not available 
during compilation and cannot be evaluated. For information about PL/SQL data 
types, see Predefined PL/SQL Scalar Data Types and Subtypes on page 3-1.

A static expression is either a BOOLEAN, PLS_INTEGER, or VARCHAR2 static 
expression. Static constants declared in packages are also static expressions.



Conditional Compilation

PL/SQL Language Fundamentals 2-51

Topics:

■ Boolean Static Expressions

■ PLS_INTEGER Static Expressions

■ VARCHAR2 Static Expressions

■ Static Constants

Boolean Static Expressions  BOOLEAN static expressions include:

■ TRUE, FALSE, and the literal NULL

■ Where x and y are PLS_INTEGER static expressions:

– x > y

– x < y

– x >= y

– x <= y

– x = y

– x <> y

■ Where x and y are PLS_INTEGER BOOLEAN expressions:

– NOT x

– x AND y

– x OR y

– x > y

– x >= y

– x = y

– x <= y

– x <> y

■ Where x is a static expression:

– x IS NULL

– x IS NOT NULL

PLS_INTEGER Static Expressions  PLS_INTEGER static expressions include:

■ -2147483648 to 2147483647, and the literal NULL

VARCHAR2 Static Expressions  VARCHAR2 static expressions include:

■ 'abcdef'

■  'abc' || 'def'

■ Literal NULL

■ TO_CHAR(x), where x is a PLS_INTEGER static expression

■ TO_CHAR(x f, n) where x is a PLS_INTEGER static expression and f and n are 
VARCHAR2 static expressions

■ x || y where x and y are VARCHAR2 or PLS_INTEGER static expressions



Conditional Compilation

2-52 Oracle Database PL/SQL Language Reference

Static Constants  Static constants are declared in a package specification as follows:

static_constant CONSTANT data_type := static_expression;

This is a valid declaration of a static constant if:

■ The declared data_type and the type of static_expression are the same

■ static_expression is a static expression

■ data_type is either BOOLEAN or PLS_INTEGER

The static constant must be declared in the package specification and referred to as 
package_name.constant_name, even in the body of the package_name package.

If a static package constant is used as the BOOLEAN expression in a valid selection 
directive in a PL/SQL unit, then the conditional compilation mechanism automatically 
places a dependency on the package referred to. If the package is altered, then the 
dependent unit becomes invalid and must be recompiled to pick up any changes. Only 
valid static expressions can create dependencies. 

If you choose to use a package with static constants for controlling conditional 
compilation in multiple PL/SQL units, then create only the package specification and 
dedicate it exclusively for controlling conditional compilation because of the multiple 
dependencies. For control of conditional compilation in an individual unit, you can set 
a specific flag in the PL/SQL compilation parameter PLSQL_CCFLAGS. For 
information about PL/SQL compilation parameters, see PL/SQL Units and 
Compilation Parameters on page 1-25

In Example 2–54 the my_debug package defines constants for controlling debugging 
and tracing in multiple PL/SQL units. In the example, the constants debug and 
trace are used in static expressions in procedures my_proc1 and my_proc2, which 
places a dependency from the procedures to my_debug. 

Example 2–54 Using Static Constants

SQL> CREATE PACKAGE my_debug IS
  2    debug CONSTANT BOOLEAN := TRUE;
  3    trace CONSTANT BOOLEAN := TRUE;
  4  END my_debug;
  5  /
 
Package created.
 
SQL> CREATE PROCEDURE my_proc1 IS
  2  BEGIN
  3    $IF my_debug.debug $THEN
  4      DBMS_OUTPUT.put_line('Debugging ON');
  5    $ELSE
  6      DBMS_OUTPUT.put_line('Debugging OFF');
  7    $END
  8  END my_proc1;
  9  /
 
Procedure created.
 
SQL> CREATE PROCEDURE my_proc2 IS
  2  BEGIN
  3    $IF my_debug.trace $THEN
  4      DBMS_OUTPUT.put_line('Tracing ON');
  5    $ELSE DBMS_OUTPUT.put_line('Tracing OFF');
  6    $END



Conditional Compilation

PL/SQL Language Fundamentals 2-53

  7  END my_proc2;
  8  /
 
Procedure created.
 
SQL>

Changing the value of one of the constants forces all the dependent units of the 
package to recompile with the new value. For example, changing the value of debug 
to FALSE causes my_proc1 to be recompiled without the debugging code. my_proc2 
is also recompiled, but my_proc2 is unchanged because the value of trace did not 
change.

Using DBMS_DB_VERSION Package Constants
The DBMS_DB_VERSION package provides constants that are useful when making 
simple selections for conditional compilation. The PLS_INTEGER constants VERSION 
and RELEASE identify the current Oracle Database version and release numbers. The 
BOOLEAN constants VER_LE_9, VER_LE_9_1, VER_LE_9_2, VER_LE_10, VER_LE_
10_1, and VER_LE_10_2 evaluate to TRUE or FALSE as follows:

■ VER_LE_v evaluates to TRUE if the database version is less than or equal to v; 
otherwise, it evaluates to FALSE.

■ VER_LE_v_r evaluates to TRUE if the database version is less than or equal to v 
and release is less than or equal to r; otherwise, it evaluates to FALSE.

■ All constants representing Oracle Database 10g release 1 or earlier are FALSE

Example 2–55 illustrates the use of a DBMS_DB_VERSION constant with conditional 
compilation. Both the Oracle Database version and release are checked. This example 
also shows the use of $ERROR. 

Example 2–55 Using DBMS_DB_VERSION Constants

SQL> BEGIN
  2    $IF DBMS_DB_VERSION.VER_LE_10_1 $THEN
  3      $ERROR 'unsupported database release'
  4    $END
  5    $ELSE
  6      DBMS_OUTPUT.PUT_LINE
  7        ('Release ' || DBMS_DB_VERSION.VERSION || '.' ||
  8         DBMS_DB_VERSION.RELEASE || ' is supported.');
  9  
 10    -- This COMMIT syntax is newly supported in 10.2:
 11    COMMIT WRITE IMMEDIATE NOWAIT;
 12  $END
 13  END;
 14  /
Release 11.1 is supported.
 
PL/SQL procedure successfully completed.
 
SQL>

For information about the DBMS_DB_VERSION package, see Oracle Database PL/SQL 
Packages and Types Reference.



Conditional Compilation

2-54 Oracle Database PL/SQL Language Reference

Conditional Compilation Examples
This section provides examples using conditional compilation.

Topics:

■ Using Conditional Compilation to Specify Code for Database Versions

■ Using DBMS_PREPROCESSOR Procedures to Print or Retrieve Source Text

Using Conditional Compilation to Specify Code for Database Versions
Example 2–56 uses conditional compilation to determine whether the BINARY_
DOUBLE data type can be used in the calculations for PL/SQL units in the database. 
The BINARY_DOUBLE data type can only be used in a database version that is 10g or 
later.

Example 2–56 Using Conditional Compilation with Database Versions

SQL> -- Set flags for displaying debugging code and tracing info:
SQL> 
SQL> ALTER SESSION SET PLSQL_CCFLAGS =
  2    'my_debug:FALSE, my_tracing:FALSE';
 
Session altered.
 
SQL> 
SQL> CREATE OR REPLACE PACKAGE my_pkg AS
  2    SUBTYPE my_real IS
  3      $IF DBMS_DB_VERSION.VERSION < 10 $THEN
  4        NUMBER;
  5        -- Check database version
  6      $ELSE
  7        BINARY_DOUBLE;
  8      $END
  9  
 10      my_pi my_real;
 11      my_e my_real;
 12  END my_pkg;
 13  /
 
Package created.
 
SQL> CREATE OR REPLACE PACKAGE BODY my_pkg AS
  2  BEGIN
  3    -- Set values for future calculations based on DB version
  4  
  5    $IF DBMS_DB_VERSION.VERSION < 10 $THEN
  6      my_pi := 3.14159265358979323846264338327950288420;
  7      my_e  := 2.71828182845904523536028747135266249775;
  8    $ELSE
  9      my_pi := 3.14159265358979323846264338327950288420d;
 10      my_e  := 2.71828182845904523536028747135266249775d;
 11    $END
 12  END my_pkg;
 13  /
 
Package body created.
 
SQL> CREATE OR REPLACE PROCEDURE circle_area(radius my_pkg.my_real) IS
  2    my_area      my_pkg.my_real;
  3    my_data_type  VARCHAR2(30);



Conditional Compilation

PL/SQL Language Fundamentals 2-55

  4  BEGIN
  5    my_area := my_pkg.my_pi * radius;
  6  
  7    DBMS_OUTPUT.PUT_LINE
  8      ('Radius: ' || TO_CHAR(radius) || ' Area: ' || TO_CHAR(my_area));
  9  
 10    $IF $$my_debug $THEN
 11      -- If my_debug is TRUE, run debugging code
 12      SELECT DATA_TYPE INTO my_data_type
 13        FROM USER_ARGUMENTS
 14          WHERE OBJECT_NAME = 'CIRCLE_AREA'
 15            AND ARGUMENT_NAME = 'RADIUS';
 16  
 17       DBMS_OUTPUT.PUT_LINE
 18         ('Data type of the RADIUS argument is: ' || my_data_type);
 19    $END
 20  END;
 21  /
 
Procedure created.
 
SQL>

Using DBMS_PREPROCESSOR Procedures to Print or Retrieve Source Text
DBMS_PREPROCESSOR subprograms print or retrieve the post-processed source text of 
a PL/SQL unit after processing the conditional compilation directives. This 
post-processed text is the actual source used to compile a valid PL/SQL unit. 
Example 2–57 shows how to print the post-processed form of my_pkg in Example 2–56 
with the PRINT_POST_PROCESSED_SOURCE procedure.

Example 2–57 Using PRINT_POST_PROCESSED_SOURCE to Display Source Code

SQL> CALL DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE
  2    ('PACKAGE', 'HR', 'MY_PKG');
PACKAGE my_pkg AS
SUBTYPE my_real IS
BINARY_DOUBLE;
my_pi my_real;
my_e my_real;
END my_pkg;
 
Call completed.
 
SQL> 

PRINT_POST_PROCESSED_SOURCE replaces unselected text with whitespace. The 
lines of code in Example 2–56 that are not included in the post-processed text are 
represented as blank lines. For information about the DBMS_PREPROCESSOR package, 
see Oracle Database PL/SQL Packages and Types Reference.

Conditional Compilation Restrictions
A conditional compilation directive cannot be used in the specification of an object 
type or in the specification of a schema-level nested table or varray. The attribute 
structure of dependent types and the column structure of dependent tables is 
determined by the attribute structure specified in object type specifications. Any 
changes to the attribute structure of an object type must be done in a controlled 
manner to propagate the changes to dependent objects. The mechanism for 



Using PL/SQL to Create Web Applications

2-56 Oracle Database PL/SQL Language Reference

propagating changes is the SQL ALTER TYPE ATTRIBUTE statement. Use of a 
preprocessor directive allows changes to the attribute structure of the object type 
without the use of an ALTER TYPE ATTRIBUTE statement. As a consequence, 
dependent objects can "go out of sync" or dependent tables can become inaccessible.

The SQL parser imposes restrictions on the placement of directives when performing 
SQL operations such as the CREATE OR REPLACE statement or the execution of an 
anonymous block. When performing these SQL operations, the SQL parser imposes a 
restriction on the location of the first conditional compilation directive as follows:

■ A conditional compilation directive cannot be used in the specification of an object 
type or in the specification of a schema-level nested table or varray.

■ In a package specification, a package body, a type body, and in a schema-level 
subprogram with no formal parameters, the first conditional compilation directive 
may occur immediately after the keyword IS or AS.

■ In a schema-level subprogram with at least one formal parameter, the first 
conditional compilation directive may occur immediately after the opening 
parenthesis that follows the unit's name. For example:

CREATE OR REPLACE PROCEDURE my_proc (
  $IF $$xxx $THEN i IN PLS_INTEGER $ELSE i IN INTEGER $END
) IS BEGIN NULL; END my_proc;
/

■ In a trigger or an anonymous block, the first conditional compilation directive may 
occur immediately after the keyword BEGIN or immediately after the keyword 
DECLARE when the trigger block has a DECLARE section.

■ If an anonymous block uses a placeholder, then this cannot occur within a 
conditional compilation directive. For example:

BEGIN
  :n := 1; -- valid use of placeholder
  $IF ... $THEN
    :n := 1; -- invalid use of placeholder
$END

Using PL/SQL to Create Web Applications
With PL/SQL, you can create applications that generate Web pages directly from the 
database, allowing you to make your database available on the Web and make 
back-office data accessible on the intranet.

The program flow of a PL/SQL Web application is similar to that in a CGI PERL script. 
Developers often use CGI scripts to produce Web pages dynamically, but such scripts 
are often not optimal for accessing the database. Delivering Web content with PL/SQL 
stored subprograms provides the power and flexibility of database processing. For 
example, you can use DML, dynamic SQL, and cursors. You also eliminate the process 
overhead of forking a new CGI process to handle each HTTP request.

You can implement a Web browser-based application entirely in PL/SQL with 
PL/SQL Gateway and the PL/SQL Web Toolkit. 

PL/SQL gateway enables a Web browser to invoke a PL/SQL stored subprogram 
through an HTTP listener. mod_plsql, one implementation of the PL/SQL gateway, 
is a plug-in of Oracle HTTP Server and enables Web browsers to invoke PL/SQL 
stored subprograms.



Using PL/SQL to Create Server Pages

PL/SQL Language Fundamentals 2-57

PL/SQL Web Toolkit is a set of PL/SQL packages that provides a generic interface to 
use stored subprograms invoked by mod_plsql at run time.

Using PL/SQL to Create Server Pages
PL/SQL Server Pages (PSPs) enable you to develop Web pages with dynamic content. 
They are an alternative to coding a stored subprogram that writes out the HTML code 
for a web page, one line at a time.

Using special tags, you can embed PL/SQL scripts into HTML source code. The scripts 
are executed when the pages are requested by Web clients such as browsers. A script 
can accept parameters, query or update the database, then display a customized page 
showing the results.

During development, PSPs can act like templates with a static part for page layout and 
a dynamic part for content. You can design the layouts using your favorite HTML 
authoring tools, leaving placeholders for the dynamic content. Then, you can write the 
PL/SQL scripts that generate the content. When finished, you simply load the 
resulting PSP files into the database as stored subprograms.

See Also: Oracle Database Advanced Application Developer's Guide for 
information about creating web applications

See Also: Oracle Database Advanced Application Developer's Guide for 
information about creating web server pages



Using PL/SQL to Create Server Pages

2-58 Oracle Database PL/SQL Language Reference



3

PL/SQL Data Types 3-1

3 PL/SQL Data Types

Every constant, variable, and parameter has a data type (also called a type) that 
determines its storage format, constraints, valid range of values, and operations that 
can be performed on it. PL/SQL provides many predefined data types and subtypes, 
and lets you define your own PL/SQL subtypes.

A subtype is a subset of another data type, which is called its base type. A subtype has 
the same valid operations as its base type, but only a subset of its valid values. 
Subtypes can increase reliability, provide compatibility with ANSI/ISO types, and 
improve readability by indicating the intended use of constants and variables.

This chapter explains the basic, frequently used predefined PL/SQL data types and 
subtypes, how to define and use your own PL/SQL subtypes, and PL/SQL data type 
conversion. Later chapters explain specialized predefined data types.

Table 3–1 lists the categories of predefined PL/SQL data types, describes the data they 
store, and tells where to find information about the specialized data types.

Topics:

■ Predefined PL/SQL Scalar Data Types and Subtypes

■ Predefined PL/SQL Large Object (LOB) Data Types

■ User-Defined PL/SQL Subtypes

■ PL/SQL Data Type Conversion

Predefined PL/SQL Scalar Data Types and Subtypes
Scalar data types store single values with no internal components. Table 3–2 lists the 
predefined PL/SQL scalar data types and describes the data they store.

Table 3–1 Categories of Predefined PL/SQL Data Types

Data Type Category Data Description

Scalar Single values with no internal components.

Composite Data items that have internal components that can be accessed 
individually. Explained in Chapter 5, "Using PL/SQL Collections and 
Records."

Reference Pointers to other data items. Explained in Using Cursor Variables (REF 
CURSORs) on page 6-22.

Large Object (LOB) Pointers to large objects that are stored separately from other data 
items, such as text, graphic images, video clips, and sound waveforms.



Predefined PL/SQL Scalar Data Types and Subtypes

3-2 Oracle Database PL/SQL Language Reference

Topics:

■ Predefined PL/SQL Numeric Data Types and Subtypes

■ Predefined PL/SQL Character Data Types and Subtypes

■ Predefined PL/SQL BOOLEAN Data Type

■ Predefined PL/SQL Datetime and Interval Data Types

Predefined PL/SQL Numeric Data Types and Subtypes
Numeric data types let you store numeric data, represent quantities, and perform 
calculations. Table 3–3 lists the predefined PL/SQL numeric types and describes the 
data they store.

Topics:

■ PLS_INTEGER and BINARY_INTEGER Data Types

■ SIMPLE_INTEGER Subtype of PLS_INTEGER

■ BINARY_FLOAT and BINARY_DOUBLE Data Types

■ NUMBER Data Type

PLS_INTEGER and BINARY_INTEGER Data Types
The PLS_INTEGER and BINARY_INTEGER data types are identical. For simplicity, this 
document uses "PLS_INTEGER" to mean both PLS_INTEGER and BINARY_INTEGER.

The PLS_INTEGER data type stores signed integers in the range -2,147,483,648 through 
2,147,483,647, represented in 32 bits.

The PLS_INTEGER data type has the following advantages over the NUMBER data type 
and NUMBER subtypes:

■ PLS_INTEGER values require less storage.

Table 3–2 Categories of Predefined PL/SQL Scalar Data Types

Category Data Description

Numeric Numeric values, on which you can perform arithmetic operations.

Character Alphanumeric values that represent single characters or strings of characters, 
which you can manipulate.

BOOLEAN Logical values, on which you can perform logical operations.

Datetime Dates and times, which you can manipulate.

Interval Time intervals, which you can manipulate.

Table 3–3 Predefined PL/SQL Numeric Data Types

Data Type Data Description

PLS_INTEGER or 
BINARY_INTEGER

Signed integer in range -2,147,483,648 through 2,147,483,647, represented 
in 32 bits

BINARY_FLOAT Single-precision IEEE 754-format floating-point number

BINARY_DOUBLE Double-precision IEEE 754-format floating-point number

NUMBER Fixed-point or floating-point number with absolute value in range 1E-130 
to (but not including) 1.0E126. A NUMBER variable can also represent 0.



Predefined PL/SQL Scalar Data Types and Subtypes

PL/SQL Data Types 3-3

■ PLS_INTEGER operations use hardware arithmetic, so they are faster than 
NUMBER operations, which use library arithmetic.

For efficiency, use PLS_INTEGER values for all calculations that fall within its range. 
For calculations outside the PLS_INTEGER range, use INTEGER, a predefined subtype 
of the NUMBER data type.

Table 3–4 lists the predefined subtypes of the PLS_INTEGER data type and describes 
the data they store.

SIMPLE_INTEGER Subtype of PLS_INTEGER
SIMPLE_INTEGER is a predefined subtype of the PLS_INTEGER data type that has the 
same range as PLS_INTEGER (-2,147,483,648 through 2,147,483,647) and has a NOT 
NULL constraint. It differs significantly from PLS_INTEGER in its overflow semantics.

You can use SIMPLE_INTEGER when the value will never be NULL and overflow 
checking is unnecessary. Without the overhead of checking for nullness and overflow, 
SIMPLE_INTEGER provides significantly better performance than PLS_INTEGER 
when PLSQL_CODE_TYPE='NATIVE', because arithmetic operations on SIMPLE_
INTEGER values are done directly in the hardware. When PLSQL_CODE_
TYPE='INTERPRETED', the performance improvement is smaller.

Topics:

■ Overflow Semantics

■ Overloading Rules

■ Integer Literals

■ Cast Operations

■ Compiler Warnings

Overflow Semantics   The overflow semantics of SIMPLE_INTEGER differ significantly 
from those of PLS_INTEGER. An arithmetic operation that increases a PLS_INTEGER 
value to greater than 2,147,483,647 or decrease it to less than -2,147,483,648 causes error 
ORA-01426. In contrast, when the following PL/SQL block is run from SQL*Plus, it 
runs without error:

SQL> DECLARE
  2    n SIMPLE_INTEGER := 2147483645;

Note: When a calculation with two PLS_INTEGER data types 
overflows the PLS_INTEGER range, an overflow exception is raised 
even if the result is assigned to a NUMBER data type.

Table 3–4 Predefined Subtypes of PLS_INTEGER Data Type

Data Type Data Description

NATURAL Nonnegative PLS_INTEGER value

NATURALN Nonnegative PLS_INTEGER value with NOT NULL constraint

POSITIVE Positive PLS_INTEGER value

POSITIVEN Positive PLS_INTEGER value with NOT NULL constraint

SIGNTYPE PLS_INTEGER value -1, 0, or 1 (useful for programming tri-state logic)

SIMPLE_INTEGER PLS_INTEGER value with NOT NULL constraint



Predefined PL/SQL Scalar Data Types and Subtypes

3-4 Oracle Database PL/SQL Language Reference

  3  BEGIN
  4    FOR j IN 1..4 LOOP
  5      n := n + 1;
  6      DBMS_OUTPUT.PUT_LINE(TO_CHAR(n, 'S9999999999'));
  7    END LOOP;
  8    FOR j IN 1..4 LOOP
  9      n := n - 1;
 10      DBMS_OUTPUT.PUT_LINE(TO_CHAR(n, 'S9999999999'));
 11    END LOOP;
 12  END;
 13  /
+2147483646
+2147483647
-2147483648
-2147483647
-2147483648
+2147483647
+2147483646
+2147483645
 
PL/SQL procedure successfully completed.
 
SQL> 

Overloading Rules  

■ In overloaded subprograms, SIMPLE_INTEGER and PLS_INTEGER actual 
parameters can be substituted for each other.

■ If all of their operands or arguments have the data type SIMPLE_INTEGER, the 
following produce SIMPLE_INTEGER results, using two's complement arithmetic 
and ignoring overflows:

– Operators:

* Addition (+)

* Subtraction (-)

* Multiplication (*)

– Built-in functions:

* MAX

* MIN

* ROUND

* SIGN

* TRUNC

– CASE expression

If some but not all operands or arguments have the data type SIMPLE_INTEGER, 
those of the data type SIMPLE_INTEGER are implicitly cast to PLS_INTEGER NOT 
NULL.

Integer Literals  Integer literals in the SIMPLE_INTEGER range have the dataype 
SIMPLE_INTEGER. This relieves you from explicitly casting each integer literal to 
SIMPLE_INTEGER in arithmetic expressions computed using two's complement 
arithmetic.



Predefined PL/SQL Scalar Data Types and Subtypes

PL/SQL Data Types 3-5

If and only if all operands and arguments have the dataype SIMPLE_INTEGER, 
PL/SQL uses two's complement arithmetic and ignores overflows. Because overflows 
are ignored, values can wrap from positive to negative or from negative to positive; for 
example:

230 + 230 = 0x40000000 + 0x40000000 = 0x80000000 = -231

-231 + -231 = 0x80000000 + 0x80000000 = 0x00000000 = 0

To ensure backward compatibility, when all operands in an arithmetic expression are 
integer literals, PL/SQL treats the integer literals as if they were cast to PLS_INTEGER.

Cast Operations  A cast operation that coerces a PLS_INTEGER value to the SIMPLE_
INTEGER data type makes no conversion if the source value is not NULL. If the source 
value is NULL, a run-time exception is raised.

A cast operation that coerces a SIMPLE_INTEGER value to the PLS_INTEGER data 
type makes no conversion. This operation always succeeds (no exception is raised).

Compiler Warnings  The compiler issues a warning in the following cases:

■ An operation mixes SIMPLE_INTEGER values with values of other numeric types.

■ A SIMPLE_INTEGER value is passed as a parameter, a bind, or a define where a 
PLS_INTEGER is expected.

BINARY_FLOAT and BINARY_DOUBLE Data Types
The BINARY_FLOAT and BINARY_DOUBLE data types represent single-precision and 
double-precision IEEE 754-format floating-point numbers, respectively.

A BINARY_FLOAT literal ends with f (for example, 2.07f). A BINARY_DOUBLE literal 
ends with d (for example, 3.000094d).

BINARY_FLOAT and BINARY_DOUBLE computations do not raise exceptions; 
therefore, you must check the values that they produce for conditions such as overflow 
and underflow, using the predefined constants listed and described in Table 3–5. For 
example:

SELECT COUNT(*)
  FROM employees
    WHERE salary < BINARY_FLOAT_INFINITY;

Table 3–5 Predefined PL/SQL BINARY_FLOAT and BINARY_DOUBLE Constants1

Constant Description

BINARY_FLOAT_NAN1 BINARY_FLOAT value for which the condition IS NAN 
(not a number) is true

BINARY_FLOAT_INFINITY1 Single-precision positive infinity

BINARY_FLOAT_MAX_NORMAL1 Maximum normal BINARY_FLOAT value

BINARY_FLOAT_MIN_NORMAL1 Minimum normal BINARY_FLOAT value

BINARY_FLOAT_MAX_SUBNORMAL1 Maximum subnormal BINARY_FLOAT value

BINARY_FLOAT_MIN_SUBNORMAL1 Minimum subnormal BINARY_FLOAT value

BINARY_DOUBLE_NAN1 BINARY_DOUBLE value for which the condition IS NAN 
(not a number) is true

BINARY_DOUBLE_INFINITY1 Double-precision positive infinity



Predefined PL/SQL Scalar Data Types and Subtypes

3-6 Oracle Database PL/SQL Language Reference

In the IEEE-754 standard, subnormal ranges of values are intended to reduce 
problems caused by underflow to zero.

BINARY_FLOAT and BINARY_DOUBLE data types  are primarily for high-speed 
scientific computation, as explained in Writing Computation-Intensive PL/SQL 
Programs on page 12-27.

SIMPLE_FLOAT and SIMPLE_DOUBLE are predefined subtypes of the BINARY_FLOAT 
and BINARY_DOUBLE data types, respectively. Each subtype has the same range as its 
base type and has a NOT NULL constraint.

You can use SIMPLE_FLOAT and SIMPLE_DOUBLE when the value will never be 
NULL. Without the overhead of checking for nullness, SIMPLE_FLOAT and SIMPLE_
DOUBLE provide significantly better performance than BINARY_FLOAT and BINARY_
DOUBLE when PLSQL_CODE_TYPE='NATIVE', because arithmetic operations on 
SIMPLE_FLOAT and SIMPLE_DOUBLE values are done directly in the hardware. When 
PLSQL_CODE_TYPE='INTERPRETED', the performance improvement is smaller.

NUMBER Data Type
The NUMBER data type stores fixed-point or floating-point numbers with absolute 
values in the range 1E-130 up to (but not including) 1.0E126. A NUMBER variable 
can also represent 0.

Oracle recommends using only NUMBER literals and results of NUMBER computations 
that are within the specified range. Otherwise, the following happen:

■ Any value that is too small is rounded to zero.

■ A literal value that is too large causes a compilation error.

■ A computation result that is too large is undefined, causing unreliable results and 
possibly run-time errors.

A NUMBER value has both precision (its total number of digits) and scale (the number 
of digits to the right of the decimal point).

The syntax for specifying a fixed-point NUMBER is:

NUMBER(precision, scale)

For example:

NUMBER(8,2)

For an integer, the scale is zero. The syntax for specifying an integer NUMBER is:

BINARY_DOUBLE_MAX_NORMAL Maximum normal BINARY_DOUBLE value

BINARY_DOUBLE_MIN_NORMAL Minimum normal BINARY_DOUBLE value

BINARY_DOUBLE_MAX_SUBNORMAL Maximum subnormal BINARY_DOUBLE value

BINARY_DOUBLE_MIN_SUBNORMAL Minimum subnormal BINARY_DOUBLE value
1 Also predefined by SQL

See Also: Guidelines for Overloading with Numeric Types on 
page 8-13, for information about writing libraries that accept different 
numeric types

Table 3–5 (Cont.) Predefined PL/SQL BINARY_FLOAT and BINARY_DOUBLE Constants1

Constant Description



Predefined PL/SQL Scalar Data Types and Subtypes

PL/SQL Data Types 3-7

NUMBER(precision)

For example:

NUMBER(2)

In a floating-point number, the decimal point can float to any position. The syntax for 
specifying a floating-point NUMBER is:

NUMBER

Both precision and scale must be integer literals, not constants or variables.

For precision, the maximum value is 38. The default value is 39 or 40, or the 
maximum for your system, whichever is least.

For scale, the minimum and maximum values are -84 and 127, respectively. The 
default value is zero.

Scale determines where rounding occurs. For example, a value whose scale is 2 is 
rounded to the nearest hundredth (3.454 becomes 3.45 and 3.456 becomes 3.46). A 
negative scale causes rounding to the left of the decimal point. For example, a value 
whose scale is -3 is rounded to the nearest thousand (34462 becomes 34000 and 34562 
becomes 35000). A value whose scale is 0 is rounded to the nearest integer (3.4562 
becomes 3 and 3.56 becomes 4).

For more information about the NUMBER data type, see Oracle Database SQL Language 
Reference.

Table 3–6 lists the predefined subtypes of the NUMBER data type and describes the data 
they store.

Predefined PL/SQL Character Data Types and Subtypes
Character data types let you store alphanumeric values that represent single characters 
or strings of characters, which you can manipulate. Table 3–7 describes the predefined 
PL/SQL character types and describes the data they store.

Table 3–6 Predefined Subtypes of NUMBER Data Type

Data Type Description

DEC, DECIMAL, or 
NUMERIC

Fixed-point NUMBER with maximum precision of 38 decimal digits

DOUBLE PRECISION 
or FLOAT

Floating-point NUMBER with maximum precision of 126 binary digits 
(approximately 38 decimal digits)

INT, INTEGER, or 
SMALLINT

Integer with maximum precision of 38 decimal digits

REAL Floating-point NUMBER with maximum precision of 63 binary digits 
(approximately 18 decimal digits)

Table 3–7 Predefined PL/SQL Character Data Types1

Data Type Data Description

CHAR Fixed-length character string with maximum size of 32,767 bytes

VARCHAR2 Variable-length character string with maximum size of 32,767 bytes

RAW Variable-length binary or byte string with maximum size of 32,767 bytes, not 
interpreted by PL/SQL

NCHAR Fixed-length national character string with maximum size of 32,767 bytes



Predefined PL/SQL Scalar Data Types and Subtypes

3-8 Oracle Database PL/SQL Language Reference

Topics:

■ CHAR and VARCHAR2 Data Types

■ RAW Data Type

■ NCHAR and NVARCHAR2 Data Types

■ LONG and LONG RAW Data Types

■ ROWID and UROWID Data Types

 CHAR and VARCHAR2 Data Types
The CHAR and VARCHAR2 data types store fixed-length and variable-length character 
strings, respectively. All string literals have data type CHAR.

How CHAR and VARCHAR2 data is represented internally depends on the database 
character set specified with the CHARACTER SET clause of the CREATE DATABASE 
statement, which is described in Oracle Database SQL Language Reference.

The syntax for specifying a CHAR or VARCHAR2 data item is:

[ CHAR | VARCHAR2 ] [( maximum_size [ CHAR | BYTE ] )]

For example:

CHAR
VARCHAR2
CHAR(10 CHAR)
VARCHAR2(32 BYTE)

The maximum_size must be an integer literal in the range 1..32767, not a constant or 
variable. The default value is one.

The default size unit (CHAR or BYTE) is determined by the NLS_LENGTH_SEMANTICS 
initialization parameter. When a PL/SQL subprogram is compiled, the setting of this 
parameter is recorded, so that the same setting is used when the subprogram is 
recompiled after being invalidated. For more information about NLS_LENGTH_
SEMANTICS, see Oracle Database Reference.

The maximum size of a CHAR or VARCHAR2 data item is 32,767 bytes, whether you 
specify maximum_size in characters or bytes. The maximum number of characters in 
a CHAR or VARCHAR2 data item depends on how the character set is encoded. For a 
single-byte character set, the maximum size of a CHAR or VARCHAR2 data item is 
32,767 characters. For an n-byte character set, the maximum size of a CHAR or 
VARCHAR2 data item is 32,767/n characters, rounded down to the nearest integer. For a 

NVARCHAR2 Variable-length national character string with maximum size of 32,767 bytes

LONG1 Variable-length character string with maximum size of 32,760 bytes

LONG RAW1 Variable-length binary or byte string with maximum size of 32,760 bytes, not 
interpreted by PL/SQL

ROWID1 Physical row identifier, the address of a row in an ordinary table

UROWID Universal row identifier (physical, logical, or foreign row identifier)
1 Supported only for backward compatibility with existing applications

Table 3–7 (Cont.) Predefined PL/SQL Character Data Types1

Data Type Data Description



Predefined PL/SQL Scalar Data Types and Subtypes

PL/SQL Data Types 3-9

multiple-byte character set, specify maximum_size in characters to ensure that a 
CHAR(n) or VARCHAR2(n) variable can store n multiple-byte characters.

If the character value that you assign to a character variable is longer than the 
maximum size of the variable, PL/SQL does not truncate the value or strip trailing 
blanks; it stops the assignment and raises the predefined exception VALUE_ERROR.

For example, given the declaration:

acronym CHAR(4);

the following assignment raises VALUE_ERROR:

acronym := 'SPCA ';  -- note trailing blank

If the character value that you insert into a database column is longer than the defined 
width of the column, PL/SQL does not truncate the value or strip trailing blanks; it 
stops the insertion and raises an exception.

To strip trailing blanks from a character value before assigning it to a variable or 
inserting it into a database column, use the built-in function RTRIM. For example, 
given the preceding declaration, the following assignment does not raise an exception:

acronym := RTRIM('SPCA ');  -- note trailing blank

For the syntax of RTRIM, see Oracle Database SQL Language Reference.

Differences Between CHAR and VARCHAR2 Data Types
CHAR and VARCHAR2 data types differ in the following:

■ Predefined Subtypes of Character Data Types

■ Memory Allocation for Character Variables

■ Blank-Padding Shorter Character Values

■ Comparing Character Values

■ Maximum Sizes of Values Inserted into Character Database Columns

Predefined Subtypes of Character Data Types  The CHAR data type has one predefined 
subtype, CHARACTER. The VARCHAR2 data type has two predefined subtypes, 
VARCHAR and STRING. Each of these subtypes has the same range of values as its base 
type, and can be used instead of its base type for compatibility with ANSI/ISO and 
IBM types.

Memory Allocation for Character Variables  For a CHAR variable, or for a VARCHAR2 variable 
whose maximum size is less than 2,000 bytes, PL/SQL allocates enough memory for 
the maximum size at compile time. For a VARCHAR2 whose maximum size is 2,000 
bytes or more, PL/SQL allocates enough memory to store the actual value at run time. 
In this way, PL/SQL optimizes smaller VARCHAR2 variables for performance and 
larger ones for efficient memory use.

For example, if you assign the same 500-byte value to VARCHAR2(1999 BYTE) and  
VARCHAR2(2000 BYTE) variables, PL/SQL allocates 1999 bytes for the former 
variable at compile time and 500 bytes for the latter variable at run time.

Note: In a future PL/SQL release, to accommodate emerging SQL 
standards, VARCHAR might become a separate data type, no longer 
synonymous with VARCHAR2.



Predefined PL/SQL Scalar Data Types and Subtypes

3-10 Oracle Database PL/SQL Language Reference

Blank-Padding Shorter Character Values  In each of the following situations, whether or not 
PL/SQL blank-pads the character value depends on the data type of the receiver:

■ The character value that you assign to a PL/SQL character variable is shorter than 
the maximum size of the variable.

■ The character value that you insert into a character database column is shorter 
than the defined width of the column.

■ The value that you retrieve from a character database column into a PL/SQL 
character variable is shorter than the maximum length of the variable.

If the data type of the receiver is CHAR, PL/SQL blank-pads the value to the maximum 
size. Information about trailing blanks in the original value is lost.

For example, the value assigned to last_name in the following statement has six 
trailing blanks, not only one:

last_name CHAR(10) := 'CHEN ';  -- note trailing blank

If the data type of the receiver is VARCHAR2, PL/SQL neither blank-pads the value nor 
strips trailing blanks. Character values are assigned intact, and no information is lost.

Comparing Character Values  You can use relational operators in Table 2–4 on page 2-35 to 
compare character values. One character value is greater than another if it follows it in 
the collating sequence used for the database character set. In the following example, 
the IF condition is TRUE:

SQL> DECLARE
  2    last_name1 VARCHAR2(10) := 'COLES';
  3    last_name2 VARCHAR2(10) := 'COLEMAN';
  4  BEGIN
  5    IF last_name1 > last_name2 THEN
  6      DBMS_OUTPUT.PUT_LINE
  7        (last_name1 || ' is greater than ' || last_name2);
  8    ELSE
  9      DBMS_OUTPUT.PUT_LINE
 10        (last_name2 || ' is greater than ' || last_name1 );
 11    END IF;
 12  END;
 13  /
COLES is greater than COLEMAN
 
PL/SQL procedure successfully completed.
 
SQL>

To be equal, two character values must have the same length.

If both values have data type CHAR, PL/SQL blank-pads the shorter value to the 
length of the longer value before comparing them. In Example 3–1, the IF condition is 
TRUE.

If either value has data type VARCHAR2, PL/SQL does not adjust their lengths before 
comparing them. In both Example 3–2 and Example 3–3, the IF condition is FALSE.

Example 3–1 Comparing Two CHAR Values

SQL> DECLARE
  2    last_name1 CHAR(5)  := 'BELLO';     -- no trailing blanks
  3    last_name2 CHAR(10) := 'BELLO   ';  -- trailing blanks
  4  BEGIN



Predefined PL/SQL Scalar Data Types and Subtypes

PL/SQL Data Types 3-11

  5    IF last_name1 = last_name2 THEN
  6      DBMS_OUTPUT.PUT_LINE
  7        (last_name1 || ' is equal to ' || last_name2);
  8    ELSE
  9      DBMS_OUTPUT.PUT_LINE
 10      (last_name2 || ' is not equal to ' || last_name1);
 11    END IF;
 12  END;
 13  /
BELLO is equal to BELLO
 
PL/SQL procedure successfully completed.
 
SQL> 

Example 3–2 Comparing Two VARCHAR2 Values

SQL> DECLARE
  2    last_name1 VARCHAR2(10) := 'DOW';     -- no trailing blanks
  3    last_name2 VARCHAR2(10) := 'DOW   ';  -- trailing blanks
  4  BEGIN
  5    IF last_name1 = last_name2 THEN
  6      DBMS_OUTPUT.PUT_LINE
  7        (last_name1 || ' is equal to ' || last_name2 );
  8    ELSE
  9      DBMS_OUTPUT.PUT_LINE
 10      (last_name2 || ' is not equal to ' || last_name1);
 11    END IF;
 12  END;
 13  /
DOW    is not equal to DOW
 
PL/SQL procedure successfully completed.
 
SQL>

Example 3–3 Comparing CHAR Value and VARCHAR2 Value

SQL> DECLARE
  2    last_name1 VARCHAR2(10) := 'STAUB';
  3    last_name2 CHAR(10)     := 'STAUB';  -- PL/SQL blank-pads value
  4  BEGIN
  5    IF last_name1 = last_name2 THEN
  6      DBMS_OUTPUT.PUT_LINE
  7        (last_name1 || ' is equal to ' || last_name2);
  8    ELSE
  9      DBMS_OUTPUT.PUT_LINE
 10        (last_name2 || ' is not equal to ' || last_name1 );
 11    END IF;
 12  END;
 13  /
STAUB      is not equal to STAUB
 
PL/SQL procedure successfully completed.
 
SQL>

Maximum Sizes of Values Inserted into Character Database Columns  The largest CHAR value 
that you can insert into a CHAR database column is 2,000 bytes.



Predefined PL/SQL Scalar Data Types and Subtypes

3-12 Oracle Database PL/SQL Language Reference

The largest VARCHAR2 value that you can insert into a VARCHAR2 database column is 
4,000 bytes.

You can insert any CHAR or VARCHAR2 value into a LONG database column, because 
the maximum width of a LONG column is 2,147,483,648 bytes (2 GB). However, you 
cannot retrieve a value longer than 32,767 bytes from a LONG column into a CHAR or 
VARCHAR2 variable. (The LONG data type is supported only for backward 
compatibility with existing applications. For more information, see LONG and LONG 
RAW Data Types on page 3-14.)

RAW Data Type
The RAW data type stores binary or byte strings, such as sequences of graphics 
characters or digitized pictures. Raw data is like VARCHAR2 data, except that PL/SQL 
does not interpret raw data. Oracle Net does no character set conversions when you 
transmit raw data from one system to another.

The syntax for specifying a RAW data item is:

RAW (maximum_size)

For example:

RAW(256)

The maximum_size, in bytes, must be an integer literal in the range 1..32767, not a 
constant or variable. The default value is one.

The largest RAW value that you can insert into a RAW database column is 2,000 bytes.

You can insert any RAW value into a LONG RAW database column, because the 
maximum width of a LONG RAW column is 2,147,483,648 bytes (2 GB). However, you 
cannot retrieve a value longer than 32,767 bytes from a LONG RAW column into a RAW 
variable. (The LONG RAW data type is supported only for backward compatibility with 
existing applications. For more information, see LONG and LONG RAW Data Types 
on page 3-14.)

NCHAR and NVARCHAR2 Data Types
The NCHAR and NVARCHAR2 data types store fixed-length and variable-length national 
character strings, respectively.

National character strings are composed of characters from the national character set, 
which is used to represent languages that have thousands of characters, each of which 
requires two or three bytes (Japanese, for example).

How NCHAR and NVARCHAR2 data is represented internally depends on the national 
character set specified with the NATIONAL CHARACTER SET clause of the CREATE 
DATABASE statement, which is described in Oracle Database SQL Language Reference.

Topics:

■ AL16UTF16 and UTF8 Encodings

■ NCHAR Data Type

■ NVARCHAR2 Data Type

AL16UTF16 and UTF8 Encodings  The national character set represents data as Unicode, 
using either the AL16UTF16 or UTF8 encoding. Table 3–8 compares AL16UTF16 and 
UTF8 encodings.



Predefined PL/SQL Scalar Data Types and Subtypes

PL/SQL Data Types 3-13

For maximum reliability, Oracle recommends using the default AL16UTF16 encoding 
wherever practical. To use UTF8 encoding, specify it in the NATIONAL CHARACTER 
SET clause of the CREATE DATABASE statement.

To determine how many bytes a Unicode string needs, use the built-in function 
LENGTHB.

For more information about the NATIONAL CHARACTER SET clause of the CREATE 
DATABASE statement and the LENGTHB function, see Oracle Database SQL Language 
Reference.

For more information about the national character set, see Oracle Database Globalization 
Support Guide.

NCHAR Data Type  The NCHAR data type stores fixed-length national character strings. 
Because this type can always accommodate multiple-byte characters, you can use it to 
store any Unicode character data.

The syntax for specifying an NCHAR data item is:

NCHAR [(maximum_size)]

For example:

NCHAR
NCHAR(100)

The maximum_size must be an integer literal, not a constant or variable. It represents 
the maximum number of characters, not the maximum number of bytes, which is 
32,767. The largest maximum_size you can specify is 32767/2 with AL16UTF16 
encoding and 32767/3 with UTF8 encoding. The default value is one.

The largest NCHAR value that you can insert into an NCHAR database column is 2,000 
bytes.

If the NCHAR value is shorter than the defined width of the NCHAR column, PL/SQL 
blank-pads the value to the defined width.

You can interchange CHAR and NCHAR values in statements and expressions. It is 
always safe to convert a CHAR value to an NCHAR value, but converting an NCHAR 
value to a CHAR value might cause data loss if the character set for the CHAR value 
cannot represent all the characters in the NCHAR value. Such data loss usually results in 
characters that look like question marks (?).

Table 3–8 Comparison of AL16UTF16 and UTF8 Encodings

Encoding
Character Size 
(Bytes) Advantage Disadvantage

AL16UTF16 
(default)

2 Easy to calculate string 
lengths, which you must do in 
order to avoid truncation 
errors when mixing 
programming languages.

Strings composed mostly of 
ASCII or EBCDIC characters 
take more space than 
necessary.

UTF8 1, 2, or 3 If most characters use only 
one byte, you can fit more 
characters into a variable or 
table column.

Possibility of truncation errors 
when transferring the data to 
a buffer measured in bytes.



Predefined PL/SQL Scalar Data Types and Subtypes

3-14 Oracle Database PL/SQL Language Reference

NVARCHAR2 Data Type  The NVARCHAR2 data type stores variable-length national 
character strings. Because this type can always accommodate multiple-byte characters, 
you can use it to store any Unicode character data.

The syntax for specifying an NVARCHAR2 data item is:

NVARCHAR2 (maximum_size)

For example:

NVARCHAR2(300)

The maximum_size must be an integer literal, not a constant or variable. It represents 
the maximum number of characters, not the maximum number of bytes, which is 
32,767. The largest maximum_size you can specify is 32767/2 with AL16UTF16 
encoding and 32767/3 with UTF8 encoding. The default value is one.

The largest NVARCHAR2 value that you can insert into an NVARCHAR2 database column 
is 4,000 bytes.

You can interchange VARCHAR2 and NVARCHAR2 values in statements and expressions. 
It is always safe to convert a VARCHAR2 value to an NVARCHAR2 value, but converting 
an NVARCHAR2 value to a VARCHAR2 value might cause data loss if the character set 
for the VARCHAR2 value cannot represent all the characters in the NVARCHAR2 value. 
Such data loss usually results in characters that look like question marks (?).

LONG and LONG RAW Data Types

The LONG data type stores variable-length character strings. The LONG data type is like 
the VARCHAR2 data type, except that the maximum size of a LONG value is 32,760 bytes 
(as opposed to 32,767 bytes).

The LONG RAW data type stores binary or byte strings. LONG RAW data is like LONG data, 
except that LONG RAW data is not interpreted by PL/SQL. The maximum size of a LONG 
RAW value is 32,760 bytes.

Because the maximum width of a LONG or LONG RAW database column is 2,147,483,648 
bytes (2 GB), you can insert any LONG value into a LONG column and any LONG RAW 
value into a LONG RAW column. However, you cannot retrieve a value longer than 
32,760 bytes from a LONG column into a LONG variable, or from a LONG RAW column 
into a LONG RAW variable.

LONG database columns can store text, arrays of characters, and even short documents.

ROWID and UROWID Data Types
Internally, every database table has a ROWID pseudocolumn, which stores binary 
values called rowids. Each rowid represents the storage address of a row. A physical 
rowid identifies a row in an ordinary table. A logical rowid identifies a row in an 

Note: The LONG and LONG RAW data types are supported only for 
backward compatibility with existing applications. For new 
applications, use CLOB or NCLOB instead of LONG, and BLOB or BFILE 
instead of LONG RAW. Oracle recommends that you also replace 
existing LONG and LONG RAW data types with LOB data types. See 
Predefined PL/SQL Large Object (LOB) Data Types on page 3-22.

See Also: Oracle Database SQL Language Reference for information 
about referencing LONG columns in SQL statements



Predefined PL/SQL Scalar Data Types and Subtypes

PL/SQL Data Types 3-15

index-organized table. The ROWID data type can store only physical rowids, while the 
UROWID (universal rowid) data type can store physical, logical, or foreign (not 
database) rowids.

Physical rowids are useful for fetching across commits, as in Example 6–42 on 
page 6-40.

When you retrieve a rowid into a ROWID variable, you can use the built-in function 
ROWIDTOCHAR, which converts the binary value into an 18-byte character string. 
Conversely, the function CHARTOROWID converts a ROWID character string into a 
rowid. If the conversion fails because the character string does not represent a valid 
rowid, PL/SQL raises the predefined exception SYS_INVALID_ROWID. This also 
applies to implicit conversions.

To convert between UROWID variables and character strings, use regular assignment 
statements without any function call. The values are implicitly converted between 
UROWID and character types.

Predefined PL/SQL BOOLEAN Data Type
The BOOLEAN data type stores logical values, which you can use in logical operations. 
The logical values are the Boolean values TRUE and FALSE and the value NULL.

The syntax for specifying an BOOLEAN data item is:

BOOLEAN

SQL has no data type equivalent to BOOLEAN; therefore you cannot use BOOLEAN 
variables or parameters in the following:

■ SQL statements

■ Built-in SQL functions (such as TO_CHAR)

■  PL/SQL functions invoked from SQL statements

You cannot insert the value TRUE or FALSE into a database column. You cannot 
retrieve the value of a database column  into a BOOLEAN variable.

To represent BOOLEAN values in output, use IF-THEN or CASE constructs to translate 
BOOLEAN values into another type (for example, 0 or 1, 'Y' or 'N', 'true' or 'false').

Predefined PL/SQL Datetime and Interval Data Types
The data types in this section let you store and manipulate dates, times, and intervals 
(periods of time). A variable that has a date and time data type stores values called 
datetimes. A variable that has an interval data type stores values called intervals. A 

Note: The ROWID data type is supported only for backward 
compatibility with existing applications. For new applications, use the 
UROWID data type.

See Also:

■ Oracle Database Concepts for general information about rowids

■ Oracle Database PL/SQL Packages and Types Reference for 
information about the package DBMS_ROWID, whose subprograms 
enable you to manipulate rowids



Predefined PL/SQL Scalar Data Types and Subtypes

3-16 Oracle Database PL/SQL Language Reference

datetime or interval consists of fields, which determine its value. The following list 
shows the valid values for each field:

Except for TIMESTAMP WITH LOCAL TIMEZONE, these types are all part of the SQL92 
standard. For information about datetime and interval format models, literals, 
time-zone names, and SQL functions, see Oracle Database SQL Language Reference.

Topics:

■ DATE Data Type

■ TIMESTAMP Data Type

■ TIMESTAMP WITH TIME ZONE Data Type

■ TIMESTAMP WITH LOCAL TIME ZONE Data Type

■ INTERVAL YEAR TO MONTH Data Type

■ INTERVAL DAY TO SECOND Data Type

■ Datetime and Interval Arithmetic

■ Avoiding Truncation Problems Using Date and Time Subtypes

DATE Data Type
You use the DATE data type to store fixed-length datetimes, which include the time of 
day in seconds since midnight. The date portion defaults to the first day of the current 
month; the time portion defaults to midnight. The date function SYSDATE returns the 
current date and time.

To compare dates for equality, regardless of the time portion of each date, use the 
function result TRUNC(date_variable) in comparisons, GROUP BY operations, and 
so on.

Field Name Valid Datetime Values Valid Interval Values

YEAR -4712 to 9999 (excluding year 0) Any nonzero integer 

MONTH 01 to 12 0 to 11 

DAY 01 to 31 (limited by the values of 
MONTH and YEAR, according to 
the rules of the calendar for the 
locale)

Any nonzero integer

HOUR 00 to 23 0 to 23 

MINUTE 00 to 59 0 to 59 

SECOND 00 to 59.9(n), where 9(n) is the 
precision of time fractional 
seconds

0 to 59.9(n), where 9(n) is the 
precision of interval fractional 
seconds

TIMEZONE_HOUR -12 to 14 (range accommodates 
daylight savings time changes)

Not applicable

TIMEZONE_MINUTE 00 to 59 Not applicable

TIMEZONE_REGION Found in the dynamic 
performance view V$TIMEZONE_
NAMES

Not applicable

TIMEZONE_ABBR Found in the dynamic 
performance view V$TIMEZONE_
NAMES

Not applicable



Predefined PL/SQL Scalar Data Types and Subtypes

PL/SQL Data Types 3-17

To find just the time portion of a DATE variable, subtract the date portion: date_
variable - TRUNC(date_variable).

Valid dates range from January 1, 4712 BC to December 31, 9999 AD. A Julian date is 
the number of days since January 1, 4712 BC. Julian dates allow continuous dating 
from a common reference. You can use the date format model 'J' with the date 
functions TO_DATE and TO_CHAR to convert between DATE values and their Julian 
equivalents. 

In date expressions, PL/SQL automatically converts character values in the default 
date format to DATE values. The default date format is set by the Oracle initialization 
parameter NLS_DATE_FORMAT. For example, the default might be 'DD-MON-YY', 
which includes a two-digit number for the day of the month, an abbreviation of the 
month name, and the last two digits of the year.

You can add and subtract dates. In arithmetic expressions, PL/SQL interprets integer 
literals as days. For example, SYSDATE + 1 signifies the same time tomorrow.

TIMESTAMP Data Type
The data type TIMESTAMP, which extends the data type DATE, stores the year, month, 
day, hour, minute, and second. The syntax is:

TIMESTAMP[(precision)

where the optional parameter precision specifies the number of digits in the 
fractional part of the seconds field. You cannot use a symbolic constant or variable to 
specify the precision; you must use an integer literal in the range 0..9. The default is 6.

The default timestamp format is set by the Oracle initialization parameter NLS_
TIMESTAMP_FORMAT.

Example 3–4 declares a variable of type TIMESTAMP and assigns a literal value to it. 
The fractional part of the seconds field is 0.275.

Example 3–4 Assigning a Literal Value to a TIMESTAMP Variable

SQL> DECLARE
  2    checkout TIMESTAMP(3);
  3  BEGIN
  4    checkout := '22-JUN-2004 07:48:53.275';
  5    DBMS_OUTPUT.PUT_LINE( TO_CHAR(checkout));
  6  END;
  7  /
22-JUN-04 07.48.53.275 AM
 
PL/SQL procedure successfully completed.
 
SQL>

In Example 3–5, the SCN_TO_TIMESTAMP and TIMESTAMP_TO_SCN functions are 
used to manipulate TIMESTAMPs.

Example 3–5 Using the SCN_TO_TIMESTAMP and TIMESTAMP_TO_SCN Functions

SQL> DECLARE
  2    right_now  TIMESTAMP;
  3    yesterday  TIMESTAMP;
  4    sometime   TIMESTAMP;
  5    scn1       INTEGER;
  6    scn2       INTEGER;



Predefined PL/SQL Scalar Data Types and Subtypes

3-18 Oracle Database PL/SQL Language Reference

  7    scn3       INTEGER;
  8  BEGIN
  9    right_now := SYSTIMESTAMP;
 10    scn1 := TIMESTAMP_TO_SCN(right_now);
 11    DBMS_OUTPUT.PUT_LINE('Current SCN is ' || scn1);
 12  
 13    yesterday := right_now - 1;
 14    scn2 := TIMESTAMP_TO_SCN(yesterday);
 15    DBMS_OUTPUT.PUT_LINE('SCN from yesterday is ' || scn2);
 16  
 17    -- Find arbitrary SCN between yesterday and today
 18  
 19    scn3 := (scn1 + scn2) / 2;
 20    sometime := SCN_TO_TIMESTAMP(scn3);
 21    DBMS_OUTPUT.PUT_LINE
 22      ('SCN ' || scn3 || ' was in effect at ' || TO_CHAR(sometime));
 23  END;
 24  /
Current SCN is 3945848
SCN from yesterday is 3899547
SCN 3922698 was in effect at 03-JAN-08 10.00.06.000000 PM
 
PL/SQL procedure successfully completed.
 
SQL>

TIMESTAMP WITH TIME ZONE Data Type
The data type TIMESTAMP WITH TIME ZONE, which extends the data type 
TIMESTAMP, includes a time-zone displacement. The time-zone displacement is the 
difference (in hours and minutes) between local time and Coordinated Universal Time 
(UTC,) formerly Greenwich Mean Time (GMT). The syntax is:

TIMESTAMP[(precision)] WITH TIME ZONE

where the optional parameter precision specifies the number of digits in the 
fractional part of the seconds field. You cannot use a symbolic constant or variable to 
specify the precision; you must use an integer literal in the range 0..9. The default is 6.

The default timestamp with time zone format is set by the Oracle initialization 
parameter NLS_TIMESTAMP_TZ_FORMAT.

Example 3–6 declares a variable of type TIMESTAMP WITH TIME ZONE and assign a 
literal value to it. The time-zone displacement is +02:00.

Example 3–6 Assigning a Literal to a TIMESTAMP WITH TIME ZONE Variable

SQL> DECLARE
  2    logoff TIMESTAMP(3) WITH TIME ZONE;
  3  BEGIN
  4    logoff := '10-OCT-2004 09:42:37.114 AM +02:00';
  5    DBMS_OUTPUT.PUT_LINE (TO_CHAR(logoff));
  6  END;
  7  /
10-OCT-04 09.42.37.114 AM +02:00
 
PL/SQL procedure successfully completed.
 
SQL>



Predefined PL/SQL Scalar Data Types and Subtypes

PL/SQL Data Types 3-19

You can also specify the time zone by using a symbolic name. The specification can 
include a long form such as 'US/Pacific', an abbreviation such as 'PDT', or a 
combination. For example, the following literals all represent the same time. The third 
form is most reliable because it specifies the rules to follow at the point when 
switching to daylight savings time.

TIMESTAMP '15-APR-2004 8:00:00 -8:00'
TIMESTAMP '15-APR-2004 8:00:00 US/Pacific'
TIMESTAMP '31-OCT-2004 01:30:00 US/Pacific PDT'

You can find the available names for time zones in the TIMEZONE_REGION and 
TIMEZONE_ABBR columns of the static data dictionary view V$TIMEZONE_NAMES.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent 
the same instant in UTC, regardless of their time-zone displacements. For example, the 
following two values are considered identical because, in UTC, 8:00 AM Pacific 
Standard Time is the same as 11:00 AM Eastern Standard Time:

'29-AUG-2004 08:00:00 -8:00'
'29-AUG-2004 11:00:00 -5:00'

TIMESTAMP WITH LOCAL TIME ZONE Data Type
The data type TIMESTAMP WITH LOCAL TIME ZONE, which extends the data type 
TIMESTAMP, includes a time-zone displacement. The time-zone displacement is the 
difference (in hours and minutes) between local time and Coordinated Universal Time 
(UTC)—formerly Greenwich Mean Time. You can also use named time zones, as with 
TIMESTAMP WITH TIME ZONE.

The syntax is:

TIMESTAMP[(precision)] WITH LOCAL TIME ZONE

where the optional parameter precision specifies the number of digits in the 
fractional part of the seconds field. You cannot use a symbolic constant or variable to 
specify the precision; you must use an integer literal in the range 0..9. The default is 6.

This data type differs from TIMESTAMP WITH TIME ZONE in that when you insert a 
value into a database column, the value is normalized to the database time zone, and 
the time-zone displacement is not stored in the column. When you retrieve the value, 
Oracle returns it in your local session time zone. 

Both Example 3–7 and Example 3–8 declare a variable of type TIMESTAMP WITH 
LOCAL TIME ZONE and assign it a value. The value in Example 3–7 is an appropriate 
local time, but the value in Example 3–8 includes a time zone displacement, which 
causes an error.

Example 3–7 Correct Assignment to TIMESTAMP WITH LOCAL TIME ZONE

SQL> DECLARE
  2    logoff  TIMESTAMP(3) WITH LOCAL TIME ZONE;
  3  BEGIN
  4    logoff := '10-OCT-2004 09:42:37.114 AM ';
  5    DBMS_OUTPUT.PUT_LINE(TO_CHAR(logoff));
  6  END;
  7  /
10-OCT-04 09.42.37.114 AM
 
PL/SQL procedure successfully completed.
 
SQL>



Predefined PL/SQL Scalar Data Types and Subtypes

3-20 Oracle Database PL/SQL Language Reference

Example 3–8 Incorrect Assigment to TIMESTAMP WITH LOCAL TIME ZONE

SQL> DECLARE
  2    logoff  TIMESTAMP(3) WITH LOCAL TIME ZONE;
  3  BEGIN
  4    logoff := '10-OCT-2004 09:42:37.114 AM +02:00';
  5  END;
  6  /
DECLARE
*
ERROR at line 1:
ORA-01830: date format picture ends before converting entire input string
ORA-06512: at line 4
 
SQL>

INTERVAL YEAR TO MONTH Data Type
Use the data type INTERVAL YEAR TO MONTH to store and manipulate intervals of 
years and months. The syntax is:

INTERVAL YEAR[(precision)] TO MONTH

where precision specifies the number of digits in the years field. You cannot use a 
symbolic constant or variable to specify the precision; you must use an integer literal 
in the range 0..4. The default is 2. 

Example 3–9 declares a variable of type INTERVAL YEAR TO MONTH and assigns a 
value of 101 years and 3 months to it, in three different ways.

Example 3–9 Assigning Literals to an INTERVAL YEAR TO MONTH Variable

SQL> DECLARE
  2    lifetime  INTERVAL YEAR(3) TO MONTH;
  3  BEGIN
  4    lifetime := INTERVAL '101-3' YEAR TO MONTH;  -- Interval literal
  5  
  6    lifetime := '101-3';  -- Implicit conversion from character type
  7  
  8    lifetime := INTERVAL '101' YEAR;  -- Specify only years
  9    lifetime := INTERVAL '3' MONTH;   -- Specify only months
 10  END;
 11  /
 
PL/SQL procedure successfully completed.
 
SQL>

INTERVAL DAY TO SECOND Data Type
You use the data type INTERVAL DAY TO SECOND to store and manipulate intervals of 
days, hours, minutes, and seconds. The syntax is:

INTERVAL DAY[(leading_precision)
  TO SECOND (fractional_seconds_precision)

where leading_precision and fractional_seconds_precision specify the 
number of digits in the days field and seconds field, respectively. In both cases, you 
cannot use a symbolic constant or variable to specify the precision; you must use an 
integer literal in the range 0..9. The defaults are 2 and 6, respectively. 



Predefined PL/SQL Scalar Data Types and Subtypes

PL/SQL Data Types 3-21

Example 3–10 declares a variable of type INTERVAL DAY TO SECOND and assigns a 
value to it.

Example 3–10 Assigning Literals to an INTERVAL DAY TO SECOND Variable

SQL> DECLARE
  2    lag_time  INTERVAL DAY(3) TO SECOND(3);
  3  BEGIN
  4    lag_time := '7 09:24:30';
  5  
  6    IF lag_time > INTERVAL '6' DAY THEN
  7      DBMS_OUTPUT.PUT_LINE ('Greater than 6 days');
  8    ELSE
  9      DBMS_OUTPUT.PUT_LINE ('Less than 6 days');
 10    END IF;
 11  END;
 12  /
Greater than 6 days
 
PL/SQL procedure successfully completed.
 
SQL>

Datetime and Interval Arithmetic
PL/SQL lets you construct datetime and interval expressions. The following list shows 
the operators that you can use in such expressions:

Avoiding Truncation Problems Using Date and Time Subtypes
The default precisions for some of the date and time types are less than the maximum 
precision. For example, the default for DAY TO SECOND is DAY(2) TO SECOND(6), 
while the highest precision is DAY(9) TO SECOND(9). To avoid truncation when 
assigning variables and passing subprogram parameters of these types, you can 
declare variables and subprogram parameters of the following subtypes, which use the 
maximum values for precision:

TIMESTAMP_UNCONSTRAINED
TIMESTAMP_TZ_UNCONSTRAINED

Operand 1 Operator Operand 2 Result Type

datetime + interval datetime

datetime - interval datetime

interval + datetime datetime

datetime - datetime interval

interval + interval interval

interval - interval interval

interval * numeric interval

numeric * interval interval

interval / numeric interval

See Also: Oracle Database SQL Language Reference for information 
about using SQL functions to perform arithmetic operations on 
datetime values



Predefined PL/SQL Large Object (LOB) Data Types

3-22 Oracle Database PL/SQL Language Reference

TIMESTAMP_LTZ_UNCONSTRAINED
YMINTERVAL_UNCONSTRAINED
DSINTERVAL_UNCONSTRAINED

Predefined PL/SQL Large Object (LOB) Data Types
Large object (LOB) data types reference large objects that are stored separately from 
other data items, such as text, graphic images, video clips, and sound waveforms. LOB 
data types allow efficient, random, piecewise access to this data. Predefined PL/SQL 
LOB data types are listed and described in Table 3–9.

LOB Locators
To reference a large object that is stored in an external file, a LOB data type uses a LOB 
locator, which is stored in an external file, either inside the row (inline) or outside the 
row (out-of-line). In the external file, LOB locators are in columns of the types BFILE, 
BLOB, CLOB, and NCLOB.

PL/SQL operates on large objects through their LOB locators. For example, when you 
select a BLOB column value, PL/SQL returns only its locator. If PL/SQL returned the 
locator during a transaction, the locator includes a transaction ID, so you cannot use 
that locator to update that large object in another transaction. Likewise, you cannot 
save a locator during one session and then use it in another session.

Differences Between LOB Data Types and LONG and LONG RAW Data Types
LOB data types differ from LONG and LONG RAW data types in the following ways:

Table 3–9 Predefined PL/SQL Large Object (LOB) Data Types

Data Type Description Size

BFILE Used to store large binary objects in operating system files 
outside the database.

System-dependent. 
Cannot exceed 
4 gigabytes (GB).

BLOB Used to store large binary objects in the database. 8 to 128 terabytes 
(TB)

CLOB Used to store large blocks of character data in the database. 8 to 128 TB

NCLOB Used to store large blocks of NCHAR data in the database. 8 to 128 TB

Difference LOB Data Types LONG and LONG RAW Data Types

Support Functionality enhanced 
in every release.

Functionality static. Supported only 
for backward compatibility with 
existing applications.

Maximum size 8 to 128 TB 2 GB

Access Random Sequential

Can be object type attribute BFILE, BLOB, CLOB: 
YesNCLOB: No

No

See Also:

■ LONG and LONG RAW Data Types on page 3-14

■ Oracle Database SecureFiles and Large Objects Developer's Guidefor 
more information about LOBs



User-Defined PL/SQL Subtypes

PL/SQL Data Types 3-23

Topics:

■ BFILE Data Type

■ BLOB Data Type

■ CLOB Data Type

■ NCLOB Data Type

BFILE Data Type
You use the BFILE data type to store large binary objects in operating system files 
outside the database. Every BFILE variable stores a file locator, which points to a large 
binary file on the server. The locator includes a directory alias, which specifies a full 
path name. Logical path names are not supported. 

BFILEs are read-only, so you cannot modify them. Your DBA makes sure that a given 
BFILE exists and that Oracle has read permissions on it. The underlying operating 
system maintains file integrity.

BFILEs do not participate in transactions, are not recoverable, and cannot be 
replicated. The maximum number of open BFILEs is set by the Oracle initialization 
parameter SESSION_MAX_OPEN_FILES, which is system dependent. 

BLOB Data Type
You use the BLOB data type to store large binary objects in the database, inline or 
out-of-line. Every BLOB variable stores a locator, which points to a large binary object.

BLOBs participate fully in transactions, are recoverable, and can be replicated. Changes 
made by package DBMS_LOB can be committed or rolled back. BLOB locators can span 
transactions (for reads only), but they cannot span sessions.

CLOB Data Type
You use the CLOB data type to store large blocks of character data in the database, 
inline or out-of-line. Both fixed-width and variable-width character sets are supported. 
Every CLOB variable stores a locator, which points to a large block of character data.

CLOBs participate fully in transactions, are recoverable, and can be replicated. Changes 
made by package DBMS_LOB can be committed or rolled back. CLOB locators can span 
transactions (for reads only), but they cannot span sessions.

NCLOB Data Type
You use the NCLOB data type to store large blocks of NCHAR data in the database, inline 
or out-of-line. Both fixed-width and variable-width character sets are supported. Every 
NCLOB variable stores a locator, which points to a large block of NCHAR data.

NCLOBs participate fully in transactions, are recoverable, and can be replicated. 
Changes made by package DBMS_LOB can be committed or rolled back. NCLOB 
locators can span transactions (for reads only), but they cannot span sessions.

User-Defined PL/SQL Subtypes
A subtype is a subset of another data type, which is called its base type. A subtype has 
the same valid operations as its base type, but only a subset of its valid values. 
Subtypes can increase reliability, provide compatibility with ANSI/ISO types, and 
improve readability by indicating the intended use of constants and variables.



User-Defined PL/SQL Subtypes

3-24 Oracle Database PL/SQL Language Reference

PL/SQL predefines several subtypes in package STANDARD. For example, PL/SQL 
predefines the subtypes CHARACTER and INTEGER as follows:

SUBTYPE CHARACTER IS CHAR;
SUBTYPE INTEGER IS NUMBER(38,0);  -- allows only whole numbers

The subtype CHARACTER specifies the same set of values as its base type CHAR, so 
CHARACTER is an unconstrained subtype. But, the subtype INTEGER specifies only a 
subset of the values of its base type NUMBER, so INTEGER is a constrained subtype.

Topics:

■ Defining Subtypes

■ Using Subtypes

Defining Subtypes 
You can define your own subtypes in the declarative part of any PL/SQL block, 
subprogram, or package using the following syntax:

SUBTYPE subtype_name IS base_type[(constraint)] [NOT NULL];

where subtype_name is a type specifier used in subsequent declarations, base_
type is any scalar or user-defined PL/SQL data type, and constraint applies only 
to base types that can specify precision and scale or a maximum size. A default value 
is not permitted; see Example 3–14 on page 3-27.

Examples:

SQL> DECLARE
  2     SUBTYPE BirthDate IS DATE NOT NULL;         -- Based on DATE type
  3     SUBTYPE Counter IS NATURAL;                 -- Based on NATURAL subtype
  4  
  5     TYPE NameList IS TABLE OF VARCHAR2(10);
  6     SUBTYPE DutyRoster IS NameList;             -- Based on TABLE type
  7  
  8     TYPE TimeRec IS RECORD (minutes INTEGER, hours INTEGER);
  9     SUBTYPE FinishTime IS TimeRec;                -- Based on RECORD type
 10     SUBTYPE ID_Num IS employees.employee_id%TYPE; -- Based on column type
 11  BEGIN
 12    NULL;
 13  END;
 14  /
 
PL/SQL procedure successfully completed.
 
SQL>

You can use %TYPE or %ROWTYPE to specify the base type. When %TYPE provides the 
data type of a database column, the subtype inherits the size constraint (if any) of the 
column. The subtype does not inherit other kinds of column constraints, such as NOT 
NULL or check constraint, or the default value, as shown in Example 3–15 on page 3-27. 
For more information, see Using the %TYPE Attribute on page 2-12 and Using the 
%ROWTYPE Attribute on page 2-15.

Using Subtypes
After defining a subtype, you can declare items of that type. The subtype name 
indicates the intended use of the variable. You can constrain a user-defined subtype 
when declaring variables of that type. For example:



User-Defined PL/SQL Subtypes

PL/SQL Data Types 3-25

SQL> DECLARE
  2    SUBTYPE Counter IS NATURAL;
  3    rows Counter;
  4  
  5    SUBTYPE Accumulator IS NUMBER;
  6    total Accumulator(7,2);
  7  BEGIN
  8    NULL;
  9  END;
 10  /
 
PL/SQL procedure successfully completed.
 
SQL>

Subtypes can increase reliability by detecting out-of-range values. Example 3–11 
restricts the subtype pinteger to storing integers in the range -9..9. When the 
program tries to store a number outside that range in a pinteger variable, PL/SQL 
raises an exception.

Example 3–11 Using Ranges with Subtypes

SQL> DECLARE
  2    v_sqlerrm VARCHAR2(64);
  3  
  4    SUBTYPE pinteger IS PLS_INTEGER RANGE -9..9;
  5    y_axis pinteger;
  6  
  7    PROCEDURE p (x IN pinteger) IS
  8      BEGIN
  9        DBMS_OUTPUT.PUT_LINE (x);
 10      END p;
 11  
 12  BEGIN
 13    y_axis := 9;
 14    p(10);
 15  
 16  EXCEPTION
 17    WHEN OTHERS THEN
 18      v_sqlerrm := SUBSTR(SQLERRM, 1, 64);
 19      DBMS_OUTPUT.PUT_LINE('Error: ' || v_sqlerrm);
 20  END;
 21  /
Error: ORA-06502: PL/SQL: numeric or value error
 
PL/SQL procedure successfully completed.
 
SQL> 

Topics:

■ Type Compatibility with Subtypes

■ Constraints and Default Values with Subtypes

Type Compatibility with Subtypes
An unconstrained subtype is interchangeable with its base type. Example 3–12 assigns 
the value of amount to total without conversion.



User-Defined PL/SQL Subtypes

3-26 Oracle Database PL/SQL Language Reference

Example 3–12 Type Compatibility with the NUMBER Data Type

SQL> DECLARE
  2    SUBTYPE Accumulator IS NUMBER;
  3    amount  NUMBER(7,2);
  4    total   Accumulator;
  5  BEGIN
  6    amount := 10000.50;
  7    total  := amount;
  8  END;
  9  /
 
PL/SQL procedure successfully completed.
 
SQL>

Different subtypes are interchangeable if they have the same base type:

SQL> DECLARE
  2    SUBTYPE b1 IS BOOLEAN;
  3    SUBTYPE b2 IS BOOLEAN;
  4    finished  b1;
  5    debugging b2;
  6  BEGIN
  7    finished  := FALSE;
  8    debugging := finished;
  9  END;
 10  /
 
PL/SQL procedure successfully completed.
 
SQL>

Different subtypes are also interchangeable if their base types are in the same data type 
family. For example, the value of verb can be assigned to sentence:

SQL> DECLARE
  2    SUBTYPE Word IS CHAR(15);
  3    SUBTYPE Text IS VARCHAR2(1500);
  4    verb     Word;
  5    sentence Text(150);
  6  BEGIN
  7    verb := 'program';
  8    sentence := verb;
  9  END;
 10  /
 
PL/SQL procedure successfully completed.
 
SQL>

Constraints and Default Values with Subtypes
Example 3–13 shows to assign a default value to a subtype variable.

Example 3–13 Assigning Default Value to Subtype Variable

SQL> DECLARE
  2    SUBTYPE v_word IS VARCHAR2(10) NOT NULL;
  3    verb  v_word  := 'verb';
  4    noun  v_word  := 'noun';
  5  BEGIN



User-Defined PL/SQL Subtypes

PL/SQL Data Types 3-27

  6     DBMS_OUTPUT.PUT_LINE (UPPER(verb));
  7     DBMS_OUTPUT.PUT_LINE (UPPER(noun));
  8  END;
  9  /
VERB
NOUN
 
PL/SQL procedure successfully completed.
 
SQL>
In Example 3–14, the procedure enforces the NOT NULL constraint, but not the size 
constraint.

Example 3–14 Subtype Constraints Inherited by Subprograms

SQL> DECLARE
  2    SUBTYPE v_word IS VARCHAR2(10) NOT NULL;
  3    verb    v_word       := 'run';
  4    noun    VARCHAR2(10) := NULL;
  5  
  6    PROCEDURE word_to_upper (w IN v_word) IS
  7    BEGIN
  8      DBMS_OUTPUT.PUT_LINE (UPPER(w));
  9    END word_to_upper;
 10  
 11  BEGIN
 12    word_to_upper('more than ten characters');
 13    word_to_upper(noun);
 14  END;
 15  /
MORE THAN TEN CHARACTERS
DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error
ORA-06512: at line 13
 
SQL>

As Example 3–15 shows, subtypes do not inherit the column constraints NOT NULL or 
CHECK, but they do inherit column size constraints.

Example 3–15 Column Constraints Inherited by Subtypes

SQL> CREATE TABLE employees_temp (
  2    empid NUMBER(6) NOT NULL PRIMARY KEY,
  3    deptid NUMBER(6) CONSTRAINT c_employees_temp_deptid
  4      CHECK (deptid BETWEEN 100 AND 200),
  5    deptname VARCHAR2(30) DEFAULT 'Sales'
  6  );
 
Table created.
 
SQL> 
SQL> DECLARE
  2     SUBTYPE v_empid_subtype    IS employees_temp.empid%TYPE;
  3     SUBTYPE v_deptid_subtype   IS employees_temp.deptid%TYPE;
  4     SUBTYPE v_deptname_subtype IS employees_temp.deptname%TYPE;
  5     SUBTYPE v_emprec_subtype   IS employees_temp%ROWTYPE;
  6  



PL/SQL Data Type Conversion

3-28 Oracle Database PL/SQL Language Reference

  7     v_empid    v_empid_subtype;
  8     v_deptid   v_deptid_subtype;
  9     v_deptname v_deptname_subtype;
 10     v_emprec   v_emprec_subtype;
 11  BEGIN
 12    v_empid  := NULL;         -- NULL constraint not inherited
 13    v_deptid := 50;           -- CHECK constraint not inherited
 14  
 15    v_emprec.empid  := NULL;  -- NULL constraint not inherited
 16    v_emprec.deptid := 50;    -- CHECK constraint not inherited
 17  
 18    DBMS_OUTPUT.PUT_LINE
 19      ('v_deptname: ' || v_deptname);  -- Default value not inherited
 20  
 21    DBMS_OUTPUT.PUT_LINE
 22      ('v_emprec.deptname: ' || v_emprec.deptname);
 23        -- Default value not inherited
 24    v_empid := 10000002;  -- NUMBER(6) constraint inherited
 25  END;
 26  /
v_deptname:
v_emprec.deptname:
DECLARE
*
ERROR at line 1:
ORA-06502: PL/SQL: numeric or value error: number precision too large
ORA-06512: at line 24
 
SQL>

PL/SQL Data Type Conversion
Sometimes it is necessary to convert a value from one data type to another. For 
example, to use a DATE value in a report, you must convert it to a character string. 
PL/SQL supports both explicit and implicit data type conversion.

For best reliability and maintainability, use explicit conversion. Implicit conversion is 
context-sensitive and not always predictable, and its rules might change in later 
software releases. Implicit conversion can also be slower than explicit conversion.

Topics:

■ Explicit Conversion

■ Implicit Conversion

Explicit Conversion
To explicitly convert values from one data type to another, you use built-in functions, 
which are described in Oracle Database SQL Language Reference. For example, to convert 
a CHAR value to a DATE or NUMBER value, you use the function TO_DATE or TO_
NUMBER, respectively. Conversely, to convert a DATE or NUMBER value to a CHAR value, 
you use the function TO_CHAR.

Explicit conversion can prevent errors or unexpected results. For example:

■ Using the concatenation operator (||) to concatenate a string and an arithmetic 
expression can produce an error, which you can prevent by using the TO_CHAR 
function to convert the arithmetic expression to a string before concatenation.



PL/SQL Data Type Conversion

PL/SQL Data Types 3-29

■ Relying on language settings in the database for the format of a DATE value can 
produce unexpected results, which you can prevent by using the TO_CHAR 
function and specifying the format that you want.

Implicit Conversion
Sometimes PL/SQL can convert a value from one data type to another automatically. 
This is called implicit conversion, and the data types are called compatible. When two 
data types are compatible, you can use a value of one type where a value of the other 
type is expected. For example, you can pass a numeric literal to a subprogram that 
expects a string value, and the subprogram receives the string representation of the 
number.

In Example 3–16, the CHAR variables start_time and finish_time store string 
values representing the number of seconds past midnight. The difference between 
those values can be assigned to the NUMBER variable elapsed_time, because 
PL/SQL converts the CHAR values to NUMBER values automatically.

Example 3–16 Implicit Conversion

SQL> DECLARE
  2    start_time   CHAR(5);
  3    finish_time  CHAR(5);
  4    elapsed_time NUMBER(5);
  5  BEGIN
  6     -- Get system time as seconds past midnight:
  7  
  8     SELECT TO_CHAR(SYSDATE,'SSSSS') INTO start_time FROM sys.DUAL;
  9  
 10     -- Processing done here
 11  
 12     -- Get system time again:
 13  
 14     SELECT TO_CHAR(SYSDATE,'SSSSS') INTO finish_time FROM sys.DUAL;
 15  
 16     -- Compute and report elapsed time in seconds:
 17  
 18     elapsed_time := finish_time - start_time;
 19     DBMS_OUTPUT.PUT_LINE ('Elapsed time: ' || TO_CHAR(elapsed_time));
 20  END;
 21  /
Elapsed time: 0
 
PL/SQL procedure successfully completed.
 
SQL>

If you select a value from a column of one data type, and assign that value to a 
variable of another data type, PL/SQL converts the value to the data type of the 
variable. This happens, for example, when you select a DATE column value into a 
VARCHAR2 variable.

If you assign the value of a variable of one database type to a column of another 
database type, PL/SQL converts the value of the variable to the data type of the 
column.

If PL/SQL cannot determine which implicit conversion is needed, you get a 
compilation error. In such cases, you must use explicit conversion.

Table 3–10 shows which implicit conversions PL/SQL can do. However:



PL/SQL Data Type Conversion

3-30 Oracle Database PL/SQL Language Reference

■ Table 3–10 lists only data types that have different representations.

Types that have the same representation, such as PLS_INTEGER and BINARY_
INTEGER, CLOB and NCLOB, CHAR and NCHAR, and VARCHAR and NVARCHAR2, 
can be substituted for each other.

■ It is your responsibility to ensure that specific values are convertible.

For example, PL/SQL can convert the CHAR value '02-JUN-92' to a DATE value 
but cannot convert the CHAR value 'YESTERDAY' to a DATE value. Similarly, 
PL/SQL cannot convert a VARCHAR2 value containing alphabetic characters to a 
NUMBER value.

■ Regarding date, time, and interval data types:

– Conversion rules for the DATE data type also apply to the datetime data types. 
However, because of their different internal representations, these types 
cannot always be converted to each other. For details about implicit 
conversions between datetime datatypes, see Oracle Database SQL Language 
Reference.

– To implicitly convert a DATE value to a CHAR or VARCHAR2 value, PL/SQL 
invoks the function TO_CHAR, which returns a character string in the default 
date format. To get other information, such as the time or Julian date, invoke 
TO_CHAR explicitly with a format mask.

– When you insert a CHAR or VARCHAR2 value into a DATE column, PL/SQL 
implicitly converts the CHAR or VARCHAR2 value to a DATE value by invoking 
the function TO_DATE, which expects its parameter to be in the default date 
format. To insert dates in other formats, invoke TO_DATE explicitly with a 
format mask.

■ Regarding LOB data types:

– Converting between CLOB and NCLOB values can be expensive. To make clear 
that you intend this conversion, use the explicit conversion functions TO_
CLOB and TO_NCLOB.

– Implicit conversion between CLOB values and CHAR and VARCHAR2 values, 
and between BLOB values and RAW values, lets you use LOB data types in 
most SQL and PL/SQL statements and functions. However, to read, write, and 
do piecewise operations on LOB values, you must use DBMS_LOB package 
subprograms, which are described in Oracle Database PL/SQL Packages and 
Types Reference.

■ Regarding RAW and LONG RAW data types:

– LONG RAW is supported only for backward compatibility with existing 
applications. For more information, see LONG and LONG RAW Data Types 
on page 3-14.

– When you select a RAW or LONG RAW column value into a CHAR or VARCHAR2 
variable, PL/SQL must convert the internal binary value to a character value. 
PL/SQL does this by returning each binary byte of RAW or LONG RAW data as a 
pair of characters. Each character represents the hexadecimal equivalent of a 
nibble (half a byte). For example, PL/SQL returns the binary byte 11111111 as 
the pair of characters 'FF'. The function RAWTOHEX does the same 
conversion.

– Conversion is also necessary when you insert a CHAR or VARCHAR2 value into 
a RAW or LONG RAW column. Each pair of characters in the variable must 



PL/SQL Data Type Conversion

PL/SQL Data Types 3-31

represent the hexadecimal equivalent of a binary byte; otherwise, PL/SQL 
raises an exception.

– When a LONG value appears in a SQL statement, PL/SQL binds the LONG 
value as a VARCHAR2 value. However, if the length of the bound VARCHAR2 
value exceeds the maximum width of a VARCHAR2 column (4,000 bytes), 
Oracle converts the bind type to LONG automatically, and then issues an error 
message because you cannot pass LONG values to a SQL function.

Table 3–10 Possible Implicit PL/SQL Data Type Conversions

From: To:

BLOB CHAR CLOB DATE LONG NUMBER PLS_INTEGER RAW UROWID VARCHAR2

BLOB Yes

CHAR Yes Yes Yes Yes Yes Yes Yes Yes

CLOB Yes Yes

DATE Yes Yes Yes

LONG Yes Yes Yes

NUMBER Yes Yes Yes Yes

PLS_INTEGER Yes Yes Yes Yes

RAW Yes Yes Yes Yes

UROWID Yes Yes

VARCHAR2 Yes Yes Yes Yes Yes Yes Yes Yes



PL/SQL Data Type Conversion

3-32 Oracle Database PL/SQL Language Reference



4

Using PL/SQL Control Structures 4-1

4 Using PL/SQL Control Structures

This chapter shows you how to structure the flow of control through a PL/SQL 
program. PL/SQL provides conditional tests, loops, and branches that let you produce 
well-structured programs.

Topics:

■ Overview of PL/SQL Control Structures

■ Testing Conditions (IF and CASE Statements)

■ Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

■ Sequential Control (GOTO and NULL Statements)

Overview of PL/SQL Control Structures
Procedural computer programs use the basic control structures shown in Figure 4–1.

Figure 4–1 Control Structures

The selection structure tests a condition, then executes one sequence of statements 
instead of another, depending on whether the condition is true or false. A condition is 
any variable or expression that returns a BOOLEAN value. The iteration structure 
executes a sequence of statements repeatedly as long as a condition holds true. The 
sequence structure simply executes a sequence of statements in the order in which 
they occur. 

Selection Iteration Sequence

T F F

T



Testing Conditions (IF and CASE Statements)

4-2 Oracle Database PL/SQL Language Reference

Testing Conditions (IF and CASE Statements)
The IF statement executes a sequence of statements depending on the value of a 
condition. There are three forms of IF statements: IF-THEN, IF-THEN-ELSE, and 
IF-THEN-ELSIF. For a description of the syntax of the IF statement, see IF Statement 
on page 13-71.

The CASE statement is a compact way to evaluate a single condition and choose 
between many alternative actions. It makes sense to use CASE when there are three or 
more alternatives to choose from. For a description of the syntax of the CASE 
statement, see CASE Statement on page 13-15.

Topics:

■ Using the IF-THEN Statement

■ Using the IF-THEN-ELSE Statement

■ Using the IF-THEN-ELSIF Statement

■ Using the Simple CASE Statement

■ Using the Searched CASE Statement

■ Guidelines for IF and CASE Statements

Using the IF-THEN Statement
The simplest form of IF statement associates a condition with a sequence of 
statements enclosed by the keywords THEN and END IF (not ENDIF) as illustrated in 
Example 4–1.

The sequence of statements is executed only if the condition is TRUE. If the condition is 
FALSE or NULL, the IF statement does nothing. In either case, control passes to the 
next statement.

Example 4–1 Simple IF-THEN Statement

SQL> DECLARE
  2    sales  NUMBER(8,2) := 10100;
  3    quota  NUMBER(8,2) := 10000;
  4    bonus  NUMBER(6,2);
  5    emp_id NUMBER(6) := 120;
  6  BEGIN
  7    IF sales > (quota + 200) THEN
  8       bonus := (sales - quota)/4;
  9  
 10       UPDATE employees SET salary =
 11         salary + bonus
 12           WHERE employee_id = emp_id;
 13    END IF;
 14  END;
 15  /
 
PL/SQL procedure successfully completed.
 
SQL>

Using the IF-THEN-ELSE Statement
The second form of IF statement adds the keyword ELSE followed by an alternative 
sequence of statements, as shown in Example 4–2.



Testing Conditions (IF and CASE Statements)

Using PL/SQL Control Structures 4-3

The statements in the ELSE clause are executed only if the condition is FALSE or NULL. 
The IF-THEN-ELSE statement ensures that one or the other sequence of statements is 
executed.

Example 4–2 Using a Simple IF-THEN-ELSE Statement

SQL> DECLARE
  2    sales  NUMBER(8,2) := 12100;
  3    quota  NUMBER(8,2) := 10000;
  4    bonus  NUMBER(6,2);
  5    emp_id NUMBER(6) := 120;
  6  BEGIN
  7    IF sales > (quota + 200) THEN
  8      bonus := (sales - quota)/4;
  9    ELSE
 10      bonus := 50;
 11    END IF;
 12  
 13    UPDATE employees
 14      SET salary = salary + bonus
 15        WHERE employee_id = emp_id;
 16  END;
 17  /
 
PL/SQL procedure successfully completed.
 
SQL> 

IF statements can be nested. Example 4–3 shows nested IF-THEN-ELSE statements.

Example 4–3 Nested IF-THEN-ELSE Statements

SQL> DECLARE
  2    sales  NUMBER(8,2) := 12100;
  3    quota  NUMBER(8,2) := 10000;
  4    bonus  NUMBER(6,2);
  5    emp_id NUMBER(6)   := 120;
  6  BEGIN
  7    IF sales > (quota + 200) THEN
  8      bonus := (sales - quota)/4;
  9    ELSE
 10      IF sales > quota THEN
 11        bonus := 50;
 12      ELSE
 13        bonus := 0;
 14      END IF;
 15    END IF;
 16  
 17    UPDATE employees
 18      SET salary = salary + bonus
 19        WHERE employee_id = emp_id;
 20  END;
 21  /
 
PL/SQL procedure successfully completed.
 
SQL>



Testing Conditions (IF and CASE Statements)

4-4 Oracle Database PL/SQL Language Reference

Using the IF-THEN-ELSIF Statement
Sometimes you want to choose between several alternatives. You can use the keyword 
ELSIF (not ELSIF or ELSE IF) to introduce additional conditions, as shown in 
Example 4–4.

If the first condition is FALSE or NULL, the ELSIF clause tests another condition. An 
IF statement can have any number of ELSIF clauses; the final ELSE clause is optional. 
Conditions are evaluated one by one from top to bottom. If any condition is TRUE, its 
associated sequence of statements is executed and control passes to the next statement. 
If all conditions are false or NULL, the sequence in the ELSE clause is executed, as 
shown in Example 4–4.

Example 4–4 Using the IF-THEN-ELSIF Statement

SQL> DECLARE
  2    sales  NUMBER(8,2) := 20000;
  3    bonus  NUMBER(6,2);
  4    emp_id NUMBER(6)   := 120;
  5  BEGIN
  6    IF sales > 50000 THEN
  7      bonus := 1500;
  8    ELSIF sales > 35000 THEN
  9      bonus := 500;
 10    ELSE
 11      bonus := 100;
 12    END IF;
 13  
 14    UPDATE employees
 15      SET salary = salary + bonus
 16        WHERE employee_id = emp_id;
 17  END;
 18  /
 
PL/SQL procedure successfully completed.
 
SQL>

If the value of sales is larger than 50000, the first and second conditions are TRUE. 
Nevertheless, bonus is assigned the proper value of 1500 because the second 
condition is never tested. When the first condition is TRUE, its associated statement is 
executed and control passes to the UPDATE statement.

Another example of an IF-THEN-ELSE statement is Example 4–5.

Example 4–5 Extended IF-THEN Statement 

SQL> DECLARE
  2    grade CHAR(1);
  3  BEGIN
  4    grade := 'B';
  5  
  6    IF grade = 'A' THEN
  7      DBMS_OUTPUT.PUT_LINE('Excellent');
  8    ELSIF grade = 'B' THEN
  9      DBMS_OUTPUT.PUT_LINE('Very Good');
 10    ELSIF grade = 'C' THEN
 11      DBMS_OUTPUT.PUT_LINE('Good');
 12    ELSIF grade = 'D' THEN
 13      DBMS_OUTPUT. PUT_LINE('Fair');
 14    ELSIF grade = 'F' THEN



Testing Conditions (IF and CASE Statements)

Using PL/SQL Control Structures 4-5

 15      DBMS_OUTPUT.PUT_LINE('Poor');
 16    ELSE
 17      DBMS_OUTPUT.PUT_LINE('No such grade');
 18    END IF;
 19  END;
 20  /
Very Good
 
PL/SQL procedure successfully completed.
 
SQL>

Using the Simple CASE Statement
Like the IF statement, the CASE statement selects one sequence of statements to 
execute. However, to select the sequence, the CASE statement uses a selector rather 
than multiple Boolean expressions. A selector is an expression whose value is used to 
select one of several alternatives. 

You can rewrite the code in Example 4–5 using the CASE statement, as shown in 
Example 4–6.

Example 4–6 Simple CASE Statement

SQL> DECLARE
  2    grade CHAR(1);
  3  BEGIN
  4    grade := 'B';
  5  
  6    CASE grade
  7      WHEN 'A' THEN DBMS_OUTPUT.PUT_LINE('Excellent');
  8      WHEN 'B' THEN DBMS_OUTPUT.PUT_LINE('Very Good');
  9      WHEN 'C' THEN DBMS_OUTPUT.PUT_LINE('Good');
 10      WHEN 'D' THEN DBMS_OUTPUT.PUT_LINE('Fair');
 11      WHEN 'F' THEN DBMS_OUTPUT.PUT_LINE('Poor');
 12      ELSE DBMS_OUTPUT.PUT_LINE('No such grade');
 13    END CASE;
 14  END;
 15  /
Very Good
 
PL/SQL procedure successfully completed.
 
SQL>

The CASE statement is more readable and more efficient. When possible, rewrite 
lengthy IF-THEN-ELSIF statements as CASE statements. 

The CASE statement begins with the keyword CASE. The keyword is followed by a 
selector, which is the variable grade in the last example. The selector expression can 
be arbitrarily complex. For example, it can contain function calls. Usually, however, it 
consists of a single variable. The selector expression is evaluated only once. The value 
it yields can have any PL/SQL data type other than BLOB, BFILE, an object type, a 
PL/SQL record, an index-by-table, a varray, or a nested table.

The selector is followed by one or more WHEN clauses, which are checked sequentially. 
The value of the selector determines which clause is executed. If the value of the 
selector equals the value of a WHEN-clause expression, that WHEN clause is executed. For 
example, in the last example, if grade equals 'C', the program outputs 'Good'. 



Testing Conditions (IF and CASE Statements)

4-6 Oracle Database PL/SQL Language Reference

Execution never falls through; if any WHEN clause is executed, control passes to the 
next statement.

The ELSE clause works similarly to the ELSE clause in an IF statement. In the last 
example, if the grade is not one of the choices covered by a WHEN clause, the ELSE 
clause is selected, and the phrase 'No such grade' is output. The ELSE clause is 
optional. However, if you omit the ELSE clause, PL/SQL adds the following implicit 
ELSE clause:

ELSE RAISE CASE_NOT_FOUND;

There is always a default action, even when you omit the ELSE clause. If the CASE 
statement does not match any of the WHEN clauses and you omit the ELSE clause, 
PL/SQL raises the predefined exception CASE_NOT_FOUND. 

The keywords END CASE terminate the CASE statement. These two keywords must be 
separated by a space.

Like PL/SQL blocks, CASE statements can be labeled. The label, an undeclared 
identifier enclosed by double angle brackets, must appear at the beginning of the CASE 
statement. Optionally, the label name can also appear at the end of the CASE statement.

Exceptions raised during the execution of a CASE statement are handled in the usual 
way. That is, normal execution stops and control transfers to the exception-handling 
part of your PL/SQL block or subprogram.

An alternative to the CASE statement is the CASE expression, where each WHEN clause 
is an expression. For details, see CASE Expressions on page 2-40.

Using the Searched CASE Statement
PL/SQL also provides a searched CASE statement, similar to the simple CASE 
statement, which has the form shown in Example 4–7.

The searched CASE statement has no selector, and its WHEN clauses contain search 
conditions that yield Boolean values, not expressions that can yield a value of any 
type.

The searched CASE statement in Example 4–7 is logically equivalent to the simple 
CASE statement in Example 4–6.

Example 4–7 Searched CASE Statement

SQL> DECLARE
  2    grade CHAR(1);
  3  BEGIN
  4    grade := 'B';
  5  
  6    CASE
  7      WHEN grade = 'A' THEN DBMS_OUTPUT.PUT_LINE('Excellent');
  8      WHEN grade = 'B' THEN DBMS_OUTPUT.PUT_LINE('Very Good');
  9      WHEN grade = 'C' THEN DBMS_OUTPUT.PUT_LINE('Good');
 10      WHEN grade = 'D' THEN DBMS_OUTPUT.PUT_LINE('Fair');
 11      WHEN grade = 'F' THEN DBMS_OUTPUT.PUT_LINE('Poor');
 12      ELSE DBMS_OUTPUT.PUT_LINE('No such grade');
 13    END CASE;
 14  END;
 15  /
Very Good
 
PL/SQL procedure successfully completed.



Testing Conditions (IF and CASE Statements)

Using PL/SQL Control Structures 4-7

 
SQL>

In both Example 4–7 and Example 4–6, the ELSE clause can be replaced by an 
EXCEPTION part. Example 4–8 is logically equivalent to Example 4–7.

Example 4–8 Using EXCEPTION Instead of ELSE Clause in CASE Statement

SQL> DECLARE
  2    grade CHAR(1);
  3  BEGIN
  4    grade := 'B';
  5  
  6    CASE
  7      WHEN grade = 'A' THEN DBMS_OUTPUT.PUT_LINE('Excellent');
  8      WHEN grade = 'B' THEN DBMS_OUTPUT.PUT_LINE('Very Good');
  9      WHEN grade = 'C' THEN DBMS_OUTPUT.PUT_LINE('Good');
 10      WHEN grade = 'D' THEN DBMS_OUTPUT.PUT_LINE('Fair');
 11      WHEN grade = 'F' THEN DBMS_OUTPUT.PUT_LINE('Poor');
 12    END CASE;
 13  
 14    EXCEPTION
 15      WHEN CASE_NOT_FOUND THEN
 16        DBMS_OUTPUT.PUT_LINE('No such grade');
 17  END;
 18  /
Very Good
 
PL/SQL procedure successfully completed.
 
SQL>

The search conditions are evaluated sequentially. The Boolean value of each search 
condition determines which WHEN clause is executed. If a search condition yields 
TRUE, its WHEN clause is executed. If any WHEN clause is executed, control passes to the 
next statement, so subsequent search conditions are not evaluated.

If none of the search conditions yields TRUE, the ELSE clause is executed. The ELSE 
clause is optional. However, if you omit the ELSE clause, PL/SQL adds the following 
implicit ELSE clause:

ELSE RAISE CASE_NOT_FOUND;

Exceptions raised during the execution of a searched CASE statement are handled in 
the usual way. That is, normal execution stops and control transfers to the 
exception-handling part of your PL/SQL block or subprogram.

Guidelines for IF and CASE Statements
Avoid clumsy IF statements like those in the following example:

IF new_balance < minimum_balance THEN
  overdrawn := TRUE;
ELSE
  overdrawn := FALSE;
END IF;
IF overdrawn = TRUE THEN
  RAISE insufficient_funds;
END IF;



Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

4-8 Oracle Database PL/SQL Language Reference

The value of a Boolean expression can be assigned directly to a Boolean variable. You 
can replace the first IF statement with a simple assignment:

overdrawn := new_balance < minimum_balance;

A Boolean variable is itself either true or false. You can simplify the condition in the 
second IF statement:

IF overdrawn THEN ...

When possible, use the ELSIF clause instead of nested IF statements. Your code will 
be easier to read and understand. Compare the following IF statements:

IF condition1 THEN statement1;
  ELSE IF condition2 THEN statement2;
    ELSE IF condition3 THEN statement3; END IF;
  END IF;
END IF;
IF condition1 THEN statement1;
  ELSIF condition2 THEN statement2;
  ELSIF condition3 THEN statement3;
END IF;

These statements are logically equivalent, but the second statement makes the logic 
clearer.

To compare a single expression to multiple values, you can simplify the logic by using 
a single CASE statement instead of an IF with several ELSIF clauses.

Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)
A LOOP statement executes a sequence of statements multiple times. PL/SQL provides 
the following loop statements:

■ Basic LOOP

■ WHILE LOOP

■ FOR LOOP

■ Cursor FOR LOOP

To exit a loop, PL/SQL provides the following statements:

■ EXIT

■ EXIT-WHEN

To exit the current iteration of a loop, PL/SQL provides the following statements:

■ CONTINUE

■ CONTINUE-WHEN

You can put EXIT and CONTINUE statements anywhere inside a loop, but not outside 
a loop. To complete a PL/SQL block before it reaches its normal end, use the RETURN 
statement (see RETURN Statement on page 8-4).

For the syntax of the LOOP, EXIT, and CONTINUE statements, see Chapter 13, 
"PL/SQL Language Elements."

Topics:

■ Using the Basic LOOP Statement

■ Using the EXIT Statement



Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

Using PL/SQL Control Structures 4-9

■ Using the EXIT-WHEN Statement

■ Using the CONTINUE Statement

■ Using the CONTINUE-WHEN Statement

■ Labeling a PL/SQL Loop

■ Using the WHILE-LOOP Statement

■ Using the FOR-LOOP Statement

For information about the cursor FOR-LOOP, see Cursor FOR LOOP on page 6-18.

Using the Basic LOOP Statement
The simplest LOOP statement is the basic loop, which encloses a sequence of 
statements between the keywords LOOP and END LOOP, as follows:

LOOP
  sequence_of_statements
END LOOP;

With each iteration of the loop, the sequence of statements is executed, then control 
resumes at the top of the loop.

You can use CONTINUE and CONTINUE-WHEN statements in a basic loop, but to 
prevent an infinite loop, you must use an EXIT or EXIT-WHEN statement.

For the syntax of the basic loop, see LOOP Statements on page 13-79.

Using the EXIT Statement
When an EXIT statement is encountered, the loop completes immediately and control 
passes to the statement immediately after END LOOP, as Example 4–9 shows.

For the syntax of the EXIT statement, see EXIT Statement on page 13-45.

Example 4–9 EXIT Statement

SQL> DECLARE
  2    x NUMBER := 0;
  3  BEGIN
  4    LOOP
  5      DBMS_OUTPUT.PUT_LINE
  6        ('Inside loop:  x = ' || TO_CHAR(x));
  7  
  8      x := x + 1;
  9  
 10      IF x > 3 THEN
 11        EXIT;
 12      END IF;
 13    END LOOP;
 14    -- After EXIT, control resumes here
 15  
 16    DBMS_OUTPUT.PUT_LINE
 17      (' After loop:  x = ' || TO_CHAR(x));
 18  END;
 19  /
Inside loop:  x = 0
Inside loop:  x = 1
Inside loop:  x = 2
Inside loop:  x = 3



Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

4-10 Oracle Database PL/SQL Language Reference

After loop:  x = 4
 
PL/SQL procedure successfully completed.
 
SQL>

Using the EXIT-WHEN Statement
When an EXIT-WHEN statement is encountered, the condition in the WHEN clause is 
evaluated. If the condition is true, the loop completes and control passes to the 
statement immediately after END LOOP. Until the condition is true, the EXIT-WHEN 
statement acts like a NULL statement (except for the evaluation of its condition) and 
does not terminate the loop. A statement inside the loop must change the value of the 
condition, as in Example 4–10.

The EXIT-WHEN statement replaces a statement of the form IF ... THEN ... EXIT. 
Example 4–10 is logically equivalent to Example 4–9.

For the syntax of the EXIT-WHEN statement, see EXIT Statement on page 13-45.

Example 4–10 Using an EXIT-WHEN Statement

SQL> DECLARE
  2    x NUMBER := 0;
  3  BEGIN
  4    LOOP
  5      DBMS_OUTPUT.PUT_LINE
  6        ('Inside loop:  x = ' || TO_CHAR(x));
  7  
  8      x := x + 1;
  9  
 10      EXIT WHEN x > 3;
 11    END LOOP;
 12  
 13    -- After EXIT statement, control resumes here
 14    DBMS_OUTPUT.PUT_LINE
 15      ('After loop:  x = ' || TO_CHAR(x));
 16  END;
 17  /
Inside loop:  x = 0
Inside loop:  x = 1
Inside loop:  x = 2
Inside loop:  x = 3
After loop:  x = 4
 
PL/SQL procedure successfully completed.
 
SQL>

Using the CONTINUE Statement
When a CONTINUE statement is encountered, the current iteration of the loop 
completes immediately and control passes to the next iteration of the loop, as in 
Example 4–11.

A CONTINUE statement cannot cross a subprogram or method boundary.

For the syntax of the CONTINUE statement, see CONTINUE Statement on page 13-31.



Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

Using PL/SQL Control Structures 4-11

Example 4–11 CONTINUE Statement

SQL> DECLARE
  2    x NUMBER := 0;
  3  BEGIN
  4    LOOP -- After CONTINUE statement, control resumes here
  5      DBMS_OUTPUT.PUT_LINE ('Inside loop:  x = ' || TO_CHAR(x));
  6      x := x + 1;
  7  
  8      IF x < 3 THEN
  9        CONTINUE;
 10      END IF;
 11  
 12      DBMS_OUTPUT.PUT_LINE
 13        ('Inside loop, after CONTINUE:  x = ' || TO_CHAR(x));
 14  
 15      EXIT WHEN x = 5;
 16    END LOOP;
 17  
 18    DBMS_OUTPUT.PUT_LINE (' After loop:  x = ' || TO_CHAR(x));
 19  END;
 20  /
Inside loop:  x = 0
Inside loop:  x = 1
Inside loop:  x = 2
Inside loop, after CONTINUE:  x = 3
Inside loop:  x = 3
Inside loop, after CONTINUE:  x = 4
Inside loop:  x = 4
Inside loop, after CONTINUE:  x = 5
After loop:  x = 5
 
PL/SQL procedure successfully completed.
 
SQL>

Using the CONTINUE-WHEN Statement
When a CONTINUE-WHEN statement is encountered, the condition in the WHEN clause 
is evaluated. If the condition is true, the current iteration of the loop completes and 
control passes to the next iteration. Until the condition is true, the CONTINUE-WHEN 
statement acts like a NULL statement (except for the evaluation of its condition) and 
does not terminate the iteration. However, the value of the condition can vary from 
iteration to iteration, so that the CONTINUE terminates some iterations and not others.

The CONTINUE-WHEN statement replaces a statement of the form IF ... THEN ... 
CONTINUE. Example 4–12 is logically equivalent to Example 4–11.

A CONTINUE-WHEN statement cannot cross a subprogram or method boundary.

For the syntax of the CONTINUE-WHEN statement, see CONTINUE Statement on 
page 13-31.

Example 4–12 CONTINUE-WHEN Statement

SQL> DECLARE

Note: As of Release 11.1, CONTINUE is a PL/SQL keyword. If your 
program invokes a subprogram named CONTINUE, you will get a 
warning.



Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

4-12 Oracle Database PL/SQL Language Reference

  2    x NUMBER := 0;
  3  BEGIN
  4    LOOP -- After CONTINUE statement, control resumes here
  5      DBMS_OUTPUT.PUT_LINE ('Inside loop:  x = ' || TO_CHAR(x));
  6      x := x + 1;
  7      CONTINUE WHEN x < 3;
  8      DBMS_OUTPUT.PUT_LINE
  9        ('Inside loop, after CONTINUE:  x = ' || TO_CHAR(x));
 10      EXIT WHEN x = 5;
 11    END LOOP;
 12    DBMS_OUTPUT.PUT_LINE (' After loop:  x = ' || TO_CHAR(x));
 13  END;
 14  /
Inside loop:  x = 0
Inside loop:  x = 1
Inside loop:  x = 2
Inside loop, after CONTINUE:  x = 3
Inside loop:  x = 3
Inside loop, after CONTINUE:  x = 4
Inside loop:  x = 4
Inside loop, after CONTINUE:  x = 5
After loop:  x = 5
 
PL/SQL procedure successfully completed.
 
SQL>

Labeling a PL/SQL Loop
Like PL/SQL blocks, loops can be labeled. The optional label, an undeclared identifier 
enclosed by double angle brackets, must appear at the beginning of the LOOP 
statement. The label name can also appear at the end of the LOOP statement. When you 
nest labeled loops, use ending label names to improve readability.

With either form of EXIT statement, you can exit not only the current loop, but any 
enclosing loop. Simply label the enclosing loop that you want to exit. Then, use the 
label in an EXIT statement, as in Example 4–13. Every enclosing loop up to and 
including the labeled loop is exited.

With either form of CONTINUE statement, you can complete the current iteration of the 
labeled loop and exit any enclosed loops.

Example 4–13 Labeled Loops

SQL> DECLARE
  2    s  PLS_INTEGER := 0;
  3    i  PLS_INTEGER := 0;
  4    j  PLS_INTEGER;
  5  BEGIN
  6    <<outer_loop>>
  7    LOOP
  8      i := i + 1;
  9      j := 0;
 10      <<inner_loop>>
 11      LOOP
 12        j := j + 1;
 13        s := s + i * j; -- Sum several products
 14        EXIT inner_loop WHEN (j > 5);
 15        EXIT outer_loop WHEN ((i * j) > 15);
 16      END LOOP inner_loop;



Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

Using PL/SQL Control Structures 4-13

 17    END LOOP outer_loop;
 18    DBMS_OUTPUT.PUT_LINE
 19      ('The sum of products equals: ' || TO_CHAR(s));
 20  END;
 21  /
The sum of products equals: 166
 
PL/SQL procedure successfully completed.
 
SQL>

Using the WHILE-LOOP Statement
The WHILE-LOOP statement executes the statements in the loop body as long as a 
condition is true:

WHILE condition LOOP
  sequence_of_statements
END LOOP;

Before each iteration of the loop, the condition is evaluated. If it is TRUE, the sequence 
of statements is executed, then control resumes at the top of the loop. If it is FALSE or 
NULL, the loop is skipped and control passes to the next statement. See Example 1–12 
on page 1-15 for an example using the WHILE-LOOP statement.

The number of iterations depends on the condition and is unknown until the loop 
completes. The condition is tested at the top of the loop, so the sequence might execute 
zero times. 

Some languages have a LOOP UNTIL or REPEAT UNTIL structure, which tests the 
condition at the bottom of the loop instead of at the top, so that the sequence of 
statements is executed at least once. The equivalent in PL/SQL is:

LOOP
  sequence_of_statements
  EXIT WHEN boolean_expression
END LOOP;

To ensure that a WHILE loop executes at least once, use an initialized Boolean variable 
in the condition, as follows:

done := FALSE;
WHILE NOT done LOOP
  sequence_of_statements
  done := boolean_expression
END LOOP;

A statement inside the loop must assign a new value to the Boolean variable to avoid 
an infinite loop.

Using the FOR-LOOP Statement
Simple FOR loops iterate over a specified range of integers (lower_bound .. upper_
bound). The number of iterations is known before the loop is entered. The range is 
evaluated when the FOR loop is first entered and is never re-evaluated. If lower_
bound equals upper_bound, the loop body is executed once.

As Example 4–14 shows, the sequence of statements is executed once for each integer 
in the range 1 to 500. After each iteration, the loop counter is incremented.



Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

4-14 Oracle Database PL/SQL Language Reference

Example 4–14 Simple FOR-LOOP Statement

SQL> BEGIN
  2    FOR i IN 1..3 LOOP
  3      DBMS_OUTPUT.PUT_LINE (TO_CHAR(i));
  4    END LOOP;
  5  END;
  6  /
1
2
3
 
PL/SQL procedure successfully completed.
 
SQL>

By default, iteration proceeds upward from the lower bound to the higher bound. If 
you use the keyword REVERSE, iteration proceeds downward from the higher bound 
to the lower bound. After each iteration, the loop counter is decremented. You still 
write the range bounds in ascending (not descending) order.

Example 4–15 Reverse FOR-LOOP Statement

SQL> BEGIN
  2    FOR i IN REVERSE 1..3 LOOP
  3      DBMS_OUTPUT.PUT_LINE (TO_CHAR(i));
  4    END LOOP;
  5  END;
  6  /
3
2
1
 
PL/SQL procedure successfully completed.
 
SQL>

Inside a FOR loop, the counter can be read but cannot be changed. For example:

SQL> BEGIN
  2    FOR i IN 1..3 LOOP
  3      IF i < 3 THEN
  4         DBMS_OUTPUT.PUT_LINE (TO_CHAR(i));
  5      ELSE
  6         i := 2;
  7      END IF;
  8    END LOOP;
  9  END;
 10  /
       i := 2;
       *
ERROR at line 6:
ORA-06550: line 6, column 8:
PLS-00363: expression 'I' cannot be used as an assignment target
ORA-06550: line 6, column 8:
PL/SQL: Statement ignored
 
SQL>



Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

Using PL/SQL Control Structures 4-15

A useful variation of the FOR loop uses a SQL query instead of a range of integers. 
This technique lets you run a query and process all the rows of the result set with 
straightforward syntax. For details, see Cursor FOR LOOP on page 6-18.

Topics:

■ How PL/SQL Loops Repeat

■ Dynamic Ranges for Loop Bounds

■ Scope of the Loop Counter Variable

■ Using the EXIT Statement in a FOR Loop

How PL/SQL Loops Repeat
The bounds of a loop range can be either literals, variables, or expressions, but they 
must evaluate to numbers. Otherwise, PL/SQL raises the predefined exception 
VALUE_ERROR. The lower bound need not be 1, but the loop counter increment or 
decrement must be 1.

Example 4–16 Several Types of FOR-LOOP Bounds

SQL> DECLARE
  2    first  INTEGER := 1;
  3    last   INTEGER := 10;
  4    high   INTEGER := 100;
  5    low    INTEGER := 12;
  6  BEGIN
  7    -- Bounds are numeric literals:
  8  
  9    FOR j IN -5..5 LOOP
 10      NULL;
 11    END LOOP;
 12  
 13    -- Bounds are numeric variables:
 14  
 15    FOR k IN REVERSE first..last LOOP
 16      NULL;
 17    END LOOP;
 18  
 19    -- Lower bound is numeric literal,
 20    -- Upper bound is numeric expression:
 21  
 22    FOR step IN 0..(TRUNC(high/low) * 2) LOOP
 23      NULL;
 24    END LOOP;
 25  END;
 26  /
 
PL/SQL procedure successfully completed.
 
SQL>

Internally, PL/SQL assigns the values of the bounds to temporary PLS_INTEGER 
variables, and, if necessary, rounds the values to the nearest integer. The magnitude 
range of a PLS_INTEGER is -2147483648 to 2147483647, represented in 32 bits. If a 
bound evaluates to a number outside that range, you get a numeric overflow error 
when PL/SQL attempts the assignment. See PLS_INTEGER and BINARY_INTEGER 
Data Types on page 3-2.



Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

4-16 Oracle Database PL/SQL Language Reference

Some languages provide a STEP clause, which lets you specify a different increment (5 
instead of 1, for example). PL/SQL has no such structure, but you can easily build one. 
Inside the FOR loop, simply multiply each reference to the loop counter by the new 
increment.

Example 4–17 assigns today's date to elements 5, 10, and 15 of an index-by table.

Example 4–17 Changing the Increment of the Counter in a FOR-LOOP Statement

SQL> DECLARE
  2    TYPE DateList IS TABLE OF DATE INDEX BY PLS_INTEGER;
  3    dates DateList;
  4  BEGIN
  5    FOR j IN 1..3 LOOP
  6      dates(j*5) := SYSDATE;
  7    END LOOP;
  8  END;
  9  /
 
PL/SQL procedure successfully completed.
 
SQL>

Dynamic Ranges for Loop Bounds
PL/SQL lets you specify the loop range at run time by using variables for bounds as 
shown in Example 4–18.

Example 4–18 Specifying a LOOP Range at Run Time

SQL> CREATE TABLE temp (
  2    emp_no NUMBER,
  3    email_addr VARCHAR2(50)
  4  );

Table created.

SQL> 
SQL> DECLARE
  2    emp_count NUMBER;
  3  BEGIN
  4    SELECT COUNT(employee_id) INTO emp_count
  5      FROM employees;
  6  
  7    FOR i IN 1..emp_count LOOP
  8      INSERT INTO temp
  9        VALUES(i, 'to be added later');
 10    END LOOP;
 11  END;
 12  /
 
PL/SQL procedure successfully completed.
 
SQL>

If the lower bound of a loop range is larger than the upper bound, the loop body is not 
executed and control passes to the next statement, as Example 4–19 shows.

Example 4–19 FOR-LOOP with Lower Bound > Upper Bound

SQL> CREATE OR REPLACE PROCEDURE p



Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

Using PL/SQL Control Structures 4-17

  2    (limit IN INTEGER) IS
  3  BEGIN
  4    FOR i IN 2..limit LOOP
  5      DBMS_OUTPUT.PUT_LINE
  6        ('Inside loop, limit is ' || i);
  7    END LOOP;
  8  
  9    DBMS_OUTPUT.PUT_LINE
 10        ('Outside loop, limit is ' || TO_CHAR(limit));
 11  END;
 12  /
 
Procedure created.
 
SQL> BEGIN
  2    p(3);
  3  END;
  4  /
Inside loop, limit is 2
Inside loop, limit is 3
Outside loop, limit is 3
 
PL/SQL procedure successfully completed.
 
SQL> BEGIN
  2    p(1);
  3  END;
  4  /
Outside loop, limit is 1
 
PL/SQL procedure successfully completed.
 
SQL>

Scope of the Loop Counter Variable
The loop counter is defined only within the loop. You cannot reference that variable 
name outside the loop. After the loop exits, the loop counter is undefined, 
asExample 4–20 shows.

Example 4–20 Referencing Counter Variable Outside Loop

SQL> BEGIN
  2    FOR i IN 1..3 LOOP
  3      DBMS_OUTPUT.PUT_LINE
  4        ('Inside loop, i is ' || TO_CHAR(i));
  5    END LOOP;
  6  
  7    DBMS_OUTPUT.PUT_LINE
  8      ('Outside loop, i is ' || TO_CHAR(i));
  9  END;
 10  /
    ('Outside loop, i is ' || TO_CHAR(i));
                                      *
ERROR at line 8:
ORA-06550: line 8, column 39:
PLS-00201: identifier 'I' must be declared
ORA-06550: line 7, column 3:
PL/SQL: Statement ignored
 



Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

4-18 Oracle Database PL/SQL Language Reference

SQL>

You need not declare the loop counter because it is implicitly declared as a local 
variable of type INTEGER. It is safest not to give a loop variable the same name as an 
existing variable, because the local declaration hides the global declaration, as 
Example 4–21 shows.

Example 4–21 Using Existing Variable as Loop Variable

SQL> DECLARE
  2    i NUMBER := 5;
  3  BEGIN
  4    FOR i IN 1..3 LOOP
  5      DBMS_OUTPUT.PUT_LINE
  6        ('Inside loop, i is ' || TO_CHAR(i));
  7    END LOOP;
  8  
  9    DBMS_OUTPUT.PUT_LINE
 10        ('Outside loop, i is ' || TO_CHAR(i));
 11  END;
 12  /
Inside loop, i is 1
Inside loop, i is 2
Inside loop, i is 3
Outside loop, i is 5
 
PL/SQL procedure successfully completed.
 
SQL>

To reference the global variable in Example 4–21, you must use a label and dot 
notation, as in Example 4–22.

Example 4–22 Referencing Global Variable with Same Name as Loop Counter

SQL> <<main>>
  2  DECLARE
  3    i NUMBER := 5;
  4  BEGIN
  5    FOR i IN 1..3 LOOP
  6      DBMS_OUTPUT.PUT_LINE
  7        ('local: ' || TO_CHAR(i) || ', global: ' || TO_CHAR(main.i));
  8    END LOOP;
  9  END main;
 10  /
local: 1, global: 5
local: 2, global: 5
local: 3, global: 5
 
PL/SQL procedure successfully completed.
 
SQL>

The same scope rules apply to nested FOR loops. In Example 4–23, the inner and outer 
loop counters have the same name, and the inner loop uses a label and dot notation to 
reference the counter of the outer loop.

Example 4–23 Referencing Outer Counter with Same Name as Inner Counter

SQL> BEGIN



Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)

Using PL/SQL Control Structures 4-19

  2  <<outer_loop>>
  3    FOR i IN 1..3 LOOP
  4      <<inner_loop>>
  5      FOR i IN 1..3 LOOP
  6        IF outer_loop.i = 2 THEN
  7          DBMS_OUTPUT.PUT_LINE
  8            ( 'outer: ' || TO_CHAR(outer_loop.i) || ' inner: '
  9              || TO_CHAR(inner_loop.i));
 10        END IF;
 11      END LOOP inner_loop;
 12    END LOOP outer_loop;
 13  END;
 14  /
outer: 2 inner: 1
outer: 2 inner: 2
outer: 2 inner: 3
 
PL/SQL procedure successfully completed.
 
SQL>

Using the EXIT Statement in a FOR Loop
The EXIT statement lets a FOR loop complete early. In Example 4–24, the loop 
normally executes ten times, but as soon as the FETCH statement fails to return a row, 
the loop completes no matter how many times it has executed.

Example 4–24 EXIT in a FOR LOOP

SQL> DECLARE
  2     v_employees employees%ROWTYPE;
  3     CURSOR c1 is SELECT * FROM employees;
  4  BEGIN
  5    OPEN c1;
  6    -- Fetch entire row into v_employees record:
  7    FOR i IN 1..10 LOOP
  8      FETCH c1 INTO v_employees;
  9      EXIT WHEN c1%NOTFOUND;
 10      -- Process data here
 11    END LOOP;
 12    CLOSE c1;
 13  END;
 14  /
 
PL/SQL procedure successfully completed.
 
SQL>

Suppose you must exit early from a nested FOR loop. To complete not only the current 
loop, but also any enclosing loop, label the enclosing loop and use the label in an EXIT 
statement as shown in Example 4–25. To complete the current iteration of the labeled 
loop and exit any enclosed loops, use a label in a CONTINUE statement.

Example 4–25 EXIT with a Label in a FOR LOOP

SQL> DECLARE
  2     v_employees employees%ROWTYPE;
  3     CURSOR c1 is SELECT * FROM employees;
  4  BEGIN
  5    OPEN c1;



Sequential Control (GOTO and NULL Statements)

4-20 Oracle Database PL/SQL Language Reference

  6  
  7    -- Fetch entire row into v_employees record:
  8    <<outer_loop>>
  9    FOR i IN 1..10 LOOP
 10      -- Process data here
 11      FOR j IN 1..10 LOOP
 12        FETCH c1 INTO v_employees;
 13        EXIT outer_loop WHEN c1%NOTFOUND;
 14        -- Process data here
 15      END LOOP;
 16    END LOOP outer_loop;
 17  
 18    CLOSE c1;
 19  END;
 20  /
 
PL/SQL procedure successfully completed.
 
SQL>

Sequential Control (GOTO and NULL Statements)
Unlike the IF and LOOP statements, the GOTO and NULL statements are not crucial to 
PL/SQL programming. The GOTO statement is seldom needed. Occasionally, it can 
simplify logic enough to warrant its use. The NULL statement can improve readability 
by making the meaning and action of conditional statements clear. 

Overuse of GOTO statements can result in code that is hard to understand and 
maintain. Use GOTO statements sparingly. For example, to branch from a deeply nested 
structure to an error-handling routine, raise an exception rather than use a GOTO 
statement. PL/SQL's exception-handling mechanism is explained in Chapter 11, 
"Handling PL/SQL Errors."

Topics:

■ Using the GOTO Statement

■ GOTO Statement Restrictions

■ Using the NULL Statement

Using the GOTO Statement
The GOTO statement branches to a label unconditionally. The label must be unique 
within its scope and must precede an executable statement or a PL/SQL block. When 
executed, the GOTO statement transfers control to the labeled statement or block.

Example 4–26 Simple GOTO Statement

SQL> DECLARE
  2    p  VARCHAR2(30);
  3    n  PLS_INTEGER := 37;
  4  BEGIN
  5    FOR j in 2..ROUND(SQRT(n)) LOOP
  6      IF n MOD j = 0 THEN
  7        p := ' is not a prime number';
  8        GOTO print_now;
  9      END IF;
 10    END LOOP;
 11  



Sequential Control (GOTO and NULL Statements)

Using PL/SQL Control Structures 4-21

 12    p := ' is a prime number';
 13  
 14    <<print_now>>
 15    DBMS_OUTPUT.PUT_LINE(TO_CHAR(n) || p);
 16  END;
 17  /
37 is a prime number
 
PL/SQL procedure successfully completed.
 
SQL>

A label can appear only before a block (as in Example 4–22) or before a statement (as in 
Example 4–26), not within a statement, as in Example 4–27.

Example 4–27 Incorrect Label Placement

SQL> DECLARE
  2    done  BOOLEAN;
  3  BEGIN
  4    FOR i IN 1..50 LOOP
  5      IF done THEN
  6        GOTO end_loop;
  7      END IF;
  8      <<end_loop>>
  9    END LOOP;
 10  END;
 11  /
  END LOOP;
  *
ERROR at line 9:
ORA-06550: line 9, column 3:
PLS-00103: Encountered the symbol "END" when expecting one of the following:
( begin case declare exit for goto if loop mod null raise
return select update while with <an identifier>
<a double-quoted delimited-identifier> <a bind variable> <<
continue close current delete fetch lock insert open rollback
savepoint set sql execute commit forall merge pipe purge
 
SQL>

To correct Example 4–27, add a NULL statement, as in Example 4–28.

Example 4–28 Using a NULL Statement to Allow a GOTO to a Label

SQL> DECLARE
  2    done  BOOLEAN;
  3  BEGIN
  4    FOR i IN 1..50 LOOP
  5      IF done THEN
  6        GOTO end_loop;
  7      END IF;
  8      <<end_loop>>
  9      NULL;
 10    END LOOP;
 11  END;
 12  /
 
PL/SQL procedure successfully completed.
 



Sequential Control (GOTO and NULL Statements)

4-22 Oracle Database PL/SQL Language Reference

SQL>

A GOTO statement can branch to an enclosing block from the current block, as in 
Example 4–29.

Example 4–29 Using a GOTO Statement to Branch to an Enclosing Block

SQL> DECLARE
  2    v_last_name  VARCHAR2(25);
  3    v_emp_id     NUMBER(6) := 120;
  4  BEGIN
  5    <<get_name>>
  6    SELECT last_name INTO v_last_name
  7      FROM employees
  8        WHERE employee_id = v_emp_id;
  9  
 10    BEGIN
 11      DBMS_OUTPUT.PUT_LINE (v_last_name);
 12      v_emp_id := v_emp_id + 5;
 13  
 14      IF v_emp_id < 120 THEN
 15        GOTO get_name;
 16      END IF;
 17    END;
 18  END;
 19  /
Weiss
 
PL/SQL procedure successfully completed.
 
SQL>

The GOTO statement branches to the first enclosing block in which the referenced label 
appears.

GOTO Statement Restrictions
■ A GOTO statement cannot branch into an IF statement, CASE statement, LOOP 

statement, or sub-block.

■ A GOTO statement cannot branch from one IF statement clause to another, or from 
one CASE statement WHEN clause to another.

■ A GOTO statement cannot branch from an outer block into a sub-block (that is, an 
inner BEGIN-END block).

■ A GOTO statement cannot branch out of a subprogram. To end a subprogram early, 
either use the RETURN statement or have GOTO branch to a place right before the 
end of the subprogram.

■ A GOTO statement cannot branch from an exception handler back into the current 
BEGIN-END block. However, a GOTO statement can branch from an exception 
handler into an enclosing block.

The GOTO statement in Example 4–30 branches into an IF statement, causing an error.

Example 4–30 GOTO Statement Cannot Branch into IF Statement

SQL> DECLARE
  2    valid BOOLEAN := TRUE;
  3  BEGIN



Sequential Control (GOTO and NULL Statements)

Using PL/SQL Control Structures 4-23

  4    GOTO update_row;
  5  
  6    IF valid THEN
  7      <<update_row>>
  8      NULL;
  9    END IF;
 10  END;
 11  /
  GOTO update_row;
  *
ERROR at line 4:
ORA-06550: line 4, column 3:
PLS-00375: illegal GOTO statement; this GOTO cannot branch to label
'UPDATE_ROW'
ORA-06550: line 6, column 12:
PL/SQL: Statement ignored
 
 
SQL>

Using the NULL Statement
The NULL statement does nothing except pass control to the next statement. Some 
languages refer to such an instruction as a no-op (no operation). For its syntax, see 
NULL Statement on page 13-84.

In Example 4–31, the NULL statement emphasizes that only salespersons receive 
commissions.

Example 4–31 Using the NULL Statement to Show No Action

SQL> DECLARE
  2    v_job_id  VARCHAR2(10);
  3    v_emp_id  NUMBER(6) := 110;
  4  BEGIN
  5    SELECT job_id INTO v_job_id
  6      FROM employees
  7        WHERE employee_id = v_emp_id;
  8  
  9    IF v_job_id = 'SA_REP' THEN
 10      UPDATE employees
 11        SET commission_pct = commission_pct * 1.2;
 12    ELSE
 13      NULL;  -- Employee is not a sales rep
 14    END IF;
 15  END;
 16  /
 
PL/SQL procedure successfully completed.
 
SQL>

The NULL statement is a handy way to create placeholders and stub subprograms. In 
Example 4–32, the NULL statement lets you compile this subprogram, then fill in the 
real body later. Using the NULL statement might raise an unreachable code warning 
if warnings are enabled. See Overview of PL/SQL Compile-Time Warnings on 
page 11-19.



Sequential Control (GOTO and NULL Statements)

4-24 Oracle Database PL/SQL Language Reference

Example 4–32 Using NULL as a Placeholder When Creating a Subprogram

SQL> CREATE OR REPLACE PROCEDURE award_bonus
  2    (emp_id NUMBER,
  3     bonus NUMBER) AS
  4  BEGIN    -- Executable part starts here
  5    NULL;  -- Placeholder
  6           -- (raises "unreachable code" if warnings enabled)
  7  END award_bonus;
  8  /
 
Procedure created.
 
SQL>

You can use the NULL statement to indicate that you are aware of a possibility, but that 
no action is necessary. In Example 4–33, the NULL statement shows that you have 
chosen not to take any action for unnamed exceptions.

Example 4–33 Using the NULL Statement in WHEN OTHER Clause

SQL> CREATE OR REPLACE FUNCTION f
  2    (a INTEGER,
  3     b INTEGER)
  4    RETURN INTEGER
  5  AS
  6  BEGIN
  7    RETURN (a/b);
  8  EXCEPTION
  9    WHEN ZERO_DIVIDE THEN
 10      ROLLBACK;
 11    WHEN OTHERS THEN
 12      NULL;
 13  END;
 14  /
 
Function created.
 
SQL>

See Example 1–16, "Creating a Standalone PL/SQL Procedure" on page 1-18.



5

Using PL/SQL Collections and Records 5-1

5 Using PL/SQL Collections and Records

This chapter explains how to create and use PL/SQL collection and record variables. 
These composite variables have internal components that you can treat as individual 
variables. You can pass composite variables to subprograms as a parameters.

To create a collection or record variable, you first define a collection or record type, 
and then you declare a variable of that type. In this book, collection or record means 
both the type and the variables of that type, unless otherwise noted.

In a collection, the internal components are always of the same data type, and are 
called elements. You access each element by its unique subscript. Lists and arrays are 
classic examples of collections. 

In a record, the internal components can be of different data types, and are called 
fields. You access each field by its name. A record variable can hold a table row, or 
some columns from a table row. Each record field corresponds to a table column. 

Collections topics:

■ Understanding PL/SQL Collection Types

■ Choosing PL/SQL Collection Types

■ Defining Collection Types

■ Declaring Collection Variables

■ Initializing and Referencing Collections

■ Referencing Collection Elements

■ Assigning Values to Collections

■ Comparing Collections

■ Using Multidimensional Collections

■ Using Collection Methods

■ Avoiding Collection Exceptions

Records topics:

■ Defining and Declaring Records

■ Using Records as Subprogram Parameters and Function Return Values

■ Assigning Values to Records

Understanding PL/SQL Collection Types
PL/SQL has three collection types, whose characteristics are summarized in Table 5–1.



Understanding PL/SQL Collection Types

5-2 Oracle Database PL/SQL Language Reference

Unbounded means that, theoretically, there is no limit to the number of elements in 
the collection. Actually, there are limits, but they are very high—for details, see 
Referencing Collection Elements on page 5-12.

Dense means that the collection has no gaps between elements—every element 
between the first and last element is defined and has a value (which can be NULL).

A collection that is created in a PL/SQL block (with the syntax in Collection on 
page 13-19) is available only in that block. A nested table type or varray type that is 
created at schema level (with the CREATE TYPE Statement on page 14-60) is stored in 
the database, and you can manipulate it with SQL statements.

A collection has only one dimension, but you can model a multidimensional collection 
by creating a collection whose elements are also collections. For examples, see Using 
Multidimensional Collections on page 5-19.

Topics:

■ Understanding Associative Arrays (Index-By Tables)

■ Understanding Nested Tables

■ Understanding Variable-Size Arrays (Varrays)

Understanding Associative Arrays (Index-By Tables)
An associative array (also called an index-by table) is a set of key-value pairs. Each key 
is unique, and is used to locate the corresponding value. The key can be either an 
integer or a string. 

Using a key-value pair for the first time adds that pair to the associative array. Using 
the same key with a different value changes the value. 

Example 5–1 declares an associative array that is indexed by a string, populates it, and 
prints it. 

Example 5–1 Declaring and Using an Associative Array

SQL> DECLARE
  2    -- Associative array indexed by string:
  3  
  4    TYPE population IS TABLE OF NUMBER  -- Associative array type
  5      INDEX BY VARCHAR2(64);
  6  
  7    city_population  population;        -- Associative array variable
  8    i                VARCHAR2(64);

Table 5–1 Characteristics of PL/SQL Collection Types

Collection Type
Number of 
Elements

Subscript 
Type

Dense or 
Sparse

Where 
Created

Can Be Object 
Type Attribute

Associative array 
(or index-by table)

Unbounded String or 
integer

Either Only in 
PL/SQL block

No

Nested table Unbounded Integer Starts dense, 
can become 
sparse

Either in 
PL/SQL block 
or at schema 
level

Yes

Variable-size array 
(varray)

Bounded Integer Always 
dense

Either in 
PL/SQL block 
or at schema 
level

Yes



Understanding PL/SQL Collection Types

Using PL/SQL Collections and Records 5-3

  9  
 10  BEGIN
 11    -- Add new elements to associative array:
 12  
 13    city_population('Smallville')  := 2000;
 14    city_population('Midland')     := 750000;
 15    city_population('Megalopolis') := 1000000;
 16  
 17    -- Change value associated with key 'Smallville':
 18  
 19    city_population('Smallville') := 2001;
 20  
 21    -- Print associative array:
 22  
 23    i := city_population.FIRST;
 24  
 25    WHILE i IS NOT NULL LOOP
 26      DBMS_Output.PUT_LINE
 27        ('Population of ' || i || ' is ' || TO_CHAR(city_population(i)));
 28      i := city_population.NEXT(i);
 29    END LOOP;
 30  END;
 31  /
Population of Megalopolis is 1000000
Population of Midland is 750000
Population of Smallville is 2001
 
PL/SQL procedure successfully completed.
 
SQL>

Like a database table, an associative array holds a data set of arbitrary size, and you 
can access its elements without knowing their positions in the array. An associative 
array does not need the disk space or network operations of a database table, but an 
associative array cannot be manipulated by SQL statements (such as INSERT and 
DELETE). 

An associative array is intended for temporary data storage. To make an associative 
array persistent for the life of a database session, declare the associative array (the type 
and the variable of that type) in a package, and assign values to its elements in the 
package body.

Globalization Settings Can Affect String Keys of Associative Arrays
Associative arrays that are indexed by strings can be affected by globalization settings 
such as NLS_SORT, NLS_COMP, and NLS_DATE_FORMAT.

As Example 5–1 shows, string keys of an associative array are not stored in creation 
order, but in sorted order. Sorted order is determined by the initialization parameters 
NLS_SORT and NLS_COMP. If you change the setting of either of these parameters after 
populating an associated array, and then try to traverse the array, you might get an 
error when using a collection method such as NEXT or PRIOR. If you must change 
these settings during your session, set them back to their original values before 
performing further operations on associative arrays that are indexed by strings.

When you declare an associative array that is indexed by strings, the string type in the 
declaration must be VARCHAR2 or one of its subtypes. However, the key values with 
which you populate the array can be of any data type that can be converted to 
VARCHAR2 by the TO_CHAR function. 



Understanding PL/SQL Collection Types

5-4 Oracle Database PL/SQL Language Reference

If you use key values of data types other than VARCHAR2 and its subtypes, be sure that 
these key values will be consistent and unique even if the settings of initialization 
parameters change. For example:

■ Do not use TO_CHAR(SYSDATE) as a key value. If the NLS_DATE_FORMAT 
initialization parameter setting changes, array_element(TO_CHAR(SYSDATE)) 
might return a different result. 

■ Two different NVARCHAR2 values might be converted to the same VARCHAR2 value 
(containing question marks instead of certain national characters), in which case 
array_element(national_string1) and array_element(national_
string2) would refer to the same element. 

■ Two CHAR or VARCHAR2 values that differ only in case, accented characters, or 
punctuation characters might also be considered the same if the value of the NLS_
SORT initialization parameter ends in _CI (case-insensitive comparisons) or _AI 
(accent- and case-insensitive comparisons).

When you pass an associative array as a parameter to a remote database using a 
database link, the two databases can have different globalization settings. When the 
remote database uses a collection method such as FIRST or NEXT, it uses its own 
character order, which might be different from the order where the collection 
originated. If character set differences mean that two keys that were unique are not 
unique on the remote database, the program raises a VALUE_ERROR exception.

Understanding Nested Tables
Conceptually, a nested table is like a one-dimensional array with an arbitrary number 
of elements.

Within the database, a nested table is a column type that holds a set of values. The 
database stores the rows of a nested table in no particular order. When you retrieve a 
nested table from the database into a PL/SQL variable, the rows are given consecutive 
subscripts starting at 1. These subscripts give you array-like access to individual rows.

A nested table differs from an array in these important ways:

■ An array has a declared number of elements, but a nested table does not. The size 
of a nested table can increase dynamically (however, a maximum limit is 
imposed—see Referencing Collection Elements on page 5-12).

■ An array is always dense (that is, it always has consecutive subcripts). A nested 
array is dense initially, but it can become sparse, because you can delete elements 
from it.

Figure 5–1 shows the important differences between a nested table and an array.

See Also: Oracle Database Globalization Support Guide for information 
about linguistic sort parameters



Choosing PL/SQL Collection Types

Using PL/SQL Collections and Records 5-5

Figure 5–1 Array and Nested Table

Understanding Variable-Size Arrays (Varrays)
A variable-size array (varray) is an item of the data type VARRAY. A varray has a 
maximum size, which you specify in its type definition. A varray can contain a 
varying number of elements, from zero (when empty) to the maximum size. A varray 
index has a fixed lower bound of 1 and an extensible upper bound. To access an 
element of a varray, you use standard subscripting syntax. 

Figure 5–2 shows a varray named Grades, which has maximum size 10 and contains 
seven elements. The current upper bound for Grades is 7, but you can increase it to 
the maximum of 10. Grades(n) references the nth element of Grades.

Figure 5–2 Varray of Size 10

Choosing PL/SQL Collection Types
If you already have code or business logic that uses another language, you can usually 
translate the array and set types of that language directly to PL/SQL collection types. 
For example:

■ Arrays in other languages become varrays in PL/SQL.

■ Sets and bags in other languages become nested tables in PL/SQL.

■ Hash tables and other unordered tables in other languages become associative 
arrays in PL/SQL.

When you are writing original code or designing original business logic, consider the 
characteristics of each collection type, and choose the best one for each situation.

Topics:

■ Choosing Between Nested Tables and Associative Arrays

■ Choosing Between Nested Tables and Varrays

Choosing Between Nested Tables and Associative Arrays
Nested tables and associative arrays differ in persistence and ease of parameter 
passing.

See Also: Table 5–1, " Characteristics of PL/SQL Collection Types"

Array of Integers

321

x(1)

17

x(2)

99

x(3)

407

x(4)

83

x(5)

622

x(6)

105

x(7)

19

x(8)

67

x(9)

278

x(10)

Fixed
Upper
Bound

Nested Table after Deletions

321

x(1)

17 99

x(3)

407

x(4)

83 622

x(6)

105

x(7)

19

x(8)

67 278

x(10)

Unbounded

Varray Grades

B

(1)

C

(2)

A

(3)

A

(4)

C

(5)

D

(6)

B

(7)

Maximum
Size = 10



Defining Collection Types

5-6 Oracle Database PL/SQL Language Reference

A nested table can be stored in a database column; therefore, you can use a nested 
table to simplify SQL operations in which you join a single-column table with a larger 
table. An associative array cannot be stored in the database.

An associative array is appropriate for the following:

■ A relatively small lookup table, where the collection can be constructed in memory 
each time a subprogram is invoked or a package is initialized

■ Passing collections to and from the database server

PL/SQL automatically converts between host arrays and associative arrays that 
use numeric key values. The most efficient way to pass collections to and from the 
database server is to set up data values in associative arrays, and then use those 
associative arrays with bulk constructs (the FORALL statement or BULK COLLECT 
clause).

Choosing Between Nested Tables and Varrays
Varrays are a good choice when:

■ The number of elements is known in advance.

■ The elements are usually accessed sequentially.

When stored in the database, varrays keep their ordering and subscripts.

A varray is stored as a single object. If a varray is less than 4 KB, it is stored inside the 
table of which it is a column; otherwise, it is stored outside the table but in the same 
tablespace. 

You must store or retrieve all elements of a varray at the same time, which is 
appropriate when operating on all the elements at once. However, this might be 
impractical for large numbers of elements. 

Nested tables are a good choice when:

■ Index values are not consecutive.

■ There is no set number of index values.

■ You must delete or update some elements, but not all elements at once.

■ You would create a separate lookup table, with multiple entries for each row of the 
main table, and access it through join queries.

Nested table data is stored in a separate store table, a system-generated database table. 
When you access a nested table, the database joins the nested table with its store table. 
This makes nested tables suitable for queries and updates that only affect some 
elements of the collection.

You cannot rely on the order and subscripts of a nested table remaining stable as the 
nested table is stored in and retrieved from the database, because the order and 
subscripts are not preserved in the database.

Defining Collection Types
To create a collection, you define a collection type and then declare variables of that 
type.

You can define a collection type either at schema level, inside a package, or inside a 
PL/SQL block. A collection type created at schema level is a standalone stored type. 



Defining Collection Types

Using PL/SQL Collections and Records 5-7

You create it with the CREATE TYPE statement. It is stored in the database until you 
drop it with the DROP TYPE statement.

A collection type created inside a package is a packaged type. It is stored in the 
database until you drop the package with the DROP PACKAGE statement.

A type created inside a PL/SQL block is available only inside that block, and is stored 
in the database only if that block is nested within a standalone or packaged 
subprogram.

Collections follow the same scoping and instantiation rules as other types and 
variables. Collections are instantiated when you enter a block or subprogram, and 
cease to exist when you exit. In a package, collections are instantiated when you first 
reference the package and cease to exist when you end the database session.

You can define TABLE and VARRAY types in the declarative part of any PL/SQL block, 
subprogram, or package using a TYPE definition.

For nested tables and varrays declared within PL/SQL, the element type of the table or 
varray can be any PL/SQL data type except REF CURSOR.

When defining a VARRAY type, you must specify its maximum size with a positive 
integer. In the following example, you define a type that stores up to 366 dates: 

DECLARE
   TYPE Calendar IS VARRAY(366) OF DATE;

Associative arrays let you insert elements using arbitrary key values. The keys need 
not be consecutive. 

The key data type can be PLS_INTEGER, VARCHAR2, or one of VARCHAR2 subtypes 
VARCHAR, STRING, or LONG.

You must specify the length of a VARCHAR2-based key, except for LONG which is 
equivalent to declaring a key type of VARCHAR2(32760). The types RAW, LONG RAW, 
ROWID, CHAR, and CHARACTER are not allowed as keys for an associative array. The 
LONG and LONG RAW data types are supported only for backward compatibility; see 
LONG and LONG RAW Data Types on page 3-14 for more information.

An initialization clause is not allowed. There is no constructor notation for associative 
arrays. When you reference an element of an associative array that uses a 
VARCHAR2-based key, you can use other types, such as DATE or TIMESTAMP, as long 
as they can be converted to VARCHAR2 with the TO_CHAR function.

Associative arrays can store data using a primary key value as the index, where the 
key values are not sequential. Example 5–2 creates a single element in an associative 
array, with a subscript of 100 rather than 1.

Example 5–2 Declaring an Associative Array

DECLARE
   TYPE EmpTabTyp IS TABLE OF employees%ROWTYPE
      INDEX BY PLS_INTEGER;
   emp_tab EmpTabTyp;
BEGIN
   /* Retrieve employee record. */
   SELECT * INTO emp_tab(100) FROM employees
     WHERE employee_id = 100;
END;
/



Declaring Collection Variables

5-8 Oracle Database PL/SQL Language Reference

Declaring Collection Variables
After defining a collection type, you declare variables of that type. You use the new 
type name in the declaration, the same as with predefined types such as NUMBER.

Example 5–3 Declaring Nested Tables, Varrays, and Associative Arrays

DECLARE
   TYPE nested_type IS TABLE OF VARCHAR2(30);
   TYPE varray_type IS VARRAY(5) OF INTEGER;
   TYPE assoc_array_num_type
     IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
   TYPE assoc_array_str_type
     IS TABLE OF VARCHAR2(32) INDEX BY PLS_INTEGER;
   TYPE assoc_array_str_type2
     IS TABLE OF VARCHAR2(32) INDEX BY VARCHAR2(64);
   v1 nested_type;
   v2 varray_type;
   v3 assoc_array_num_type;
   v4 assoc_array_str_type;
   v5 assoc_array_str_type2;
BEGIN
-- an arbitrary number of strings can be inserted v1
   v1 := nested_type('Shipping','Sales','Finance','Payroll'); 
   v2 := varray_type(1, 2, 3, 4, 5); -- Up to 5 integers
   v3(99) := 10; -- Just start assigning to elements
   v3(7) := 100; -- Subscripts can be any integer values
   v4(42) := 'Smith'; -- Just start assigning to elements
   v4(54) := 'Jones'; -- Subscripts can be any integer values
   v5('Canada') := 'North America';
     -- Just start assigning to elements
   v5('Greece') := 'Europe';
     -- Subscripts can be string values
END;
/

As shown in Example 5–4, you can use %TYPE to specify the data type of a previously 
declared collection, so that changing the definition of the collection automatically 
updates other variables that depend on the number of elements or the element type.

Example 5–4 Declaring Collections with %TYPE

DECLARE
  TYPE few_depts  IS VARRAY(10)  OF VARCHAR2(30);
  TYPE many_depts IS VARRAY(100) OF VARCHAR2(64);
  some_depts few_depts;

  /* If the type of some_depts changes from few_depts to many_depts,
     local_depts and global_depts will use the same type 
     when this block is recompiled */

  local_depts  some_depts%TYPE;
  global_depts some_depts%TYPE;
BEGIN

See Also:

■ Collection on page 13-19

■ CREATE TYPE Statement on page 14-60



Declaring Collection Variables

Using PL/SQL Collections and Records 5-9

  NULL;
END;
/

You can declare collections as the formal parameters of subprograms. That way, you 
can pass collections to stored subprograms and from one subprogram to another. 
Example 5–5 declares a nested table as a parameter of a packaged subprogram. 

Example 5–5 Declaring a Procedure Parameter as a Nested Table

CREATE PACKAGE personnel AS
   TYPE staff_list IS TABLE OF employees.employee_id%TYPE;
   PROCEDURE award_bonuses (empleos_buenos IN staff_list);
END personnel;
/

CREATE PACKAGE BODY personnel AS
 PROCEDURE award_bonuses (empleos_buenos staff_list) IS
  BEGIN
    FOR i IN empleos_buenos.FIRST..empleos_buenos.LAST
    LOOP
     UPDATE employees SET salary = salary + 100 
         WHERE employees.employee_id = empleos_buenos(i);
   END LOOP;
  END;
 END;
/

To invoke personnel.award_bonuses from outside the package, you declare a 
variable of type personnel.staff_list and pass that variable as the parameter.

Example 5–6 Invoking a Procedure with a Nested Table Parameter

DECLARE
  good_employees personnel.staff_list;
BEGIN
  good_employees :=  personnel.staff_list(100, 103, 107);
  personnel.award_bonuses (good_employees);
END;
/

You can also specify a collection type in the RETURN clause of a function specification.

To specify the element type, you can use %TYPE, which provides the data type of a 
variable or database column. Also, you can use %ROWTYPE, which provides the 
rowtype of a cursor or database table. See Example 5–7 and Example 5–8.

Example 5–7 Specifying Collection Element Types with %TYPE and %ROWTYPE

DECLARE
-- Nested table type that can hold an arbitrary number
--   of employee IDs.
-- The element type is based on a column from the EMPLOYEES table. 
-- You need not know whether the ID is a number or a string.
   TYPE EmpList IS TABLE OF employees.employee_id%TYPE;
-- Declare a cursor to select a subset of columns.
   CURSOR c1 IS SELECT employee_id FROM employees;
-- Declare an Array type that can hold information
--   about 10 employees.
-- The element type is a record that contains all the same



Initializing and Referencing Collections

5-10 Oracle Database PL/SQL Language Reference

-- fields as the EMPLOYEES table.
   TYPE Senior_Salespeople IS VARRAY(10) OF employees%ROWTYPE;
-- Declare a cursor to select a subset of columns.
   CURSOR c2 IS SELECT first_name, last_name FROM employees;
-- Array type that can hold a list of names. The element type
-- is a record that contains the same fields as the cursor
-- (that is, first_name and last_name).
   TYPE NameList IS VARRAY(20) OF c2%ROWTYPE;
BEGIN
   NULL;
END;
/

Example 5–8 uses a RECORD type to specify the element type. See Defining and 
Declaring Records on page 5-31.

Example 5–8 VARRAY of Records

DECLARE TYPE name_rec
  IS RECORD ( first_name VARCHAR2(20), last_name VARCHAR2(25));
   TYPE names IS VARRAY(250) OF name_rec;
BEGIN
   NULL;
END;
/
You can also impose a NOT NULL constraint on the element type, as shown in 
Example 5–9.

Example 5–9 NOT NULL Constraint on Collection Elements

DECLARE TYPE EmpList
  IS TABLE OF employees.employee_id%TYPE NOT NULL;
  v_employees EmpList := EmpList(100, 150, 160, 200);
BEGIN
   v_employees(3) := NULL; -- assigning NULL raises an exception
END;
/

Initializing and Referencing Collections
Until you initialize it, a nested table or varray is atomically null; the collection itself is 
null, not its elements. To initialize a nested table or varray, you use a constructor, a 
system-defined function with the same name as the collection type. This function 
constructs collections from the elements passed to it.

You must explicitly call a constructor for each varray and nested table variable. 
Associative arrays, the third kind of collection, do not use constructors. Constructor 
calls are allowed wherever function calls are allowed.

Example 5–10 initializes a nested table using a constructor, which looks like a function 
with the same name as the collection type. 

Example 5–10 Constructor for a Nested Table

DECLARE
   TYPE dnames_tab IS TABLE OF VARCHAR2(30);
   dept_names dnames_tab;
BEGIN
   dept_names := dnames_tab('Shipping','Sales','Finance','Payroll');
END;



Initializing and Referencing Collections

Using PL/SQL Collections and Records 5-11

/

Because a nested table does not have a declared size, you can put as many elements in 
the constructor as necessary.

Example 5–11 initializes a varray using a constructor, which looks like a function with 
the same name as the collection type. 

Example 5–11 Constructor for a Varray

DECLARE
-- In the varray, put an upper limit on the number of elements
   TYPE dnames_var IS VARRAY(20) OF VARCHAR2(30);
   dept_names dnames_var;
BEGIN
-- Because dnames is declared as VARRAY(20),
-- you can put up to 10 elements in the constructor
   dept_names := dnames_var('Shipping','Sales','Finance','Payroll');
END;
/

Unless you impose the NOT NULL constraint in the type declaration, you can pass null 
elements to a constructor as in Example 5–12.

Example 5–12 Collection Constructor Including Null Elements

DECLARE
   TYPE dnames_tab IS TABLE OF VARCHAR2(30);
   dept_names dnames_tab;
   TYPE dnamesNoNulls_type IS TABLE OF VARCHAR2(30) NOT NULL;
BEGIN
   dept_names := dnames_tab('Shipping', NULL,'Finance', NULL);
-- If dept_names were of type dnamesNoNulls_type,
--  you could not include null values in the constructor
END;
/

You can initialize a collection in its declaration, which is a good programming practice, 
as shown in Example 5–13. In this case, you can invoke the collection's EXTEND 
method to add elements later.

Example 5–13 Combining Collection Declaration and Constructor

DECLARE
   TYPE dnames_tab IS TABLE OF VARCHAR2(30);
   dept_names dnames_tab :=
     dnames_tab('Shipping','Sales','Finance','Payroll');
BEGIN
   NULL;
END;
/

If you call a constructor without arguments, you get an empty but non-null collection 
as shown in Example 5–14.

Example 5–14 Empty Varray Constructor

DECLARE
   TYPE dnames_var IS VARRAY(20) OF VARCHAR2(30);
   dept_names dnames_var;



Referencing Collection Elements

5-12 Oracle Database PL/SQL Language Reference

BEGIN
   IF dept_names IS NULL THEN
      DBMS_OUTPUT.PUT_LINE
        ('Before initialization, the varray is null.');
-- While the varray is null, you cannot check its COUNT attribute.
--   DBMS_OUTPUT.PUT_LINE
--     ('It has ' || dept_names.COUNT || ' elements.');
   ELSE
      DBMS_OUTPUT.PUT_LINE
        ('Before initialization, the varray is not null.');
   END IF;
   dept_names := dnames_var(); -- initialize empty varray 
   IF dept_names IS NULL THEN
      DBMS_OUTPUT.PUT_LINE
        ('After initialization, the varray is null.');
   ELSE
      DBMS_OUTPUT.PUT_LINE
        ('After initialization, the varray is not null.');
      DBMS_OUTPUT.PUT_LINE
        ('It has ' || dept_names.COUNT || ' elements.');
   END IF;
END;
/

Referencing Collection Elements
Every reference to an element includes a collection name and a subscript enclosed in 
parentheses. The subscript determines which element is processed. To reference an 
element, you specify its subscript using the following syntax:

collection_name (subscript)

where subscript is an expression that yields an integer in most cases, or a 
VARCHAR2 for associative arrays declared with strings as keys.

The allowed subscript ranges are:

■ For nested tables, 1..2147483647 (the upper limit of PLS_INTEGER).

■ For varrays, 1.. size_limit, where you specify the limit in the declaration 
(size_limit cannot exceed 2147483647).

■ For associative arrays with a numeric key, -2147483648..2147483647.

■ For associative arrays with a string key, the length of the key and number of 
possible values depends on the VARCHAR2 length limit in the type declaration, and 
the database character set.

Example 5–15 shows how to reference an element in a nested table.

Example 5–15 Referencing a Nested Table Element

DECLARE
  TYPE Roster IS TABLE OF VARCHAR2(15);
  names Roster := 
    Roster('D Caruso', 'J Hamil', 'D Piro', 'R Singh');
  PROCEDURE verify_name(the_name VARCHAR2) IS
  BEGIN
    DBMS_OUTPUT.PUT_LINE(the_name);
  END;
BEGIN
  FOR i IN names.FIRST .. names.LAST



Assigning Values to Collections

Using PL/SQL Collections and Records 5-13

  LOOP
      IF names(i) = 'J Hamil' THEN
        DBMS_OUTPUT.PUT_LINE(names(i));
          -- reference to nested table element
      END IF;
  END LOOP;
  verify_name(names(3));
    -- procedure call with reference to element
END;
/

Example 5–16 shows how you can reference the elements of an associative array in a 
function call.

Example 5–16 Referencing an Element of an Associative Array

DECLARE
  TYPE sum_multiples IS TABLE OF PLS_INTEGER INDEX BY PLS_INTEGER;
  n  PLS_INTEGER := 5;   -- number of multiples to sum for display
  sn PLS_INTEGER := 10;  -- number of multiples to sum
  m  PLS_INTEGER := 3;   -- multiple
FUNCTION get_sum_multiples
  (multiple IN PLS_INTEGER, num IN PLS_INTEGER)
  RETURN sum_multiples IS
  s sum_multiples;
  BEGIN
      FOR i IN 1..num LOOP
        s(i) := multiple * ((i * (i + 1)) / 2);
           -- sum of multiples
      END LOOP;
    RETURN s;
  END get_sum_multiples;
BEGIN
-- invoke function to retrieve
-- element identified by subscript (key)
  DBMS_OUTPUT.PUT_LINE
    ('Sum of the first ' || TO_CHAR(n) || ' multiples of ' ||
     TO_CHAR(m) || ' is ' || TO_CHAR(get_sum_multiples (m, sn)(n)));
END;
/

Assigning Values to Collections
One collection can be assigned to another by an INSERT, UPDATE, FETCH, or SELECT 
statement, an assignment statement, or a subprogram call. You can assign the value of 
an expression to a specific element in a collection using the syntax:

collection_name (subscript) := expression;

where expression yields a value of the type specified for elements in the collection 
type definition.

You can use operators such as SET, MULTISET UNION, MULTISET INTERSECT, and 
MULTISET EXCEPT to transform nested tables as part of an assignment statement.

Assigning a value to a collection element can raise exceptions, for example:

■ If the subscript is NULL or is not convertible to the right data type, PL/SQL raises 
the predefined exception VALUE_ERROR. Usually, the subscript must be an integer. 
Associative arrays can also be declared to have VARCHAR2 subscripts.



Assigning Values to Collections

5-14 Oracle Database PL/SQL Language Reference

■ If the subscript refers to an uninitialized element, PL/SQL raises SUBSCRIPT_
BEYOND_COUNT.

■ If the collection is atomically null, PL/SQL raises COLLECTION_IS_NULL.

For more information about collection exceptions, see Avoiding Collection Exceptions 
on page 5-28, Example 5–38 on page 5-28, and Predefined PL/SQL Exceptions on 
page 11-4.

Example 5–17 shows that collections must have the same data type for an assignment 
to work. Having the same element type is not enough.

Example 5–17 Data Type Compatibility for Collection Assignment

DECLARE
   TYPE last_name_typ IS VARRAY(3) OF VARCHAR2(64);
   TYPE surname_typ IS VARRAY(3) OF VARCHAR2(64);
-- These first two variables have the same data type.
   group1 last_name_typ := last_name_typ('Jones','Wong','Marceau');
   group2 last_name_typ := last_name_typ('Klein','Patsos','Singh');
-- This third variable has a similar declaration,
-- but is not the same type.
   group3 surname_typ := surname_typ('Trevisi','Macleod','Marquez');
BEGIN
-- Allowed because they have the same data type
   group1 := group2;
-- Not allowed because they have different data types
--   group3 := group2; -- raises an exception
END;
/

If you assign an atomically null nested table or varray to a second nested table or 
varray, the second collection must be reinitialized, as shown in Example 5–18. In the 
same way, assigning the value NULL to a collection makes it atomically null.

Example 5–18 Assigning a Null Value to a Nested Table

DECLARE
   TYPE dnames_tab IS TABLE OF VARCHAR2(30);
-- This nested table has some values
   dept_names dnames_tab :=
     dnames_tab('Shipping','Sales','Finance','Payroll');
-- This nested table is not initialized ("atomically null").
   empty_set dnames_tab;
BEGIN
-- At first, the initialized variable is not null.
   if dept_names IS NOT NULL THEN
      DBMS_OUTPUT.PUT_LINE('OK, at first dept_names is not null.');
   END IF;
-- Then assign a null nested table to it.
   dept_names := empty_set;
-- Now it is null.
   if dept_names IS NULL THEN
      DBMS_OUTPUT.PUT_LINE('OK, now dept_names has become null.');
   END IF;
-- Use another constructor to give it some values.
   dept_names := dnames_tab('Shipping','Sales','Finance','Payroll');
END;
/



Assigning Values to Collections

Using PL/SQL Collections and Records 5-15

Example 5–19 shows some of the ANSI-standard operators that you can apply to 
nested tables.

Example 5–19 Assigning Nested Tables with Set Operators

DECLARE
  TYPE nested_typ IS TABLE OF NUMBER;
  nt1 nested_typ := nested_typ(1,2,3);
  nt2 nested_typ := nested_typ(3,2,1);
  nt3 nested_typ := nested_typ(2,3,1,3);
  nt4 nested_typ := nested_typ(1,2,4);
  answer nested_typ;
-- The results might be in a different order than you expect.
-- Do not rely on the order of elements in nested tables.
  PROCEDURE print_nested_table(the_nt nested_typ) IS
     output VARCHAR2(128);
  BEGIN
     IF the_nt IS NULL THEN
        DBMS_OUTPUT.PUT_LINE('Results: <NULL>');
        RETURN;
     END IF;
     IF the_nt.COUNT = 0 THEN
        DBMS_OUTPUT.PUT_LINE('Results: empty set');
        RETURN;
     END IF;
     FOR i IN the_nt.FIRST .. the_nt.LAST
     LOOP
        output := output || the_nt(i) || ' ';
     END LOOP;
     DBMS_OUTPUT.PUT_LINE('Results: ' || output);
  END;
BEGIN
  answer := nt1 MULTISET UNION nt4; -- (1,2,3,1,2,4)
  print_nested_table(answer);
  answer := nt1 MULTISET UNION nt3; -- (1,2,3,2,3,1,3)
  print_nested_table(answer);
  answer := nt1 MULTISET UNION DISTINCT nt3; -- (1,2,3)
  print_nested_table(answer);
  answer := nt2 MULTISET INTERSECT nt3; -- (3,2,1)
  print_nested_table(answer);
  answer := nt2 MULTISET INTERSECT DISTINCT nt3; -- (3,2,1)
  print_nested_table(answer);
  answer := SET(nt3); -- (2,3,1)
  print_nested_table(answer);
  answer := nt3 MULTISET EXCEPT nt2; -- (3)
  print_nested_table(answer);
  answer := nt3 MULTISET EXCEPT DISTINCT nt2; -- ()
  print_nested_table(answer);
END;
/
Example 5–20 shows an assignment to a VARRAY of records with an assignment 
statement.

Example 5–20 Assigning Values to VARRAYs with Complex Data Types

DECLARE
  TYPE emp_name_rec is RECORD (
    firstname    employees.first_name%TYPE,
    lastname     employees.last_name%TYPE,
    hiredate     employees.hire_date%TYPE



Assigning Values to Collections

5-16 Oracle Database PL/SQL Language Reference

    );
    
-- Array type that can hold information 10 employees
   TYPE EmpList_arr IS VARRAY(10) OF emp_name_rec;
   SeniorSalespeople EmpList_arr;
   
-- Declare a cursor to select a subset of columns.
   CURSOR c1 IS SELECT first_name, last_name, hire_date
     FROM employees;
   Type NameSet IS TABLE OF c1%ROWTYPE;
   SeniorTen NameSet;
   EndCounter NUMBER := 10;
   
BEGIN
  SeniorSalespeople := EmpList_arr();
  SELECT first_name, last_name, hire_date
    BULK COLLECT INTO SeniorTen
    FROM employees
    WHERE job_id = 'SA_REP'
    ORDER BY hire_date;
  IF SeniorTen.LAST > 0 THEN
    IF SeniorTen.LAST < 10 THEN EndCounter := SeniorTen.LAST; 
    END IF;
    FOR i in 1..EndCounter LOOP
      SeniorSalespeople.EXTEND(1);
      SeniorSalespeople(i) := SeniorTen(i);
      DBMS_OUTPUT.PUT_LINE(SeniorSalespeople(i).lastname || ', ' 
       || SeniorSalespeople(i).firstname || ', ' ||
       SeniorSalespeople(i).hiredate);
    END LOOP;
  END IF;
END;
/

Example 5–21 shows an assignment to a nested table of records with a FETCH 
statement.

Example 5–21 Assigning Values to Tables with Complex Data Types

DECLARE
  TYPE emp_name_rec is RECORD (
    firstname    employees.first_name%TYPE,
    lastname     employees.last_name%TYPE,
    hiredate     employees.hire_date%TYPE
    );
    
-- Table type that can hold information about employees
   TYPE EmpList_tab IS TABLE OF emp_name_rec;
   SeniorSalespeople EmpList_tab;   
   
-- Declare a cursor to select a subset of columns.
   CURSOR c1 IS SELECT first_name, last_name, hire_date
     FROM employees;
   EndCounter NUMBER := 10;
   TYPE EmpCurTyp IS REF CURSOR;
   emp_cv EmpCurTyp; 
   
BEGIN
  OPEN emp_cv FOR SELECT first_name, last_name, hire_date
   FROM employees 



Comparing Collections

Using PL/SQL Collections and Records 5-17

   WHERE job_id = 'SA_REP' ORDER BY hire_date;

  FETCH emp_cv BULK COLLECT INTO SeniorSalespeople;
  CLOSE emp_cv;

-- for this example, display a maximum of ten employees
  IF SeniorSalespeople.LAST > 0 THEN
    IF SeniorSalespeople.LAST < 10 THEN
      EndCounter := SeniorSalespeople.LAST; 
    END IF;
    FOR i in 1..EndCounter LOOP
      DBMS_OUTPUT.PUT_LINE
        (SeniorSalespeople(i).lastname || ', ' 
         || SeniorSalespeople(i).firstname || ', ' || 
SeniorSalespeople(i).hiredate);
    END LOOP;
  END IF;
END;
/

Comparing Collections
You can check whether a collection is null. Comparisons such as greater than, less 
than, and so on are not allowed. This restriction also applies to implicit comparisons. 
For example, collections cannot appear in a DISTINCT, GROUP BY, or ORDER BY list.

If you want to do such comparison operations, you must define your own notion of 
what it means for collections to be greater than, less than, and so on, and write one or 
more functions to examine the collections and their elements and return a true or false 
value.

For nested tables, you can check whether two nested table of the same declared type 
are equal or not equal, as shown in Example 5–23. You can also apply set operators to 
check certain conditions within a nested table or between two nested tables, as shown 
in Example 5–24. 

Because nested tables and varrays can be atomically null, they can be tested for nullity, 
as shown in Example 5–22.

Example 5–22 Checking if a Collection Is Null

DECLARE
  TYPE emp_name_rec is RECORD (
    firstname    employees.first_name%TYPE,
    lastname     employees.last_name%TYPE,
    hiredate     employees.hire_date%TYPE
    );
   TYPE staff IS TABLE OF emp_name_rec;
   members staff;
BEGIN
  -- Condition yields TRUE because you have not used a constructor.
   IF members IS NULL THEN
     DBMS_OUTPUT.PUT_LINE('NULL');
   ELSE
     DBMS_OUTPUT.PUT_LINE('Not NULL');
   END IF;
END;
/



Comparing Collections

5-18 Oracle Database PL/SQL Language Reference

Example 5–23 shows that nested tables can be compared for equality or inequality. 
They cannot be ordered, because there is no greater than or less than comparison.

Example 5–23 Comparing Two Nested Tables

DECLARE
   TYPE dnames_tab IS TABLE OF VARCHAR2(30);
   dept_names1 dnames_tab :=
     dnames_tab('Shipping','Sales','Finance','Payroll');
   dept_names2 dnames_tab :=
     dnames_tab('Sales','Finance','Shipping','Payroll');
   dept_names3 dnames_tab :=
     dnames_tab('Sales','Finance','Payroll');
BEGIN
-- You can use = or !=, but not < or >.
-- These 2 are equal even though members are in different order.
   IF dept_names1 = dept_names2 THEN
     DBMS_OUTPUT.PUT_LINE
      ('dept_names1 and dept_names2 have the same members.');
   END IF;
   IF dept_names2 != dept_names3 THEN
      DBMS_OUTPUT.PUT_LINE
        ('dept_names2 and dept_names3 have different members.');
   END IF;
END;
/

You can test certain properties of a nested table, or compare two nested tables, using 
ANSI-standard set operations, as shown in Example 5–24.

Example 5–24 Comparing Nested Tables with Set Operators

DECLARE
  TYPE nested_typ IS TABLE OF NUMBER;
  nt1 nested_typ := nested_typ(1,2,3);
  nt2 nested_typ := nested_typ(3,2,1);
  nt3 nested_typ := nested_typ(2,3,1,3);
  nt4 nested_typ := nested_typ(1,2,4);
  answer BOOLEAN;
  howmany NUMBER;
  PROCEDURE testify
    (truth BOOLEAN DEFAULT NULL
     quantity NUMBER DEFAULT NULL) IS
  BEGIN
    IF truth IS NOT NULL THEN
      DBMS_OUTPUT.PUT_LINE
        (CASE truth WHEN TRUE THEN 'True' WHEN FALSE THEN 'False' END);
    END IF;
    IF quantity IS NOT NULL THEN
        DBMS_OUTPUT.PUT_LINE(quantity);
    END IF;
  END;
BEGIN
  answer := nt1 IN (nt2,nt3,nt4); -- true, nt1 matches nt2
  testify(truth => answer);
  answer := nt1 SUBMULTISET OF nt3; -- true, all elements match
  testify(truth => answer);
  answer := nt1 NOT SUBMULTISET OF nt4; -- also true
  testify(truth => answer);
  howmany := CARDINALITY(nt3); -- number of elements in nt3



Using Multidimensional Collections

Using PL/SQL Collections and Records 5-19

  testify(quantity => howmany);
  howmany := CARDINALITY(SET(nt3)); -- number of distinct elements
  testify(quantity => howmany);
  answer := 4 MEMBER OF nt1; -- false, no element matches
  testify(truth => answer);
  answer := nt3 IS A SET; -- false, nt3 has duplicates
  testify(truth => answer);
  answer := nt3 IS NOT A SET; -- true, nt3 has duplicates
  testify(truth => answer);
  answer := nt1 IS EMPTY; -- false, nt1 has some members
  testify(truth => answer);
END;
/

Using Multidimensional Collections
Although a collection has only one dimension, you can model a multidimensional 
collection by creating a collection whose elements are also collections. For example, 
you can create a nested table of varrays, a varray of varrays, a varray of nested tables, 
and so on. 

When creating a nested table of nested tables as a column in SQL, check the syntax of 
the CREATE TABLE statement to see how to define the storage table.

Example 5–25, Example 5–26, and Example 5–27 are some examples showing the 
syntax and possibilities for multilevel collections.

Example 5–25 Multilevel VARRAY

DECLARE
  TYPE t1 IS VARRAY(10) OF INTEGER;
  TYPE nt1 IS VARRAY(10) OF t1; -- multilevel varray type
  va t1 := t1(2,3,5);
  -- initialize multilevel varray
  nva nt1 := nt1(va, t1(55,6,73), t1(2,4), va);
  i INTEGER;
  va1 t1;
BEGIN
  -- multilevel access
  i := nva(2)(3); -- i will get value 73
  DBMS_OUTPUT.PUT_LINE('I = ' || i);
  -- add a new varray element to nva
  nva.EXTEND;
  -- replace inner varray elements
  nva(5) := t1(56, 32);
  nva(4) := t1(45,43,67,43345);
  -- replace an inner integer element
  nva(4)(4) := 1; -- replaces 43345 with 1
  -- add a new element to the 4th varray element
  -- and store integer 89 into it.
  nva(4).EXTEND;
  nva(4)(5) := 89;
END;
/

Example 5–26 Multilevel Nested Table

DECLARE
  TYPE tb1 IS TABLE OF VARCHAR2(20);
  TYPE Ntb1 IS TABLE OF tb1; -- table of table elements



Using Collection Methods

5-20 Oracle Database PL/SQL Language Reference

  TYPE Tv1 IS VARRAY(10) OF INTEGER;
  TYPE ntb2 IS TABLE OF tv1; -- table of varray elements
  vtb1 tb1 := tb1('one', 'three');
  vntb1 ntb1 := ntb1(vtb1);
  vntb2 ntb2 := ntb2(tv1(3,5), tv1(5,7,3));
  -- table of varray elements
BEGIN
  vntb1.EXTEND;
  vntb1(2) := vntb1(1);
  -- delete the first element in vntb1
  vntb1.DELETE(1);
  -- delete the first string
  -- from the second table in the nested table
  vntb1(2).DELETE(1);
END;
/

Example 5–27 Multilevel Associative Array

DECLARE
  TYPE tb1 IS TABLE OF INTEGER INDEX BY PLS_INTEGER;
  -- the following is index-by table of index-by tables
  TYPE ntb1 IS TABLE OF tb1 INDEX BY PLS_INTEGER;
  TYPE va1 IS VARRAY(10) OF VARCHAR2(20);
  -- the following is index-by table of varray elements
  TYPE ntb2 IS TABLE OF va1 INDEX BY PLS_INTEGER;
  v1 va1 := va1('hello', 'world');
  v2 ntb1;
  v3 ntb2;
  v4 tb1;
  v5 tb1; -- empty table
BEGIN
  v4(1) := 34;
  v4(2) := 46456;
  v4(456) := 343;
  v2(23) := v4;
  v3(34) := va1(33, 456, 656, 343);
  -- assign an empty table to v2(35) and try again
  v2(35) := v5;
  v2(35)(2) := 78; -- it works now
END;
/

Using Collection Methods
A collection method is a built-in PL/SQL subprogram that returns information about a 
collection or operates on a collection. Collection methods make collections easier to 
use, and make your applications easier to maintain.

You invoke a collection method using dot notation. For detailed syntax, see Collection 
Method Call on page 13-23. 

You cannot invoke a collection method from a SQL statement. 

The only collection method that you can use with an empty collection is EXISTS; all 
others raise the exception COLLECTION_IS_NULL.

Topics:

■ Checking If a Collection Element Exists (EXISTS Method)

■ Counting the Elements in a Collection (COUNT Method)



Using Collection Methods

Using PL/SQL Collections and Records 5-21

■ Checking the Maximum Size of a Collection (LIMIT Method)

■ Finding the First or Last Collection Element (FIRST and LAST Methods)

■ Looping Through Collection Elements (PRIOR and NEXT Methods)

■ Increasing the Size of a Collection (EXTEND Method)

■ Decreasing the Size of a Collection (TRIM Method)

■ Deleting Collection Elements (DELETE Method)

■ Applying Methods to Collection Parameters

Checking If a Collection Element Exists (EXISTS Method)
EXISTS(n) returns TRUE if the nth element in a collection exists; otherwise, it returns 
FALSE. By combining EXISTS with DELETE, you can work with sparse nested tables. 
You can also use EXISTS to avoid referencing a nonexistent element, which raises an 
exception. When passed an out-of-range subscript, EXISTS returns FALSE instead of 
raising SUBSCRIPT_OUTSIDE_LIMIT.

Example 5–28 Checking Whether a Collection Element EXISTS

DECLARE
   TYPE NumList IS TABLE OF INTEGER;
   n NumList := NumList(1,3,5,7);
BEGIN
   n.DELETE(2); -- Delete the second element
   IF n.EXISTS(1) THEN
      DBMS_OUTPUT.PUT_LINE('OK, element #1 exists.');
   END IF;
   IF n.EXISTS(2) = FALSE THEN
      DBMS_OUTPUT.PUT_LINE('OK, element #2 was deleted.');
   END IF;
   IF n.EXISTS(99) = FALSE THEN
      DBMS_OUTPUT.PUT_LINE('OK, element #99 does not exist at all.');
   END IF;
END;
/

Counting the Elements in a Collection (COUNT Method)
COUNT returns the current number of elements in a collection. It is useful when you do 
not know how many elements a collection contains. For example, when you fetch a 
column of data into a nested table, the number of elements depends on the size of the 
result set.

For varrays, COUNT always equals LAST. You can increase or decrease the size of a 
varray using the EXTEND and TRIM methods, so the value of COUNT can change, up to 
the value of the LIMIT method.

For nested tables, COUNT usually equals LAST. However, if you delete elements from 
the middle of a nested table, COUNT becomes smaller than LAST. When tallying 
elements, COUNT ignores deleted elements. Using DELETE with no parameters sets 
COUNT to 0.

Note: You cannot use EXISTS with an associative array.



Using Collection Methods

5-22 Oracle Database PL/SQL Language Reference

Example 5–29 Counting Collection Elements with COUNT

DECLARE
   TYPE NumList IS TABLE OF NUMBER;
   n NumList := NumList(2,4,6,8);
     -- Collection starts with 4 elements.
BEGIN
   DBMS_OUTPUT.PUT_LINE
     ('There are ' || n.COUNT || ' elements in N.');
   n.EXTEND(3); -- Add 3 new elements at the end.
   DBMS_OUTPUT.PUT_LINE
     ('Now there are ' || n.COUNT || ' elements in N.');
   n := NumList(86,99); -- Assign a completely new value with 2 elements.
   DBMS_OUTPUT.PUT_LINE
     ('Now there are ' || n.COUNT || ' elements in N.');
   n.TRIM(2); -- Remove the last 2 elements, leaving none.
   DBMS_OUTPUT.PUT_LINE
     ('Now there are ' || n.COUNT || ' elements in N.');
END;
/

Checking the Maximum Size of a Collection (LIMIT Method)
LIMIT returns the maximum number of elements that a collection can have. If the 
collection has no maximum size, LIMIT returns NULL.

Example 5–30 Checking the Maximum Size of a Collection with LIMIT

DECLARE
   TYPE dnames_var IS VARRAY(7) OF VARCHAR2(30);
   dept_names dnames_var :=
     dnames_var('Shipping','Sales','Finance','Payroll');
BEGIN
   DBMS_OUTPUT.PUT_LINE
     ('dept_names has ' || dept_names.COUNT || ' elements now');
   DBMS_OUTPUT.PUT_LINE
     ('dept_names''s type can hold a maximum of '
      || dept_names.LIMIT || ' elements');
   DBMS_OUTPUT.PUT_LINE
    ('The maximum number you can use with '
     || 'dept_names.EXTEND() is '
     || (dept_names.LIMIT - dept_names.COUNT));
END;
/

Finding the First or Last Collection Element (FIRST and LAST Methods)
For a collection indexed by integers, FIRST and LAST return the first and last (smallest 
and largest) index numbers. 

For an associative array indexed by strings, FIRST and LAST return the lowest and 
highest key values. If the NLS_COMP initialization parameter is set to ANSI, the order 
is based on the sort order specified by the NLS_SORT initialization parameter.

If the collection is empty, FIRST and LAST return NULL. If the collection contains only 
one element, FIRST and LAST return the same value.

Example 5–31 shows how to use FIRST and LAST to iterate through the elements in a 
collection that has consecutive subscripts.



Using Collection Methods

Using PL/SQL Collections and Records 5-23

Example 5–31 Using FIRST and LAST with a Collection

DECLARE
   TYPE NumList IS TABLE OF NUMBER;
   n NumList := NumList(1,3,5,7);
   counter INTEGER;
BEGIN
   DBMS_OUTPUT.PUT_LINE('N''s first subscript is ' || n.FIRST);
   DBMS_OUTPUT.PUT_LINE('N''s last subscript is ' || n.LAST);
-- When the subscripts are consecutive starting at 1, 
-- it's simple to loop through them.
   FOR i IN n.FIRST .. n.LAST
   LOOP
      DBMS_OUTPUT.PUT_LINE('Element #' || i || ' = ' || n(i));
   END LOOP;
   n.DELETE(2); -- Delete second element.
-- When the subscripts have gaps
-- or the collection might be uninitialized,
-- the loop logic is more extensive.
-- Start at the first element
-- and look for the next element until there are no more.
   IF n IS NOT NULL THEN
      counter := n.FIRST;
      WHILE counter IS NOT NULL
      LOOP
         DBMS_OUTPUT.PUT_LINE
           ('Element #' || counter || ' = ' || n(counter));
         counter := n.NEXT(counter);
      END LOOP;
   ELSE
      DBMS_OUTPUT.PUT_LINE('N is null, nothing to do.');
   END IF;
END;
/

For varrays, FIRST always returns 1 and LAST always equals COUNT.

For nested tables, normally FIRST returns 1 and LAST equals COUNT. But if you delete 
elements from the beginning of a nested table, FIRST returns a number larger than 1. 
If you delete elements from the middle of a nested table, LAST becomes larger than 
COUNT. 

When scanning elements, FIRST and LAST ignore deleted elements.

Looping Through Collection Elements (PRIOR and NEXT Methods)
PRIOR(n) returns the index number that precedes index n in a collection. NEXT(n) 
returns the index number that succeeds index n. If n has no predecessor, PRIOR(n) 
returns NULL. If n has no successor, NEXT(n) returns NULL.

For associative arrays with VARCHAR2 keys, these methods return the appropriate key 
value; ordering is based on the binary values of the characters in the string, unless the 
NLS_COMP initialization parameter is set to ANSI, in which case the ordering is based 
on the locale-specific sort order specified by the NLS_SORT initialization parameter.

These methods are more reliable than looping through a fixed set of subscript values, 
because elements might be inserted or deleted from the collection during the loop. 
This is especially true for associative arrays, where the subscripts might not be in 
consecutive order and so the sequence of subscripts might be (1,2,4,8,16) or 
('A','E','I','O','U').



Using Collection Methods

5-24 Oracle Database PL/SQL Language Reference

Example 5–32 Using PRIOR and NEXT to Access Collection Elements

DECLARE
   TYPE NumList IS TABLE OF NUMBER;
   n NumList := NumList(1966,1971,1984,1989,1999);
BEGIN
   DBMS_OUTPUT.PUT_LINE('The element after #2 is #' || n.NEXT(2));
   DBMS_OUTPUT.PUT_LINE('The element before #2 is #' || n.PRIOR(2));
   n.DELETE(3);
     -- Delete an element to show how NEXT can handle gaps.
   DBMS_OUTPUT.PUT_LINE
     ('Now the element after #2 is #' || n.NEXT(2));
   IF n.PRIOR(n.FIRST) IS NULL THEN
      DBMS_OUTPUT.PUT_LINE
        ('Can''t get PRIOR of the first element or NEXT of the last.');
   END IF;
END;
/

You can use PRIOR or NEXT to traverse collections indexed by any series of subscripts. 
Example 5–33 uses NEXT to traverse a nested table from which some elements were 
deleted.

Example 5–33 Using NEXT to Access Elements of a Nested Table

DECLARE
   TYPE NumList IS TABLE OF NUMBER;
   n NumList := NumList(1,3,5,7);
   counter INTEGER;
BEGIN
   n.DELETE(2); -- Delete second element.
-- When the subscripts have gaps,
-- loop logic is more extensive.
-- Start at first element and look for next element
-- until there are no more.
   counter := n.FIRST;
   WHILE counter IS NOT NULL
   LOOP
      DBMS_OUTPUT.PUT_LINE
        ('Counting up: Element #' || counter || ' = ' || n(counter));
      counter := n.NEXT(counter);
   END LOOP;
-- Run the same loop in reverse order.
   counter := n.LAST;
   WHILE counter IS NOT NULL
   LOOP
      DBMS_OUTPUT.PUT_LINE
        ('Counting down: Element #' || counter || ' = ' || n(counter));
      counter := n.PRIOR(counter);
   END LOOP;
END;
/

When traversing elements, PRIOR and NEXT skip over deleted elements. 

Increasing the Size of a Collection (EXTEND Method)
To increase the size of a nested table or varray, use EXTEND.

This procedure has three forms:



Using Collection Methods

Using PL/SQL Collections and Records 5-25

■ EXTEND appends one null element to a collection.

■ EXTEND(n) appends n null elements to a collection.

■ EXTEND(n,i) appends n copies of the ith element to a collection.

You cannot use EXTEND with index-by tables. You cannot use EXTEND to add elements 
to an uninitialized collection. If you impose the NOT NULL constraint on a TABLE or 
VARRAY type, you cannot apply the first two forms of EXTEND to collections of that 
type.

EXTEND operates on the internal size of a collection, which includes any deleted 
elements. This refers to deleted elements after using DELETE(n), but not DELETE 
without parameters which completely removes all elements. If EXTEND encounters 
deleted elements, it includes them in its tally. PL/SQL keeps placeholders for deleted 
elements, so that you can re-create them by assigning new values.

Example 5–34 Using EXTEND to Increase the Size of a Collection

DECLARE
   TYPE NumList IS TABLE OF INTEGER;
   n NumList := NumList(2,4,6,8);
   x NumList := NumList(1,3);
   PROCEDURE print_numlist(the_list NumList) IS
      output VARCHAR2(128);
   BEGIN
      FOR i IN the_list.FIRST .. the_list.LAST
      LOOP
         output :=
           output || NVL(TO_CHAR(the_list(i)),'NULL') || ' ';
      END LOOP;
      DBMS_OUTPUT.PUT_LINE(output);
   END;
BEGIN
   DBMS_OUTPUT.PUT_LINE
     ('At first, N has ' || n.COUNT || ' elements.');
   n.EXTEND(5); -- Add 5 elements at the end.
   DBMS_OUTPUT.PUT_LINE
     ('Now N has ' || n.COUNT || ' elements.');
-- Elements 5, 6, 7, 8, and 9 are all NULL.
   print_numlist(n);
   DBMS_OUTPUT.PUT_LINE
     ('At first, X has ' || x.COUNT || ' elements.');
   x.EXTEND(4,2); -- Add 4 elements at the end.
   DBMS_OUTPUT.PUT_LINE
     ('Now X has ' || x.COUNT || ' elements.');
-- Elements 3, 4, 5, and 6 are copies of element #2.
   print_numlist(x);
END;
/

When it includes deleted elements, the internal size of a nested table differs from the 
values returned by COUNT and LAST. This refers to deleted elements after using 
DELETE(n), but not DELETE without parameters which completely removes all 
elements. For example, if you initialize a nested table with five elements, then delete 
elements 2 and 5, the internal size is 5, COUNT returns 3, and LAST returns 4. All 
deleted elements, regardless of position, are treated alike.



Using Collection Methods

5-26 Oracle Database PL/SQL Language Reference

Decreasing the Size of a Collection (TRIM Method)
This procedure has two forms:

■ TRIM removes one element from the end of a collection.

■ TRIM(n) removes n elements from the end of a collection.

If you want to remove all elements, use DELETE without parameters.

For example, this statement removes the last three elements from nested table 
courses:

Example 5–35 Using TRIM to Decrease the Size of a Collection

DECLARE
   TYPE NumList IS TABLE OF NUMBER;
   n NumList := NumList(1,2,3,5,7,11);
   PROCEDURE print_numlist(the_list NumList) IS
      output VARCHAR2(128);
   BEGIN
      IF n.COUNT = 0 THEN
         DBMS_OUTPUT.PUT_LINE('No elements in collection.');
      ELSE
         FOR i IN the_list.FIRST .. the_list.LAST
         LOOP
            output :=
              output || NVL(TO_CHAR(the_list(i)),'NULL') || ' ';
         END LOOP;
         DBMS_OUTPUT.PUT_LINE(output);
      END IF;
   END;
BEGIN
   print_numlist(n);
   n.TRIM(2); -- Remove last 2 elements.
   print_numlist(n);
   n.TRIM; -- Remove last element.
   print_numlist(n);
   n.TRIM(n.COUNT); -- Remove all remaining elements.
   print_numlist(n);
-- If too many elements are specified, 
-- TRIM raises the exception SUBSCRIPT_BEYOND_COUNT.
   BEGIN
      n := NumList(1,2,3);
      n.TRIM(100);
      EXCEPTION
        WHEN SUBSCRIPT_BEYOND_COUNT THEN
          DBMS_OUTPUT.PUT_LINE
            ('There weren''t 100 elements to be trimmed.');
   END;
-- When elements are removed by DELETE,
-- placeholders are left behind.
--  TRIM counts these placeholders
--  as it removes elements from the end.
   n := NumList(1,2,3,4);
   n.DELETE(3);  -- delete element 3
-- At this point, n contains elements (1,2,4).
-- TRIMming the last 2 elements

Note: You cannot use TRIM with an associative array.



Using Collection Methods

Using PL/SQL Collections and Records 5-27

-- removes the 4 and the placeholder, not 4 and 2.
   n.TRIM(2);
   print_numlist(n);
END;
/

If n is too large, TRIM(n) raises SUBSCRIPT_BEYOND_COUNT. 

TRIM operates on the internal size of a collection. If TRIM encounters deleted elements, 
it includes them in its tally. This refers to deleted elements after using DELETE(n), but 
not DELETE without parameters which completely removes all elements. 

Example 5–36 Using TRIM on Deleted Elements

DECLARE
   TYPE CourseList IS TABLE OF VARCHAR2(10); 
   courses CourseList;
BEGIN
   courses := CourseList('Biol 4412', 'Psyc 3112', 'Anth 3001');
   courses.DELETE(courses.LAST);  -- delete element 3
   /* At this point, COUNT equals 2, the number of valid
      elements remaining. So, you might expect the next 
      statement to empty the nested table by trimming 
      elements 1 and 2. Instead, it trims valid element 2 
      and deleted element 3 because TRIM includes deleted 
      elements in its tally. */
   courses.TRIM(courses.COUNT);
   DBMS_OUTPUT.PUT_LINE(courses(1));  -- prints 'Biol 4412'
END;
/

In general, do not depend on the interaction between TRIM and DELETE. It is better to 
treat nested tables like fixed-size arrays and use only DELETE, or to treat them like 
stacks and use only TRIM and EXTEND. 

Because PL/SQL does not keep placeholders for trimmed elements, you cannot 
replace a trimmed element simply by assigning it a new value.

Deleting Collection Elements (DELETE Method)
This procedure has these forms:

■ DELETE with no parameters removes all elements from a collection, setting COUNT 
to 0.

■ DELETE(n) removes the nth element from an associative array with a numeric 
key or a nested table. If the associative array has a string key, the element 
corresponding to the key value is deleted. If n is null, DELETE(n) does nothing.

■ DELETE(m,n) removes all elements in the range m..n from an associative array or 
nested table. If m is larger than n or if m or n is NULL, DELETE(m,n) does nothing. 

Example 5–37 Using the DELETE Method on a Collection

DECLARE
   TYPE NumList IS TABLE OF NUMBER;
   n NumList := NumList(10,20,30,40,50,60,70,80,90,100);
   TYPE NickList IS TABLE OF VARCHAR2(64) INDEX BY VARCHAR2(32);
   nicknames NickList;
BEGIN
   n.DELETE(2);    -- deletes element 2 



Avoiding Collection Exceptions

5-28 Oracle Database PL/SQL Language Reference

   n.DELETE(3,6);  -- deletes elements 3 through 6 
   n.DELETE(7,7);  -- deletes element 7 
   n.DELETE(6,3);  -- does nothing since 6 > 3
   n.DELETE;      -- deletes all elements
   nicknames('Bob') := 'Robert';
   nicknames('Buffy') := 'Esmerelda';
   nicknames('Chip') := 'Charles';
   nicknames('Dan') := 'Daniel';
   nicknames('Fluffy') := 'Ernestina';
   nicknames('Rob') := 'Robert';
-- following deletes element denoted by this key
   nicknames.DELETE('Chip');
-- following deletes elements with keys in this alphabetic range
   nicknames.DELETE('Buffy','Fluffy'); 
END;
/

Varrays always have consecutive subscripts, so you cannot delete individual elements 
except from the end by using the TRIM method. You can use DELETE without 
parameters to delete all elements.

If an element to be deleted does not exist, DELETE(n) simply skips it; no exception is 
raised. PL/SQL keeps placeholders for deleted elements, so you can replace a deleted 
element by assigning it a new value. This refers to deleted elements after using 
DELETE(n), but not DELETE without parameters which completely removes all 
elements.

DELETE lets you maintain sparse nested tables. You can store sparse nested tables in 
the database, just like any other nested tables.

The amount of memory allocated to a collection increases as the number of elements in 
the collection increases. If you delete the entire collection, or delete all elements 
individually, all of the memory used to store elements of that collection is freed.

Applying Methods to Collection Parameters
Within a subprogram, a collection parameter assumes the properties of the argument 
bound to it. You can apply the built-in collection methods (FIRST, LAST, COUNT, and 
so on) to such parameters. You can create general-purpose subprograms that take 
collection parameters and iterate through their elements, add or delete elements, and 
so on. For varray parameters, the value of LIMIT is always derived from the 
parameter type definition, regardless of the parameter mode.

Avoiding Collection Exceptions
Example 5–38 shows various collection exceptions that are predefined in PL/SQL. The 
example also includes notes on how to avoid the problems. 

Example 5–38 Collection Exceptions

DECLARE
  TYPE WordList IS TABLE OF VARCHAR2(5);
  words WordList;
  err_msg VARCHAR2(100);
  PROCEDURE display_error IS
  BEGIN
    err_msg := SUBSTR(SQLERRM, 1, 100);
    DBMS_OUTPUT.PUT_LINE('Error message = ' || err_msg);
  END;



Avoiding Collection Exceptions

Using PL/SQL Collections and Records 5-29

BEGIN
  BEGIN
    words(1) := 10; -- Raises COLLECTION_IS_NULL
--  A constructor has not been used yet.
--  Note: This exception applies to varrays and nested tables,
--  but not to associative arrays which do not need a constructor.
    EXCEPTION
      WHEN OTHERS THEN display_error;
  END;
--  After using a constructor, you can assign values to the elements.
    words := WordList('1st', '2nd', '3rd'); -- 3 elements created
--  Any expression that returns a VARCHAR2(5) is valid.
    words(3) := words(1) || '+2';
  BEGIN
    words(3) := 'longer than 5 characters'; -- Raises VALUE_ERROR
--  The assigned value is too long.
    EXCEPTION
      WHEN OTHERS THEN display_error;
  END;
  BEGIN
    words('B') := 'dunno'; -- Raises VALUE_ERROR
--  The subscript (B) of a nested table must be an integer. 
--  Note: Also, NULL is not allowed as a subscript.
    EXCEPTION
      WHEN OTHERS THEN display_error;
  END;
  BEGIN
    words(0) := 'zero'; -- Raises SUBSCRIPT_OUTSIDE_LIMIT 
--  Subscript 0 is outside the allowed subscript range.
    EXCEPTION
      WHEN OTHERS THEN display_error;
  END;
  BEGIN
    words(4) := 'maybe'; -- Raises SUBSCRIPT_BEYOND_COUNT
--  The subscript (4) exceeds the number of elements in the table.
--  To add new elements, invoke the EXTEND method first.
    EXCEPTION
      WHEN OTHERS THEN display_error;
  END;
  BEGIN
    words.DELETE(1);
    IF words(1) = 'First' THEN NULL; END IF;
      -- Raises NO_DATA_FOUND
--  The element with subcript (1) was deleted.
    EXCEPTION
      WHEN OTHERS THEN display_error;
  END;
END;
/

Execution continues in Example 5–38 because the raised exceptions are handled in 
sub-blocks. See Continuing Execution After an Exception Is Raised on page 11-16. For 
information about the use of SQLERRM with exception handling, see Retrieving the 
Error Code and Error Message on page 11-15.

The following list summarizes when a given exception is raised.

Collection Exception Raised when...

COLLECTION_IS_NULL you try to operate on an atomically null collection.



Avoiding Collection Exceptions

5-30 Oracle Database PL/SQL Language Reference

In some cases, you can pass invalid subscripts to a method without raising an 
exception. For example, when you pass a null subscript to DELETE(n), it does 
nothing. You can replace deleted elements by assigning values to them, without 
raising NO_DATA_FOUND. This refers to deleted elements after using DELETE(n), but 
not DELETE without parameters which completely removes all elements.

Example 5–39 How Invalid Subscripts are Handled with DELETE(n)

DECLARE
   TYPE NumList IS TABLE OF NUMBER;
   nums NumList := NumList(10,20,30);  -- initialize table
BEGIN
   nums.DELETE(-1);  -- does not raise SUBSCRIPT_OUTSIDE_LIMIT
   nums.DELETE(3);   -- delete 3rd element
   DBMS_OUTPUT.PUT_LINE(nums.COUNT);  -- prints 2
   nums(3) := 30;    -- allowed; does not raise NO_DATA_FOUND
   DBMS_OUTPUT.PUT_LINE(nums.COUNT);  -- prints 3
END;
/

Packaged collection types and local collection types are never compatible. For 
example, if you invoke the packaged procedure in Example 5–40, the second 
procedure call fails, because the packaged and local VARRAY types are incompatible 
despite their identical definitions.

Example 5–40 Incompatibility Between Package and Local Collection Types

CREATE PACKAGE pkg AS
   TYPE NumList IS TABLE OF NUMBER;
   PROCEDURE print_numlist (nums NumList);
END pkg;
/
CREATE PACKAGE BODY pkg AS
  PROCEDURE print_numlist (nums NumList) IS
  BEGIN
    FOR i IN nums.FIRST..nums.LAST LOOP
      DBMS_OUTPUT.PUT_LINE(nums(i));
    END LOOP;
  END;
END pkg;
/

DECLARE
   TYPE NumList IS TABLE OF NUMBER;

NO_DATA_FOUND a subscript designates an element that was deleted, or a 
nonexistent element of an associative array.

SUBSCRIPT_BEYOND_COUNT a subscript exceeds the number of elements in a 
collection.

SUBSCRIPT_OUTSIDE_LIMIT a subscript is outside the allowed range.

VALUE_ERROR a subscript is null or not convertible to the key type. This 
exception might occur if the key is defined as a PLS_
INTEGER range, and the subscript is outside this range.

See Also: Predefined PL/SQL Exceptions on page 11-4

Collection Exception Raised when...



Defining and Declaring Records

Using PL/SQL Collections and Records 5-31

   n1 pkg.NumList := pkg.NumList(2,4); -- type from the package.
   n2 NumList := NumList(6,8);         -- local type.
BEGIN
   pkg.print_numlist(n1); -- type from pkg is legal
-- The packaged procedure cannot accept
-- a value of the local type (n2)
-- pkg.print_numlist(n2);  -- Causes a compilation error.
END;
/

Defining and Declaring Records
To create records, you define a RECORD type, then declare records of that type. You can 
also create or find a table, view, or PL/SQL cursor with the values you want, and use 
the %ROWTYPE attribute to create a matching record.

You can define RECORD types in the declarative part of any PL/SQL block, 
subprogram, or package. When you define your own RECORD type, you can specify a 
NOT NULL constraint on fields, or give them default values. See Record Definition on 
page 13-95.

Example 5–42 and Example 5–42 illustrate record type declarations.

Example 5–41 Declaring and Initializing a Simple Record Type

DECLARE
   TYPE DeptRecTyp IS RECORD (
      deptid NUMBER(4) NOT NULL := 99,
      dname  departments.department_name%TYPE,
      loc    departments.location_id%TYPE,
      region regions%ROWTYPE );
   dept_rec DeptRecTyp;
BEGIN
   dept_rec.dname := 'PURCHASING';
END;
/

Example 5–42 Declaring and Initializing Record Types

DECLARE
-- Declare a record type with 3 fields.
  TYPE rec1_t IS RECORD
    (field1 VARCHAR2(16), field2 NUMBER, field3 DATE);
-- For any fields declared NOT NULL, you must supply a default value.
  TYPE rec2_t IS RECORD (id INTEGER NOT NULL := -1, 
  name VARCHAR2(64) NOT NULL := '[anonymous]');
-- Declare record variables of the types declared
  rec1 rec1_t;
  rec2 rec2_t;
-- Declare a record variable that can hold
-- a row from the EMPLOYEES table.
-- The fields of the record automatically match the names and
-- types of the columns.
-- Don't need a TYPE declaration in this case.
  rec3 employees%ROWTYPE;
-- Or mix fields that are table columns with user-defined fields.
  TYPE rec4_t IS RECORD (first_name employees.first_name%TYPE,
                         last_name employees.last_name%TYPE,
                         rating NUMBER);



Defining and Declaring Records

5-32 Oracle Database PL/SQL Language Reference

  rec4 rec4_t;
BEGIN
-- Read and write fields using dot notation
  rec1.field1 := 'Yesterday';
  rec1.field2 := 65;
  rec1.field3 := TRUNC(SYSDATE-1);
-- Didn't fill name field, so it takes default value
  DBMS_OUTPUT.PUT_LINE(rec2.name);
END;
/

To store a record in the database, you can specify it in an INSERT or UPDATE 
statement, if its fields match the columns in the table.

You can use %TYPE to specify a field type corresponding to a table column type. Your 
code keeps working even if the column type is changed (for example, to increase the 
length of a VARCHAR2 or the precision of a NUMBER). Example 5–43 defines RECORD 
types to hold information about a department.

Example 5–43 Using %ROWTYPE to Declare a Record

DECLARE
-- Best: use %ROWTYPE instead of specifying each column.
-- Use <cursor>%ROWTYPE instead of <table>%ROWTYPE because 
-- you only want some columns.
-- Declaring cursor doesn't run query or affect performance.
   CURSOR c1 IS
     SELECT department_id, department_name, location_id
     FROM departments;
   rec1 c1%ROWTYPE;
-- Use <column>%TYPE in field declarations to avoid problems if 
-- the column types change.
   TYPE DeptRec2 IS RECORD
     (dept_id   departments.department_id%TYPE,
      dept_name departments.department_name%TYPE,
      dept_loc  departments.location_id%TYPE);
   rec2 DeptRec2;
-- Write each field name, specifying type directly
-- (clumsy and unmaintainable for working with table data
-- use only for all-PL/SQL code).
   TYPE DeptRec3 IS RECORD (dept_id NUMBER,
                            dept_name VARCHAR2(14),
                            dept_loc VARCHAR2(13));
   rec3 DeptRec3;
BEGIN
   NULL;
END;
/

PL/SQL lets you define records that contain objects, collections, and other records 
(called nested records). However, records cannot be attributes of object types.

To declare a record that represents a row in a database table, without listing the 
columns, use the %ROWTYPE attribute.

Your code keeps working even after columns are added to the table. If you want to 
represent a subset of columns in a table, or columns from different tables, you can 
define a view or declare a cursor to select the right columns and do any necessary 
joins, and then apply %ROWTYPE to the view or cursor.



Using Records as Subprogram Parameters and Function Return Values

Using PL/SQL Collections and Records 5-33

Using Records as Subprogram Parameters and Function Return Values
Records are easy to process using stored subprograms because you can pass just one 
parameter, instead of a separate parameter for each field. For example, you can fetch a 
table row from the EMPLOYEES table into a record, and then pass that row as a 
parameter to a function that computes that employee's vacation allowance. The 
function can access all the information about that employee by referring to the fields in 
the record.

The next example shows how to return a record from a function. To make the record 
type visible across multiple stored subprograms, declare the record type in a package 
specification.

Example 5–44 Returning a Record from a Function

DECLARE
   TYPE EmpRecTyp IS RECORD (
     emp_id       NUMBER(6),
     salary       NUMBER(8,2));
   CURSOR desc_salary RETURN EmpRecTyp IS
      SELECT employee_id, salary
      FROM employees
      ORDER BY salary DESC;
   emp_rec     EmpRecTyp;
   FUNCTION nth_highest_salary (n INTEGER) RETURN EmpRecTyp IS
   BEGIN
      OPEN desc_salary;
      FOR i IN 1..n LOOP
         FETCH desc_salary INTO emp_rec;
      END LOOP;
      CLOSE desc_salary;
      RETURN emp_rec;
   END nth_highest_salary;
BEGIN
   NULL;
END;
/

Like scalar variables, user-defined records can be declared as the formal parameters of 
subprograms, as in Example 5–45.

Example 5–45 Using a Record as Parameter to a Procedure

DECLARE
   TYPE EmpRecTyp IS RECORD (
      emp_id       NUMBER(6),
      emp_sal      NUMBER(8,2) );
   PROCEDURE raise_salary (emp_info EmpRecTyp) IS
   BEGIN
      UPDATE employees SET salary = salary + salary * .10
             WHERE employee_id = emp_info.emp_id;
   END raise_salary;
BEGIN
   NULL;
END;
/
You can declare and reference nested records. That is, a record can be the component 
of another record.



Assigning Values to Records

5-34 Oracle Database PL/SQL Language Reference

Example 5–46 Declaring a Nested Record

DECLARE
   TYPE TimeTyp IS RECORD ( minutes SMALLINT, hours SMALLINT );
   TYPE MeetingTyp IS RECORD (
      day     DATE,
      time_of TimeTyp,             -- nested record
      dept    departments%ROWTYPE,
        -- nested record representing a table row
      place   VARCHAR2(20),
      purpose VARCHAR2(50) );
   meeting MeetingTyp;
   seminar MeetingTyp;
BEGIN
-- Can assign one nested record to another
-- if they are of the same data type
   seminar.time_of := meeting.time_of;
END;
/

Such assignments are allowed even if the containing records have different data types.

Assigning Values to Records
To set all the fields in a record to default values, assign to it an uninitialized record of 
the same type, as shown in Example 5–47.

Example 5–47 Assigning Default Values to a Record

DECLARE
   TYPE RecordTyp IS RECORD (field1 NUMBER, 
                             field2 VARCHAR2(32) DEFAULT 'something');
   rec1 RecordTyp;
   rec2 RecordTyp;
BEGIN
-- At first, rec1 has the values you assign.
   rec1.field1 := 100; rec1.field2 := 'something else';
-- Assigning an empty record to rec1
-- resets fields to their default values.
-- Field1 is NULL and field2 is 'something'
-- due to the DEFAULT clause
   rec1 := rec2;
   DBMS_OUTPUT.PUT_LINE
     ('Field1 = ' || NVL(TO_CHAR(rec1.field1),'<NULL>') || ',
      field2 = ' || rec1.field2);
END;
/

You can assign a value to a field in a record using an assignment statement with dot 
notation:

emp_info.last_name := 'Fields';

Values are assigned separately to each field of a record in Example 5–47. You cannot 
assign a list of values to a record using an assignment statement. There is no 
constructor-like notation for records.

You can assign values to all fields at once only if you assign a record to another record 
with the same data type. Having fields that match exactly is not enough, as shown in 
Example 5–48. 



Assigning Values to Records

Using PL/SQL Collections and Records 5-35

Example 5–48 Assigning All the Fields of a Record in One Statement

DECLARE
-- Two identical type declarations.
   TYPE DeptRec1 IS RECORD
     (dept_num  NUMBER(2), dept_name VARCHAR2(14));
   TYPE DeptRec2 IS RECORD
    (dept_num  NUMBER(2), dept_name VARCHAR2(14));
   dept1_info DeptRec1;
   dept2_info DeptRec2;
   dept3_info DeptRec2;
BEGIN
-- Not allowed; different data types,
-- even though fields are the same.
--      dept1_info := dept2_info; 
-- This assignment is OK because the records have the same type.
   dept2_info := dept3_info;
END;
/

You can assign a %ROWTYPE record to a user-defined record if their fields match in 
number and order, and corresponding fields have the same data types:

DECLARE
   TYPE RecordTyp IS RECORD (last employees.last_name%TYPE, 
                             id employees.employee_id%TYPE);
   CURSOR c1 IS SELECT last_name, employee_id FROM employees;
-- Rec1 and rec2 have different types,
-- but because rec2 is based on a %ROWTYPE,
-- you can assign it to rec1 as long as they have
-- the right number of fields and
-- the fields have the right data types.
   rec1 RecordTyp;
   rec2 c1%ROWTYPE;
BEGIN
  SELECT last_name, employee_id INTO rec2
    FROM employees WHERE ROWNUM < 2;
    WHERE ROWNUM < 2;
  rec1 := rec2;
  DBMS_OUTPUT.PUT_LINE
    ('Employee #' || rec1.id || ' = ' || rec1.last);
END;
/

You can also use the SELECT or FETCH statement to fetch column values into a record. 
The columns in the select-list must appear in the same order as the fields in your 
record.

Example 5–49 Using SELECT INTO to Assign Values in a Record

DECLARE
   TYPE RecordTyp IS RECORD (last employees.last_name%TYPE, 
                             id employees.employee_id%TYPE);
   rec1 RecordTyp;
BEGIN
  SELECT last_name, employee_id INTO rec1
     FROM employees WHERE ROWNUM < 2;
     WHERE ROWNUM < 2;
   DBMS_OUTPUT.PUT_LINE
     ('Employee #' || rec1.id || ' = ' || rec1.last);
END;



Assigning Values to Records

5-36 Oracle Database PL/SQL Language Reference

/
Topics:

■ Comparing Records

■ Inserting Records Into the Database

■ Updating the Database with Record Values

■ Restrictions on Record Inserts and Updates

■ Querying Data Into Collections of Records

Comparing Records
Records cannot be tested for nullity, or compared for equality, or inequality. If you 
want to make such comparisons, write your own function that accepts two records as 
parameters and does the appropriate checks or comparisons on the corresponding 
fields.

Inserting Records Into the Database
A PL/SQL-only extension of the INSERT statement lets you insert records into 
database rows, using a single variable of type RECORD or %ROWTYPE in the VALUES 
clause instead of a list of fields. That makes your code more readable and 
maintainable. 

If you issue the INSERT through the FORALL statement, you can insert values from an 
entire collection of records. The number of fields in the record must equal the number 
of columns listed in the INTO clause, and corresponding fields and columns must have 
compatible data types. To make sure the record is compatible with the table, you might 
find it most convenient to declare the variable as the type table_name%ROWTYPE.

Example 5–50 declares a record variable using a %ROWTYPE qualifier. You can insert 
this variable without specifying a column list. The %ROWTYPE declaration ensures that 
the record attributes have exactly the same names and types as the table columns.

Example 5–50 Inserting a PL/SQL Record Using %ROWTYPE

DECLARE
  dept_info departments%ROWTYPE;
BEGIN
  -- department_id, department_name, and location_id
  -- are the table columns
  -- The record picks up these names from the %ROWTYPE
     dept_info.department_id := 300;
     dept_info.department_name := 'Personnel';
     dept_info.location_id := 1700;
  -- Using the %ROWTYPE means you can leave out the column list
  -- (department_id, department_name, and location_id)
  -- from the INSERT statement
  INSERT INTO departments VALUES dept_info;
END;
/

Updating the Database with Record Values
A PL/SQL-only extension of the UPDATE statement lets you update database rows 
using a single variable of type RECORD or %ROWTYPE on the right side of the SET 
clause, instead of a list of fields.



Assigning Values to Records

Using PL/SQL Collections and Records 5-37

If you issue the UPDATE through the FORALL statement, you can update a set of rows 
using values from an entire collection of records. Also with an UPDATE statement, you 
can specify a record in the RETURNING clause to retrieve new values into a record. If 
you issue the UPDATE through the FORALL statement, you can retrieve new values 
from a set of updated rows into a collection of records.

The number of fields in the record must equal the number of columns listed in the SET 
clause, and corresponding fields and columns must have compatible data types.

You can use the keyword ROW to represent an entire row, as shown in Example 5–51.

Example 5–51 Updating a Row Using a Record

DECLARE
   dept_info departments%ROWTYPE;
BEGIN
-- department_id, department_name, and location_id
-- are the table columns
-- The record picks up these names from the %ROWTYPE.
  dept_info.department_id := 300;
  dept_info.department_name := 'Personnel';
  dept_info.location_id := 1700;
-- The fields of a %ROWTYPE
-- can completely replace the table columns
-- The row will have values for the filled-in columns, and null
-- for any other columns
   UPDATE departments SET ROW = dept_info WHERE department_id = 300;
END;
/

The keyword ROW is allowed only on the left side of a SET clause. The argument to 
SET ROW must be a real PL/SQL record, not a subquery that returns a single row. The 
record can also contain collections or objects.

The INSERT, UPDATE, and DELETE statements can include a RETURNING clause, 
which returns column values from the affected row into a PL/SQL record variable. 
This eliminates the need to SELECT the row after an insert or update, or before a 
delete.

By default, you can use this clause only when operating on exactly one row. When you 
use bulk SQL, you can use the form RETURNING BULK COLLECT INTO to store the 
results in one or more collections.

Example 5–52 updates the salary of an employee and retrieves the employee's name, 
job title, and new salary into a record variable.

Example 5–52 Using the RETURNING INTO Clause with a Record

DECLARE
   TYPE EmpRec IS RECORD (last_name  employees.last_name%TYPE, 
                          salary     employees.salary%TYPE);
   emp_info EmpRec;
   emp_id   NUMBER := 100;
BEGIN
   UPDATE employees SET salary = salary * 1.1
     WHERE employee_id = emp_id
     RETURNING last_name, salary INTO emp_info;
   DBMS_OUTPUT.PUT_LINE
     ('Just gave a raise to ' || emp_info.last_name ||
      ', who now makes ' || emp_info.salary);
   ROLLBACK;



Assigning Values to Records

5-38 Oracle Database PL/SQL Language Reference

END;
/

Restrictions on Record Inserts and Updates
Currently, the following restrictions apply to record inserts/updates:

■ Record variables are allowed only in the following places:

■ On the right side of the SET clause in an UPDATE statement

■ In the VALUES clause of an INSERT statement

■ In the INTO subclause of a RETURNING clause

Record variables are not allowed in a SELECT list, WHERE clause, GROUP BY clause, 
or ORDER BY clause.

■ The keyword ROW is allowed only on the left side of a SET clause. Also, you cannot 
use ROW with a subquery.

■ In an UPDATE statement, only one SET clause is allowed if ROW is used.

■ If the VALUES clause of an INSERT statement contains a record variable, no other 
variable or value is allowed in the clause.

■ If the INTO subclause of a RETURNING clause contains a record variable, no other 
variable or value is allowed in the subclause.

■ The following are not supported:

■ Nested record types

■ Functions that return a record

■ Record inserts and updates using the EXECUTE IMMEDIATE statement.

Querying Data Into Collections of Records
You can use the BULK COLLECT clause with a SELECT INTO or FETCH statement to 
retrieve a set of rows into a collection of records.

Example 5–53 Using BULK COLLECT with a SELECT INTO Statement

DECLARE
   TYPE EmployeeSet IS TABLE OF employees%ROWTYPE;
   underpaid EmployeeSet;
     -- Holds set of rows from EMPLOYEES table.
   CURSOR c1 IS SELECT first_name, last_name FROM employees;
   TYPE NameSet IS TABLE OF c1%ROWTYPE;
   some_names NameSet;
     -- Holds set of partial rows from EMPLOYEES table.
BEGIN
-- With one query,
-- bring all relevant data into collection of records.
   SELECT * BULK COLLECT INTO underpaid FROM employees
      WHERE salary < 5000 ORDER BY salary DESC;
-- Process data by examining collection or passing it to
-- eparate procedure, instead of writing loop to FETCH each row.
   DBMS_OUTPUT.PUT_LINE
     (underpaid.COUNT || ' people make less than 5000.');
   FOR i IN underpaid.FIRST .. underpaid.LAST
   LOOP
     DBMS_OUTPUT.PUT_LINE



Assigning Values to Records

Using PL/SQL Collections and Records 5-39

       (underpaid(i).last_name || ' makes ' || underpaid(i).salary);
   END LOOP;
-- You can also bring in just some of the table columns.
-- Here you get the first and last names of 10 arbitrary employees.
   SELECT first_name, last_name
     BULK COLLECT INTO some_names
     FROM employees
     WHERE ROWNUM < 11;
   FOR i IN some_names.FIRST .. some_names.LAST
   LOOP
      DBMS_OUTPUT.PUT_LINE
        ('Employee = ' || some_names(i).first_name
         || ' ' || some_names(i).last_name);
   END LOOP;
END;
/



Assigning Values to Records

5-40 Oracle Database PL/SQL Language Reference



6

Using Static SQL 6-1

6 Using Static SQL

Static SQL is SQL that belongs to the PL/SQL language. This chapter describes static 
SQL and explains how to use it in PL/SQL programs.

Topics:

■ Description of Static SQL

■ Managing Cursors in PL/SQL

■ Querying Data with PL/SQL

■ Using Subqueries

■ Using Cursor Variables (REF CURSORs)

■ Using Cursor Expressions

■ Overview of Transaction Processing in PL/SQL

■ Doing Independent Units of Work with Autonomous Transactions

Description of Static SQL
Static SQL is SQL that belongs to the PL/SQL language; that is:

■ Data Manipulation Language (DML) Statements (except EXPLAIN PLAN)

■ Transaction Control Language (TCL) Statements

■ SQL Functions

■ SQL Pseudocolumns

■ SQL Operators

Static SQL conforms to the current ANSI/ISO SQL standard.

Data Manipulation Language (DML) Statements
To manipulate database data, you can include DML operations, such as INSERT, 
UPDATE, and DELETE statements, directly in PL/SQL programs, without any special 
notation, as shown in Example 6–1. You can also include the SQL COMMIT statement 
directly in a PL/SQL program; see Overview of Transaction Processing in PL/SQL on 
page 6-32.

Example 6–1 Data Manipulation with PL/SQL

CREATE TABLE employees_temp
  AS SELECT employee_id, first_name, last_name 



Description of Static SQL

6-2 Oracle Database PL/SQL Language Reference

  FROM employees;
DECLARE
  emp_id          employees_temp.employee_id%TYPE;
  emp_first_name  employees_temp.first_name%TYPE;
  emp_last_name   employees_temp.last_name%TYPE;
BEGIN
   INSERT INTO employees_temp VALUES(299, 'Bob', 'Henry');
   UPDATE employees_temp
     SET first_name = 'Robert' WHERE employee_id = 299;
   DELETE FROM employees_temp WHERE employee_id = 299 
     RETURNING first_name, last_name
       INTO emp_first_name, emp_last_name;
   COMMIT;
   DBMS_OUTPUT.PUT_LINE( emp_first_name  || ' ' || emp_last_name);
END;
/

To find out how many rows are affected by DML statements, you can check the value 
of SQL%ROWCOUNT as shown in Example 6–2.

Example 6–2 Checking SQL%ROWCOUNT After an UPDATE

CREATE TABLE employees_temp AS SELECT * FROM employees;
BEGIN
  UPDATE employees_temp
    SET salary = salary * 1.05 WHERE salary < 5000;
  DBMS_OUTPUT.PUT_LINE('Updated ' || SQL%ROWCOUNT || ' salaries.');
END;
/

Wherever you can use literal values, or bind variables in some other programming 
language, you can directly substitute PL/SQL variables as shown in Example 6–3.

Example 6–3 Substituting PL/SQL Variables

CREATE TABLE employees_temp
  AS SELECT first_name, last_name FROM employees;
DECLARE
   x VARCHAR2(20) := 'my_first_name';
   y VARCHAR2(25) := 'my_last_name';
BEGIN
   INSERT INTO employees_temp VALUES(x, y);
   UPDATE employees_temp SET last_name = x WHERE first_name = y;
   DELETE FROM employees_temp WHERE first_name = x;
   COMMIT;
END;
/

With this notation, you can use variables in place of values in the WHERE clause. To use 
variables in place of table names, column names, and so on, requires the EXECUTE 
IMMEDIATE statement that is explained in Using Native Dynamic SQL on page 7-2.

For information about the use of PL/SQL records with SQL to update and insert data, 
see Inserting Records Into the Database on page 5-36 and Updating the Database with 
Record Values on page 5-36.

See Also: Oracle Database SQL Language Referencefor information 
about the COMMIT statement



Description of Static SQL

Using Static SQL 6-3

For more information about assigning values to PL/SQL variables, see Assigning SQL 
Query Results to PL/SQL Variables on page 2-27.

Transaction Control Language (TCL) Statements
The database is transaction oriented; that is, the database uses transactions to ensure 
data integrity. A transaction is a series of SQL data manipulation statements that does 
a logical unit of work. For example, two UPDATE statements might credit one bank 
account and debit another. It is important not to allow one operation to succeed while 
the other fails.

At the end of a transaction that makes database changes, the database makes all the 
changes permanent or undoes them all. If your program fails in the middle of a 
transaction, the database detects the error and rolls back the transaction, restoring the 
database to its former state. 

You use the COMMIT, ROLLBACK, SAVEPOINT, and SET TRANSACTION statements to 
control transactions. COMMIT makes permanent any database changes made during 
the current transaction. ROLLBACK ends the current transaction and undoes any 
changes made since the transaction began. SAVEPOINT marks the current point in the 
processing of a transaction. Used with ROLLBACK, SAVEPOINT undoes part of a 
transaction. SET TRANSACTION sets transaction properties such as read/write access 
and isolation level. See Overview of Transaction Processing in PL/SQL on page 6-32.

SQL Functions
The queries in Example 6–4 invoke a SQL function (COUNT).

Example 6–4 Invoking the SQL COUNT Function in PL/SQL

SQL> DECLARE
  2    job_count NUMBER;
  3    emp_count NUMBER;
  4  BEGIN
  5    SELECT COUNT(DISTINCT job_id)
  6      INTO job_count
  7        FROM employees;
  8  
  9    SELECT COUNT(*)
 10      INTO emp_count
 11        FROM employees;
 12  END;
 13  /
 
PL/SQL procedure successfully completed.
 
SQL>

Note: When issuing a data manipulation (DML) statement in 
PL/SQL, there are some situations when the value of a variable is 
undefined after the statement is executed. These include:

■ If a FETCH or SELECT statement raises any exception, then the 
values of the define variables after that statement are undefined.

■ If a DML statement affects zero rows, the values of the OUT binds 
after the DML executes are undefined. This does not apply to a 
BULK or multiple-row operation.



Description of Static SQL

6-4 Oracle Database PL/SQL Language Reference

SQL Pseudocolumns
PL/SQL recognizes the SQL pseudocolumns CURRVAL, LEVEL, NEXTVAL, ROWID, and 
ROWNUM. However, there are limitations on the use of pseudocolumns, including the 
restriction on the use of some pseudocolumns in assignments or conditional tests. For 
more information, including restrictions, on the use of SQL pseudocolumns, see Oracle 
Database SQL Language Reference.

Topics:

■ CURRVAL and NEXTVAL

■ LEVEL

■ ROWID

■ ROWNUM

CURRVAL and NEXTVAL
A sequence is a schema object that generates sequential numbers. When you create a 
sequence, you can specify its initial value and an increment. CURRVAL returns the 
current value in a specified sequence. Before you can reference CURRVAL in a session, 
you must use NEXTVAL to generate a number. A reference to NEXTVAL stores the 
current sequence number in CURRVAL. NEXTVAL increments the sequence and returns 
the next value. To get the current or next value in a sequence, use dot notation:

sequence_name.CURRVAL
sequence_name.NEXTVAL

The sequence_name can be either local or remote.

Each time you reference the NEXTVAL value of a sequence, the sequence is 
incremented immediately and permanently, whether you commit or roll back the 
transaction.

After creating a sequence, you can use it to generate unique sequence numbers for 
transaction processing.

Example 6–5 generates a new sequence number and refers to that number in more 
than one statement. (The sequence must already exist. To create a sequence, use the 
SQL statement CREATE SEQUENCE.)

Example 6–5 Using CURRVAL and NEXTVAL

CREATE TABLE employees_temp
  AS SELECT employee_id, first_name, last_name
  FROM employees;

CREATE TABLE employees_temp2
  AS SELECT employee_id, first_name, last_name
  FROM employees;

DECLARE
  seq_value NUMBER;
BEGIN
  -- Generate initial sequence number
  seq_value := employees_seq.NEXTVAL;

  -- Print initial sequence number:
  DBMS_OUTPUT.PUT_LINE
    ('Initial sequence value: ' || TO_CHAR(seq_value));



Description of Static SQL

Using Static SQL 6-5

  -- Use NEXTVAL to create unique number when inserting data:
     INSERT INTO employees_temp VALUES (employees_seq.NEXTVAL,
                                        'Lynette', 'Smith');

  -- Use CURRVAL to store same value somewhere else:
     INSERT INTO employees_temp2 VALUES (employees_seq.CURRVAL,
                                         'Morgan', 'Smith');

  -- Because NEXTVAL values might be referenced
  -- by different users and applications,
  -- and some NEXTVAL values might not be stored in the database,
  -- there might be gaps in the sequence.

  -- Use CURRVAL to specify the record to delete:
     seq_value := employees_seq.CURRVAL;
     DELETE FROM employees_temp2 WHERE employee_id = seq_value;

  -- Udpate employee_id with NEXTVAL for specified record:
     UPDATE employees_temp SET employee_id = employees_seq.NEXTVAL
       WHERE first_name = 'Lynette' AND last_name = 'Smith';

  -- Display final value of CURRVAL:
     seq_value := employees_seq.CURRVAL;
     DBMS_OUTPUT.PUT_LINE
       ('Ending sequence value: ' || TO_CHAR(seq_value));
END;
/

Usage Notes
■ You can use sequence_name.CURRVAL and sequence_name.NEXTVAL 

wherever you can use a NUMBER expression.

■ Using sequence_name.CURRVAL or sequence_name.NEXTVAL to provide a 
default value for an object type method parameter causes a compilation error.

■ PL/SQL evaluates every occurrence of sequence_name.CURRVAL and 
sequence_name.NEXTVAL (unlike SQL, which evaluates a sequence expression 
only once for every row in which it appears).

LEVEL
You use LEVEL with the SELECT CONNECT BY statement to organize rows from a 
database table into a tree structure. You might use sequence numbers to give each row 
a unique identifier, and refer to those identifiers from other rows to set up parent-child 
relationships. LEVEL returns the level number of a node in a tree structure. The root is 
level 1, children of the root are level 2, grandchildren are level 3, and so on. 

 In the START WITH clause, you specify a condition that identifies the root of the tree. 
You specify the direction in which the query traverses the tree (down from the root or 
up from the branches) with the PRIOR operator.

ROWID
ROWID returns the rowid (binary address) of a row in a database table. You can use 
variables of type UROWID to store rowids in a readable format.

When you select or fetch a physical rowid into a UROWID variable, you can use the 
function ROWIDTOCHAR, which converts the binary value to a character string. You can 
compare the UROWID variable to the ROWID pseudocolumn in the WHERE clause of an 



Description of Static SQL

6-6 Oracle Database PL/SQL Language Reference

UPDATE or DELETE statement to identify the latest row fetched from a cursor. For an 
example, see Fetching Across Commits on page 6-39. 

ROWNUM
ROWNUM returns a number indicating the order in which a row was selected from a 
table. The first row selected has a ROWNUM of 1, the second row has a ROWNUM of 2, and 
so on. If a SELECT statement includes an ORDER BY clause, ROWNUMs are assigned to 
the retrieved rows before the sort is done; use a subselect to get the first n sorted rows. 
The value of ROWNUM increases only when a row is retrieved, so the only meaningful 
uses of ROWNUM in a WHERE clause are:

... WHERE ROWNUM < constant;

... WHERE ROWNUM <= constant;

You can use ROWNUM in an UPDATE statement to assign unique values to each row in a 
table, or in the WHERE clause of a SELECT statement to limit the number of rows 
retrieved, as shown in Example 6–6.

Example 6–6 Using ROWNUM

CREATE TABLE employees_temp AS SELECT * FROM employees;
DECLARE
   CURSOR c1 IS SELECT employee_id, salary FROM employees_temp
      WHERE salary > 2000 AND ROWNUM <= 10;  -- 10 arbitrary rows
   CURSOR c2 IS SELECT * FROM
     (SELECT employee_id, salary FROM employees_temp
       WHERE salary > 2000 ORDER BY salary DESC)
     WHERE ROWNUM < 5;  -- first 5 rows, in sorted order
BEGIN
-- Each row gets assigned a different number
  UPDATE employees_temp SET employee_id = ROWNUM;
END;
/

SQL Operators
PL/SQL lets you use all the SQL comparison, set, and row operators in SQL 
statements. This section briefly describes some of these operators. For more 
information, see Oracle Database SQL Language Reference.

Topics:

■ Comparison Operators

■ Set Operators

■ Row Operators

Comparison Operators
Typically, you use comparison operators in the WHERE clause of a data manipulation 
statement to form predicates, which compare one expression to another and yield 
TRUE, FALSE, or NULL. You can use the comparison operators in the following list to 
form predicates. You can combine predicates using the logical operators AND, OR, and 
NOT.



Managing Cursors in PL/SQL

Using Static SQL 6-7

Set Operators
Set operators combine the results of two queries into one result. INTERSECT returns 
all distinct rows selected by both queries. MINUS returns all distinct rows selected by 
the first query but not by the second. UNION returns all distinct rows selected by either 
query. UNION ALL returns all rows selected by either query, including all duplicates.

Row Operators
Row operators return or reference particular rows. ALL retains duplicate rows in the 
result of a query or in an aggregate expression. DISTINCT eliminates duplicate rows 
from the result of a query or from an aggregate expression. PRIOR refers to the parent 
row of the current row returned by a tree-structured query.

Managing Cursors in PL/SQL
PL/SQL uses implicit and explicit cursors. PL/SQL declares a cursor implicitly for all 
SQL data manipulation statements, including queries that return only one row. 
Implicit cursors are called SQL cursors. If you want precise control over query 
processing, you can declare an explicit cursor in the declarative part of any PL/SQL 
block, subprogram, or package. You must declare explicit cursors for queries that 
return more than one row.

Topics:

■ SQL Cursors (Implicit)

■ Explicit Cursors

SQL Cursors (Implicit)
SQL cursors are managed automatically by PL/SQL. You need not write code to 
handle these cursors. However, you can track information about the execution of an 
SQL cursor through its attributes.

Topics:

■ Attributes of SQL Cursors

■ Guidelines for Using Attributes of SQL Cursors

Operator Description

ALL Compares a value to each value in a list or returned by a subquery and yields 
TRUE if all of the individual comparisons yield TRUE.

ANY, SOME Compares a value to each value in a list or returned by a subquery and yields 
TRUE if any of the individual comparisons yields TRUE.

BETWEEN Tests whether a value lies in a specified range.

EXISTS Returns TRUE if a subquery returns at least one row.

IN Tests for set membership.

IS NULL Tests for nulls.

LIKE Tests whether a character string matches a specified pattern, which can include 
wildcards.



Managing Cursors in PL/SQL

6-8 Oracle Database PL/SQL Language Reference

Attributes of SQL Cursors
SQL cursor attributes return information about the execution of DML and DDL 
statements, such INSERT, UPDATE, DELETE, SELECT INTO, COMMIT, or ROLLBACK 
statements. The cursor attributes are %FOUND, %ISOPEN %NOTFOUND, and %ROWCOUNT. 
The values of the cursor attributes always refer to the most recently executed SQL 
statement. Before the database opens the SQL cursor, its attributes yield NULL.

The SQL cursor has another attribute, %BULK_ROWCOUNT, designed for use with the 
FORALL statement. For more information, see Counting Rows Affected by FORALL 
(%BULK_ROWCOUNT Attribute) on page 12-14.

Topics:

■ %FOUND Attribute: Has a DML Statement Changed Rows?

■ %ISOPEN Attribute: Always FALSE for SQL Cursors

■ %NOTFOUND Attribute: Has a DML Statement Failed to Change Rows?

■ %ROWCOUNT Attribute: How Many Rows Affected So Far?

%FOUND Attribute: Has a DML Statement Changed Rows?  Until a SQL data manipulation 
statement is executed, %FOUND yields NULL. Thereafter, %FOUND yields TRUE if an 
INSERT, UPDATE, or DELETE statement affected one or more rows, or a SELECT INTO 
statement returned one or more rows. Otherwise, %FOUND yields FALSE. In 
Example 6–7, you use %FOUND to insert a row if a delete succeeds.

Example 6–7 Using SQL%FOUND

CREATE TABLE dept_temp AS SELECT * FROM departments;
DECLARE
  dept_no NUMBER(4) := 270;
BEGIN
  DELETE FROM dept_temp WHERE department_id = dept_no;
  IF SQL%FOUND THEN  -- delete succeeded
    INSERT INTO dept_temp VALUES (270, 'Personnel', 200, 1700);
  END IF;
END;
/

%ISOPEN Attribute: Always FALSE for SQL Cursors  The database closes the SQL cursor 
automatically after executing its associated SQL statement. As a result, %ISOPEN 
always yields FALSE. 

%NOTFOUND Attribute: Has a DML Statement Failed to Change Rows?  %NOTFOUND is the 
logical opposite of %FOUND. %NOTFOUND yields TRUE if an INSERT, UPDATE, or 
DELETE statement affected no rows, or a SELECT INTO statement returned no rows. 
Otherwise, %NOTFOUND yields FALSE.

%ROWCOUNT Attribute: How Many Rows Affected So Far?  %ROWCOUNT yields the number of 
rows affected by an INSERT, UPDATE, or DELETE statement, or returned by a SELECT 
INTO statement. %ROWCOUNT yields 0 if an INSERT, UPDATE, or DELETE statement 
affected no rows, or a SELECT INTO statement returned no rows. In Example 6–8, 
%ROWCOUNT returns the number of rows that were deleted.

Example 6–8 Using SQL%ROWCOUNT

CREATE TABLE employees_temp AS SELECT * FROM employees;
DECLARE



Managing Cursors in PL/SQL

Using Static SQL 6-9

  mgr_no NUMBER(6) := 122;
BEGIN
  DELETE FROM employees_temp WHERE manager_id = mgr_no;
  DBMS_OUTPUT.PUT_LINE
    ('Number of employees deleted: ' || TO_CHAR(SQL%ROWCOUNT));
END;
/

If a SELECT INTO statement returns more than one row, PL/SQL raises the predefined 
exception TOO_MANY_ROWS and %ROWCOUNT yields 1, not the actual number of rows 
that satisfy the query. 

The value of the SQL%ROWCOUNT attribute refers to the most recently executed SQL 
statement from PL/SQL. To save an attribute value for later use, assign it to a local 
variable immediately. 

The SQL%ROWCOUNT attribute is not related to the state of a transaction. When a 
rollback to a savepoint is performed, the value of SQL%ROWCOUNT is not restored to the 
old value before the savepoint was taken. Also, when an autonomous transaction is 
exited, SQL%ROWCOUNT is not restored to the original value in the parent transaction.

Guidelines for Using Attributes of SQL Cursors
When using attributes of SQL cursors, consider the following:

■ The values of the cursor attributes always refer to the most recently executed SQL 
statement, wherever that statement is. It might be in a different scope (for 
example, in a sub-block). To save an attribute value for later use, assign it to a local 
variable immediately. Doing other operations, such as subprogram calls, might 
change the value of the variable before you can test it.

■ The %NOTFOUND attribute is not useful in combination with the SELECT INTO 
statement:

– If a SELECT INTO statement fails to return a row, PL/SQL raises the 
predefined exception NO_DATA_FOUND immediately, interrupting the flow of 
control before you can check %NOTFOUND.

– A SELECT INTO statement that invokes a SQL aggregate function always 
returns a value or a null. After such a statement, the %NOTFOUND attribute is 
always FALSE, so checking it is unnecessary.

Explicit Cursors
When you need precise control over query processing, you can explicitly declare a 
cursor in the declarative part of any PL/SQL block, subprogram, or package.

You use three statements to control a cursor: OPEN, FETCH, and CLOSE. First, you 
initialize the cursor with the OPEN statement, which identifies the result set. Then, you 
can execute FETCH repeatedly until all rows have been retrieved, or you can use the 
BULK COLLECT clause to fetch all rows at once. When the last row has been processed, 
you release the cursor with the CLOSE statement.

This technique requires more code than other techniques such as the SQL cursor FOR 
loop. Its advantage is flexibility. You can:

■ Process several queries in parallel by declaring and opening multiple cursors.

■ Process multiple rows in a single loop iteration, skip rows, or split the processing 
into more than one loop.

Topics:



Managing Cursors in PL/SQL

6-10 Oracle Database PL/SQL Language Reference

■ Declaring a Cursor

■ Opening a Cursor

■ Fetching with a Cursor

■ Fetching Bulk Data with a Cursor

■ Closing a Cursor

■ Attributes of Explicit Cursors

Declaring a Cursor
You must declare a cursor before referencing it in other statements. You give the cursor 
a name and associate it with a specific query. You can optionally declare a return type 
for the cursor, such as table_name%ROWTYPE. You can optionally specify parameters 
that you use in the WHERE clause instead of referring to local variables. These 
parameters can have default values. Example 6–9 shows how you can declare cursors.

Example 6–9 Declaring a Cursor

DECLARE
  my_emp_id     NUMBER(6);      -- variable for employee_id
  my_job_id     VARCHAR2(10);   -- variable for job_id
  my_sal        NUMBER(8,2);    -- variable for salary
  CURSOR c1 IS SELECT employee_id, job_id, salary FROM employees
      WHERE salary > 2000; 
  my_dept   departments%ROWTYPE;  -- variable for departments row
  CURSOR c2 RETURN departments%ROWTYPE IS 
      SELECT * FROM departments WHERE department_id = 110;

The cursor is not a PL/SQL variable: you cannot assign a value to a cursor or use it in 
an expression. Cursors and variables follow the same scoping rules. Naming cursors 
after database tables is possible but not recommended. 

A cursor can take parameters, which can appear in the associated query wherever 
constants can appear. The formal parameters of a cursor must be IN parameters; they 
supply values in the query, but do not return any values from the query. You cannot 
impose the constraint NOT NULL on a cursor parameter. 

As the following example shows, you can initialize cursor parameters to default 
values. You can pass different numbers of actual parameters to a cursor, accepting or 
overriding the default values as you please. Also, you can add new formal parameters 
without having to change existing references to the cursor.

DECLARE
   CURSOR c1 (low  NUMBER DEFAULT 0, high NUMBER DEFAULT 99) IS
              SELECT * FROM departments WHERE department_id > low
              AND department_id < high;

Cursor parameters can be referenced only within the query specified in the cursor 
declaration. The parameter values are used by the associated query when the cursor is 
opened. 

Note: An explicit cursor declared in a package specification is 
affected by the AUTHID clause of the package. For more information, 
see "CREATE PACKAGE Statement" on page 14-36.



Managing Cursors in PL/SQL

Using Static SQL 6-11

Opening a Cursor
Opening the cursor executes the query and identifies the result set, which consists of 
all rows that meet the query search criteria. For cursors declared using the FOR 
UPDATE clause, the OPEN statement also locks those rows. An example of the OPEN 
statement follows: 

DECLARE
   CURSOR c1 IS 
     SELECT employee_id, last_name, job_id, salary
     FROM employees
     WHERE salary > 2000; 
BEGIN
  OPEN c1;

Rows in the result set are retrieved by the FETCH statement, not when the OPEN 
statement is executed.

Fetching with a Cursor
Unless you use the BULK COLLECT clause, explained in Fetching with a Cursor on 
page 6-11, the FETCH statement retrieves the rows in the result set one at a time. Each 
fetch retrieves the current row and advances the cursor to the next row in the result 
set. You can store each column in a separate variable, or store the entire row in a record 
that has the appropriate fields, usually declared using %ROWTYPE. 

For each column value returned by the query associated with the cursor, there must be 
a corresponding, type-compatible variable in the INTO list. Typically, you use the 
FETCH statement with a LOOP and EXIT WHEN NOTFOUND statements, as shown in 
Example 6–10. Note the use of built-in regular expression functions in the queries.

Example 6–10 Fetching with a Cursor

DECLARE
  v_jobid     employees.job_id%TYPE;     -- variable for job_id
  v_lastname  employees.last_name%TYPE;  -- variable for last_name
  CURSOR c1 IS SELECT last_name, job_id FROM employees 
                 WHERE REGEXP_LIKE (job_id, 'S[HT]_CLERK');
  v_employees employees%ROWTYPE;         -- record variable for row
  CURSOR c2 is SELECT * FROM employees 
                 WHERE REGEXP_LIKE (job_id, '[ACADFIMKSA]_M[ANGR]');
BEGIN
  OPEN c1; -- open the cursor before fetching
  LOOP
    -- Fetches 2 columns into variables
    FETCH c1 INTO v_lastname, v_jobid;
    EXIT WHEN c1%NOTFOUND;
    DBMS_OUTPUT.PUT_LINE( RPAD(v_lastname, 25, ' ') || v_jobid );
  END LOOP;
  CLOSE c1;
  DBMS_OUTPUT.PUT_LINE( '-------------------------------------' );
  OPEN c2;
  LOOP
    -- Fetches entire row into the v_employees record
    FETCH c2 INTO v_employees;
    EXIT WHEN c2%NOTFOUND;
    DBMS_OUTPUT.PUT_LINE( RPAD(v_employees.last_name, 25, ' ') ||
                               v_employees.job_id );
  END LOOP;
  CLOSE c2;
END;



Managing Cursors in PL/SQL

6-12 Oracle Database PL/SQL Language Reference

/

The query can reference PL/SQL variables within its scope. Any variables in the query 
are evaluated only when the cursor is opened. In Example 6–11, each retrieved salary 
is multiplied by 2, even though factor is incremented after every fetch.

Example 6–11 Referencing PL/SQL Variables Within Its Scope

DECLARE
  my_sal employees.salary%TYPE;
  my_job employees.job_id%TYPE;
  factor INTEGER := 2;
  CURSOR c1 IS
    SELECT factor*salary FROM employees WHERE job_id = my_job;
BEGIN
   OPEN c1;  -- factor initially equals 2
   LOOP
      FETCH c1 INTO my_sal;
      EXIT WHEN c1%NOTFOUND;
      factor := factor + 1;  -- does not affect FETCH
   END LOOP;
   CLOSE c1;
END;
/

To change the result set or the values of variables in the query, you must close and 
reopen the cursor with the input variables set to their new values. However, you can 
use a different INTO list on separate fetches with the same cursor. Each fetch retrieves 
another row and assigns values to the target variables, as shown inExample 6–12.

Example 6–12 Fetching the Same Cursor Into Different Variables

DECLARE
   CURSOR c1 IS SELECT last_name FROM employees ORDER BY last_name;
   name1 employees.last_name%TYPE;
   name2 employees.last_name%TYPE;
   name3 employees.last_name%TYPE;
BEGIN
   OPEN c1;
   FETCH c1 INTO name1;  -- this fetches first row
   FETCH c1 INTO name2;  -- this fetches second row
   FETCH c1 INTO name3;  -- this fetches third row
   CLOSE c1;
END;
/

If you fetch past the last row in the result set, the values of the target variables are 
undefined. Eventually, the FETCH statement fails to return a row. When that happens, 
no exception is raised. To detect the failure, use the cursor attribute %FOUND or 
%NOTFOUND. For more information, see Using Cursor Expressions on page 6-31.

Fetching Bulk Data with a Cursor
The BULK COLLECT clause lets you fetch all rows from the result set at once. See 
Retrieving Query Results into Collections (BULK COLLECT Clause) on page 12-17. In 
Example 6–13, you bulk-fetch from a cursor into two collections.

Example 6–13 Fetching Bulk Data with a Cursor

DECLARE



Managing Cursors in PL/SQL

Using Static SQL 6-13

  TYPE IdsTab IS TABLE OF employees.employee_id%TYPE;
  TYPE NameTab IS TABLE OF employees.last_name%TYPE;
  ids  IdsTab;
  names NameTab;
  CURSOR c1 IS
    SELECT employee_id, last_name;
     FROM employees
     WHERE job_id = 'ST_CLERK';
BEGIN
  OPEN c1;
  FETCH c1 BULK COLLECT INTO ids, names;
  CLOsE c1;
-- Here is where you process the elements in the collections
  FOR i IN ids.FIRST .. ids.LAST
    LOOP
      IF ids(i) > 140 THEN
          DBMS_OUTPUT.PUT_LINE( ids(i) );
       END IF;
    END LOOP;
  FOR i IN names.FIRST .. names.LAST
    LOOP
      IF names(i) LIKE '%Ma%' THEN
          DBMS_OUTPUT.PUT_LINE( names(i) );
       END IF;
    END LOOP;
END;
/

Closing a Cursor
The CLOSE statement disables the cursor, and the result set becomes undefined. Once a 
cursor is closed, you can reopen it, which runs the query again with the latest values of 
any cursor parameters and variables referenced in the WHERE clause. Any other 
operation on a closed cursor raises the predefined exception INVALID_CURSOR. 

Attributes of Explicit Cursors
Every explicit cursor and cursor variable has four attributes: %FOUND, %ISOPEN 
%NOTFOUND, and %ROWCOUNT. When appended to the cursor or cursor variable name, 
these attributes return useful information about the execution of a SQL statement. You 
can use cursor attributes in procedural statements but not in SQL statements.

Explicit cursor attributes return information about the execution of a multiple-row 
query. When an explicit cursor or a cursor variable is opened, the rows that satisfy the 
associated query are identified and form the result set. Rows are fetched from the 
result set.

Topics:

■ %FOUND Attribute: Has a Row Been Fetched?

■ %ISOPEN Attribute: Is the Cursor Open?

■ %NOTFOUND Attribute: Has a Fetch Failed?

■ %ROWCOUNT Attribute: How Many Rows Fetched So Far?

%FOUND Attribute: Has a Row Been Fetched?  After a cursor or cursor variable is opened 
but before the first fetch, %FOUND returns NULL. After any fetches, it returns TRUE if 
the last fetch returned a row, or FALSE if the last fetch did not return a row. 
Example 6–14 uses %FOUND to select an action. 



Managing Cursors in PL/SQL

6-14 Oracle Database PL/SQL Language Reference

Example 6–14 Using %FOUND

DECLARE
   CURSOR c1 IS SELECT last_name, salary FROM employees WHERE ROWNUM < 11;
   my_ename employees.last_name%TYPE;
   my_salary employees.salary%TYPE;
BEGIN
  OPEN c1;
  LOOP
    FETCH c1 INTO my_ename, my_salary;
    IF c1%FOUND THEN  -- fetch succeeded
      DBMS_OUTPUT.PUT_LINE('Name = ' || my_ename || ', salary = ' || my_salary);
    ELSE  -- fetch failed, so exit loop
      EXIT;
    END IF;
  END LOOP;
END;
/

If a cursor or cursor variable is not open, referencing it with %FOUND raises the 
predefined exception INVALID_CURSOR.

%ISOPEN Attribute: Is the Cursor Open?  %ISOPEN returns TRUE if its cursor or cursor 
variable is open; otherwise, %ISOPEN returns FALSE. Example 6–15 uses %ISOPEN to 
select an action.

Example 6–15 Using %ISOPEN

DECLARE
   CURSOR c1 IS 
     SELECT last_name, salary
     FROM employees WHERE ROWNUM < 11;
   the_name employees.last_name%TYPE;
   the_salary employees.salary%TYPE;
BEGIN
   IF c1%ISOPEN = FALSE THEN  -- cursor was not already open
      OPEN c1;
   END IF;
   FETCH c1 INTO the_name, the_salary;
   CLOSE c1;
END;
/

%NOTFOUND Attribute: Has a Fetch Failed?  %NOTFOUND is the logical opposite of %FOUND. 
%NOTFOUND yields FALSE if the last fetch returned a row, or TRUE if the last fetch 
failed to return a row. In Example 6–16, you use %NOTFOUND to exit a loop when 
FETCH fails to return a row.

Example 6–16 Using %NOTFOUND

DECLARE
   CURSOR c1 IS SELECT last_name, salary
     FROM employees
     WHERE ROWNUM < 11;
   my_ename employees.last_name%TYPE;
   my_salary employees.salary%TYPE;
BEGIN
  OPEN c1;
  LOOP
    FETCH c1 INTO my_ename, my_salary;



Managing Cursors in PL/SQL

Using Static SQL 6-15

    IF c1%NOTFOUND THEN -- fetch failed, so exit loop
-- Another form of this test is
-- "EXIT WHEN c1%NOTFOUND OR c1%NOTFOUND IS NULL;"
       EXIT;
    ELSE   -- fetch succeeded
      DBMS_OUTPUT.PUT_LINE
        ('Name = ' || my_ename || ', salary = ' || my_salary);
    END IF;
   END LOOP;
END;
/

Before the first fetch, %NOTFOUND returns NULL. If FETCH never executes successfully, 
the loop is never exited, because the EXIT WHEN statement executes only if its WHEN 
condition is true. To be safe, you might want to use the following EXIT statement 
instead:

EXIT WHEN c1%NOTFOUND OR c1%NOTFOUND IS NULL;

If a cursor or cursor variable is not open, referencing it with %NOTFOUND raises an 
INVALID_CURSOR exception.

%ROWCOUNT Attribute: How Many Rows Fetched So Far?  When its cursor or cursor variable 
is opened, %ROWCOUNT is zeroed. Before the first fetch, %ROWCOUNT yields zero. 
Thereafter, it yields the number of rows fetched so far. The number is incremented if 
the last fetch returned a row. Example 6–17 uses %ROWCOUNT to test if more than ten 
rows were fetched.

Example 6–17 Using %ROWCOUNT

DECLARE
   CURSOR c1 IS SELECT last_name FROM employees WHERE ROWNUM < 11;
   name employees.last_name%TYPE;
BEGIN
   OPEN c1;
   LOOP
      FETCH c1 INTO name;
      EXIT WHEN c1%NOTFOUND OR c1%NOTFOUND IS NULL;
      DBMS_OUTPUT.PUT_LINE(c1%ROWCOUNT || '. ' || name);
      IF c1%ROWCOUNT = 5 THEN
         DBMS_OUTPUT.PUT_LINE('--- Fetched 5th record ---');
      END IF;
   END LOOP;
   CLOSE c1;
END;
/

If a cursor or cursor variable is not open, referencing it with %ROWCOUNT raises 
INVALID_CURSOR.

Table 6–1 shows the value of each cursor attribute before and after OPEN, FETCH, and 
CLOSE statements execute.

Table 6–1 Cursor Attribute Values

Point in Time
%FOUND 
Value

%ISOPEN 
Value

%NOTFOUND 
Value

%ROWCOUNT 
Value

Before OPEN exception FALSE exception exception

After OPEN NULL TRUE NULL 0



Querying Data with PL/SQL

6-16 Oracle Database PL/SQL Language Reference

In Table 6–1:

■ Referencing %FOUND, %NOTFOUND, or %ROWCOUNT before a cursor is opened or 
after it is closed raises INVALID_CURSOR.

■ After the first FETCH, if the result set was empty, %FOUND yields FALSE, 
%NOTFOUND yields TRUE, and %ROWCOUNT yields 0.

Querying Data with PL/SQL
PL/SQL lets you perform queries and access individual fields or entire rows from the 
result set. In traditional database programming, you process query results using an 
internal data structure called a cursor. In most situations, PL/SQL can manage the 
cursor for you, so that code to process query results is straightforward and compact. 
This section explains how to process both simple queries where PL/SQL manages 
everything, and complex queries where you interact with the cursor.

Topics:

■ Selecting At Most One Row (SELECT INTO Statement)

■ Selecting Multiple Rows (BULK COLLECT Clause)

■ Looping Through Multiple Rows (Cursor FOR Loop)

■ Performing Complicated Query Processing (Explicit Cursors)

■ Cursor FOR LOOP

■ Defining Aliases for Expression Values in a Cursor FOR Loop

Selecting At Most One Row (SELECT INTO Statement)
If you expect a query to only return one row, you can write a regular SQL SELECT 
statement with an additional INTO clause specifying the PL/SQL variable to hold the 
result.

If the query might return more than one row, but you do not care about values after 
the first, you can restrict any result set to a single row by comparing the ROWNUM value. 
If the query might return no rows at all, use an exception handler to specify any 
actions to take when no data is found.

Before first FETCH NULL TRUE NULL 0

After first FETCH TRUE TRUE FALSE 1

Before each successive FETCH 
except last

TRUE TRUE FALSE 1

After each successive FETCH except 
last

TRUE TRUE FALSE data dependent

Before last FETCH TRUE TRUE FALSE data dependent

After last FETCH FALSE TRUE TRUE data dependent

Before CLOSE FALSE TRUE TRUE data dependent

After CLOSE exception FALSE exception exception

Table 6–1 (Cont.) Cursor Attribute Values

Point in Time
%FOUND 
Value

%ISOPEN 
Value

%NOTFOUND 
Value

%ROWCOUNT 
Value



Querying Data with PL/SQL

Using Static SQL 6-17

If you just want to check whether a condition exists in your data, you might be able to 
code the query with the COUNT(*) operator, which always returns a number and 
never raises the NO_DATA_FOUND exception.

Selecting Multiple Rows (BULK COLLECT Clause)
If you must bring a large quantity of data into local PL/SQL variables, rather than 
looping through a result set one row at a time, you can use the BULK COLLECT clause. 
When you query only certain columns, you can store all the results for each column in 
a separate collection variable. When you query all the columns of a table, you can store 
the entire result set in a collection of records, which makes it convenient to loop 
through the results and refer to different columns. See Example 6–13, "Fetching Bulk 
Data with a Cursor" on page 6-12.

This technique can be very fast, but also very memory-intensive. If you use it often, 
you might be able to improve your code by doing more of the work in SQL:

■ If you must loop only once through the result set, use a FOR loop as described in 
the following sections. This technique avoids the memory overhead of storing a 
copy of the result set.

■ If you are looping through the result set to scan for certain values or filter the 
results into a smaller set, do this scanning or filtering in the original query instead. 
You can add more WHERE clauses in simple cases, or use set operators such as 
INTERSECT and MINUS if you are comparing two or more sets of results.

■ If you are looping through the result set and running another query or a DML 
statement for each result row, you can probably find a more efficient technique. 
For queries, look at including subqueries or EXISTS or NOT EXISTS clauses in the 
original query. For DML statements, look at the FORALL statement, which is much 
faster than coding these statements inside a regular loop.

Looping Through Multiple Rows (Cursor FOR Loop)
Perhaps the most common case of a query is one where you issue the SELECT 
statement, then immediately loop once through the rows of the result set. PL/SQL lets 
you use a simple FOR loop for this kind of query.

The iterator variable for the FOR loop does need not be declared in advance. It is a 
%ROWTYPE record whose field names match the column names from the query, and 
that exists only during the loop. When you use expressions rather than explicit column 
names, use column aliases so that you can refer to the corresponding values inside the 
loop.

Performing Complicated Query Processing (Explicit Cursors)
For full control over query processing, you can use explicit cursors in combination 
with the OPEN, FETCH, and CLOSE statements.

You might want to specify a query in one place but retrieve the rows somewhere else, 
even in another subprogram. Or you might want to choose very different query 
parameters, such as ORDER BY or GROUP BY clauses, depending on the situation. Or 
you might want to process some rows differently than others, and so need more than a 
simple loop.

Because explicit cursors are so flexible, you can choose from different notations 
depending on your needs. The following sections describe all the query-processing 
features that explicit cursors provide.



Querying Data with PL/SQL

6-18 Oracle Database PL/SQL Language Reference

Cursor FOR LOOP
Topics:

■ SQL Cursor FOR LOOP

■ Explicit Cursor FOR LOOP

SQL Cursor FOR LOOP
With PL/SQL, it is very simple to issue a query, retrieve each row of the result into a 
%ROWTYPE record, and process each row in a loop:

■ You include the text of the query directly in the FOR loop.

■ PL/SQL creates a record variable with fields corresponding to the columns of the 
result set.

■ You refer to the fields of this record variable inside the loop. You can perform tests 
and calculations, display output, or store the results somewhere else.

Here is an example that you can run in SQL*Plus. It does a query to get the name and 
job Id of employees with manager Ids greater than 120. 

BEGIN
  FOR item IN 
  ( SELECT last_name, job_id
     FROM employees
     WHERE job_id LIKE '%CLERK%'
     AND manager_id > 120 )
  LOOP
    DBMS_OUTPUT.PUT_LINE
      ('Name = ' || item.last_name || ', Job = ' || item.job_id);
  END LOOP;
END;
/

Before each iteration of the FOR loop, PL/SQL fetches into the implicitly declared 
record. The sequence of statements inside the loop is executed once for each row that 
satisfies the query. When you leave the loop, the cursor is closed automatically. The 
cursor is closed even if you use an EXIT or GOTO statement to leave the loop before all 
rows are fetched, or an exception is raised inside the loop. See LOOP Statements on 
page 13-79.

Explicit Cursor FOR LOOP
If you must reference the same query from different parts of the same subprogram, 
you can declare a cursor that specifies the query, and process the results using a FOR 
loop.

DECLARE 
 CURSOR c1 IS SELECT last_name, job_id FROM employees 
                WHERE job_id LIKE '%CLERK%' AND manager_id > 120;
BEGIN
  FOR item IN c1
  LOOP
    DBMS_OUTPUT.PUT_LINE
      ('Name = ' || item.last_name || ', Job = ' || item.job_id);
  END LOOP;
END;
/



Using Subqueries

Using Static SQL 6-19

Defining Aliases for Expression Values in a Cursor FOR Loop
In a cursor FOR loop, PL/SQL creates a %ROWTYPE record with fields corresponding to 
columns in the result set. The fields have the same names as corresponding columns in 
the SELECT list.

The select list might contain an expression, such as a column plus a constant, or two 
columns concatenated together. If so, use a column alias to give unique names to the 
appropriate columns.

In Example 6–18, full_name and dream_salary are aliases for expressions in the 
query.

Example 6–18 Using an Alias For Expressions in a Query

BEGIN
  FOR item IN
  ( SELECT first_name || ' ' || last_name AS full_name,
      salary * 10 AS dream_salary FROM employees WHERE ROWNUM <= 5 )
  LOOP
    DBMS_OUTPUT.PUT_LINE
      (item.full_name || ' dreams of making ' || item.dream_salary);
  END LOOP;
END;
/

Using Subqueries
A subquery is a query (usually enclosed in parentheses) that appears within another 
SQL data manipulation statement. The statement acts upon the single value or set of 
values returned by the subquery. For example:

■ You can use a subquery to find the MAX, MIN, or AVG value for a column, and use 
that single value in a comparison in a WHERE clause.

■ You can use a subquery to find a set of values, and use this values in an IN or NOT 
IN comparison in a WHERE clause. This technique can avoid joins.

■ You can filter a set of values with a subquery, and apply other operations like 
ORDER BY and GROUP BY in the outer query.

■ You can use a subquery in place of a table name, in the FROM clause of a query. 
This technique lets you join a table with a small set of rows from another table, 
instead of joining the entire tables.

■ You can create a table or insert into a table, using a set of rows defined by a 
subquery.

Example 6–19 is illustrates two subqueries used in cursor declarations. 

Example 6–19 Using a Subquery in a Cursor

DECLARE
  CURSOR c1 IS
-- main query returns only rows
-- where the salary is greater than the average
    SELECT employee_id, last_name FROM employees 
      WHERE salary > (SELECT AVG(salary) FROM employees);
  CURSOR c2 IS

Tip: LOOP Statements on page 13-79



Using Subqueries

6-20 Oracle Database PL/SQL Language Reference

-- subquery returns all the rows in descending order of salary
-- main query returns just the top 10 highest-paid employees
   SELECT * FROM
     (SELECT last_name, salary)
        FROM employees ORDER BY salary DESC, last_name)
        ORDER BY salary DESC, last_name)
     WHERE ROWNUM < 11;
BEGIN
  FOR person IN c1
  LOOP
    DBMS_OUTPUT.PUT_LINE
      ('Above-average salary: ' || person.last_name);
  END LOOP;
  FOR person IN c2
  LOOP
    DBMS_OUTPUT.PUT_LINE
       ('Highest paid: ' || person.last_name || ' $' || person.salary);
  END LOOP;
-- subquery identifies a set of rows
-- to use with CREATE TABLE or INSERT
END;
/

Using a subquery in the FROM clause, the query in Example 6–20 returns the number 
and name of each department with five or more employees.

Example 6–20 Using a Subquery in a FROM Clause

DECLARE
  CURSOR c1 IS
    SELECT t1.department_id, department_name, staff
      FROM departments t1,
      ( SELECT department_id, COUNT(*) as staff
          FROM employees GROUP BY department_id) t2
    WHERE
      t1.department_id = t2.department_id
      AND staff >= 5;
BEGIN
   FOR dept IN c1
   LOOP
     DBMS_OUTPUT.PUT_LINE ('Department = ' 
       || dept.department_name || ', staff = ' || dept.staff);
   END LOOP;
END;
/
Topics:

■ Using Correlated Subqueries

■ Writing Maintainable PL/SQL Subqueries

Using Correlated Subqueries
While a subquery is evaluated only once for each table, a correlated subquery is 
evaluated once for each row. Example 6–21 returns the name and salary of each 
employee whose salary exceeds the departmental average. For each row in the table, 
the correlated subquery computes the average salary for the corresponding 
department.



Using Subqueries

Using Static SQL 6-21

Example 6–21 Using a Correlated Subquery

DECLARE
-- For each department, find the average salary.
-- Then find all the employees in
-- that department making more than that average salary.
  CURSOR c1 IS
    SELECT department_id, last_name, salary FROM employees t
    WHERE salary >
      ( SELECT AVG(salary)
        FROM employees
        WHERE t.department_id = department_id )
      ORDER BY department_id;
BEGIN
  FOR person IN c1
  LOOP
    DBMS_OUTPUT.PUT_LINE('Making above-average salary = ' || person.last_name);
  END LOOP;
END;
/

Writing Maintainable PL/SQL Subqueries
Instead of referring to local variables, you can declare a cursor that accepts parameters, 
and pass values for those parameters when you open the cursor. If the query is usually 
issued with certain values, you can make those values the defaults. You can use either 
positional notation or named notation to pass the parameter values.

Example 6–22 displays the wages paid to employees earning over a specified wage in 
a specified department.

Example 6–22 Passing Parameters to a Cursor FOR Loop

DECLARE
  CURSOR c1 (job VARCHAR2, max_wage NUMBER) IS
    SELECT * FROM employees
      WHERE job_id = job
      AND salary > max_wage;
BEGIN
  FOR person IN c1('CLERK', 3000)
  LOOP
     -- process data record
    DBMS_OUTPUT.PUT_LINE
      ('Name = ' || person.last_name || ', salary = ' ||
        person.salary || ', Job Id = ' || person.job_id );
  END LOOP;
END;
/

In Example 6–23, several ways are shown to open a cursor.

Example 6–23 Passing Parameters to Explicit Cursors

DECLARE
  emp_job      employees.job_id%TYPE := 'ST_CLERK';
  emp_salary   employees.salary%TYPE := 3000;
  my_record employees%ROWTYPE;
  CURSOR c1 (job VARCHAR2, max_wage NUMBER) IS
    SELECT * FROM employees
      WHERE job_id = job
      AND salary > max_wage;



Using Cursor Variables (REF CURSORs)

6-22 Oracle Database PL/SQL Language Reference

BEGIN
-- Any of the following statements opens the cursor:
-- OPEN c1('ST_CLERK', 3000); OPEN c1('ST_CLERK', emp_salary);
-- OPEN c1(emp_job, 3000); OPEN c1(emp_job, emp_salary);
  OPEN c1(emp_job, emp_salary);
  LOOP
     FETCH c1 INTO my_record;
     EXIT WHEN c1%NOTFOUND;
     -- process data record
     DBMS_OUTPUT.PUT_LINE
       ('Name = ' || my_record.last_name || ', salary = ' ||
        my_record.salary || ', Job Id = ' || my_record.job_id );
  END LOOP;
END;
/

To avoid confusion, use different names for cursor parameters and the PL/SQL 
variables that you pass into those parameters. 

A formal parameter declared with a default value does not need a corresponding 
actual parameter. If you omit the actual parameter, the formal parameter assumes its 
default value when the OPEN statement executes. If the default value of a formal 
parameter is an expression, and you provide a corresponding actual parameter in the 
OPEN statement, the expression is not evaluated.

Using Cursor Variables (REF CURSORs)
Like a cursor, a cursor variable points to the current row in the result set of a 
multiple-row query. A cursor variable is more flexible because it is not tied to a specific 
query. You can open a cursor variable for any query that returns the right set of 
columns.

You pass a cursor variable as a parameter to local and stored subprograms. Opening 
the cursor variable in one subprogram, and processing it in a different subprogram, 
helps to centralize data retrieval. This technique is also useful for multi-language 
applications, where a PL/SQL subprogram might return a result set to a subprogram 
written in a different language, such as Java or Visual Basic.

Cursor variables are available to every PL/SQL client. For example, you can declare a 
cursor variable in a PL/SQL host environment such as an OCI or Pro*C program, then 
pass it as an input host variable (bind variable) to PL/SQL. Application development 
tools such as Oracle Forms, which have a PL/SQL engine, can use cursor variables 
entirely on the client side. Or, you can pass cursor variables back and forth between a 
client and the database server through remote subprogram calls.

Topics:

■ What Are Cursor Variables (REF CURSORs)?

■ Why Use Cursor Variables?

■ Declaring REF CURSOR Types and Cursor Variables

■ Passing Cursor Variables As Parameters

■ Controlling Cursor Variables (OPEN-FOR, FETCH, and CLOSE Statements)

■ Reducing Network Traffic When Passing Host Cursor Variables to PL/SQL

■ Avoiding Errors with Cursor Variables

■ Restrictions on Cursor Variables



Using Cursor Variables (REF CURSORs)

Using Static SQL 6-23

What Are Cursor Variables (REF CURSORs)?
Cursor variables are like pointers to result sets. You use them when you want to 
perform a query in one subprogram, and process the results in a different subprogram 
(possibly one written in a different language). A cursor variable has data type REF 
CURSOR, and you might see them referred to informally as REF CURSORs.

Unlike an explicit cursor, which always refers to the same query work area, a cursor 
variable can refer to different work areas. You cannot use a cursor variable where a 
cursor is expected, or vice versa. 

Why Use Cursor Variables?
You use cursor variables to pass query result sets between PL/SQL stored 
subprograms and various clients. PL/SQL and its clients share a pointer to the query 
work area in which the result set is stored. For example, an OCI client, Oracle Forms 
application, and the database can all refer to the same work area. 

A query work area remains accessible as long as any cursor variable points to it, as you 
pass the value of a cursor variable from one scope to another. For example, if you pass 
a host cursor variable to a PL/SQL block embedded in a Pro*C program, the work area 
to which the cursor variable points remains accessible after the block completes. 

If you have a PL/SQL engine on the client side, calls from client to server impose no 
restrictions. For example, you can declare a cursor variable on the client side, open and 
fetch from it on the server side, then continue to fetch from it back on the client side. 
You can also reduce network traffic by having a PL/SQL block open or close several 
host cursor variables in a single round trip. 

Declaring REF CURSOR Types and Cursor Variables
To create cursor variables, you define a REF CURSOR type, then declare cursor 
variables of that type. You can define REF CURSOR types in any PL/SQL block, 
subprogram, or package. In the following example, you declare a REF CURSOR type 
that represents a result set from the DEPARTMENTS table:

DECLARE
  TYPE DeptCurTyp IS REF CURSOR RETURN departments%ROWTYPE

REF CURSOR types can be strong (with a return type) or weak (with no return type). 
Strong REF CURSOR types are less error prone because the PL/SQL compiler lets you 
associate a strongly typed cursor variable only with queries that return the right set of 
columns. Weak REF CURSOR types are more flexible because the compiler lets you 
associate a weakly typed cursor variable with any query. Because there is no type 
checking with a weak REF CURSOR, all such types are interchangeable. Instead of 
creating a new type, you can use the predefined type SYS_REFCURSOR.

Once you define a REF CURSOR type, you can declare cursor variables of that type in 
any PL/SQL block or subprogram.

DECLARE
   -- Strong:
   TYPE empcurtyp IS REF CURSOR RETURN employees%ROWTYPE;
   -- Weak:
   TYPE genericcurtyp IS REF CURSOR;
   cursor1 empcurtyp;
   cursor2 genericcurtyp;
   my_cursor SYS_REFCURSOR; -- no new type needed
   TYPE deptcurtyp IS REF CURSOR RETURN departments%ROWTYPE;
   dept_cv deptcurtyp;  -- declare cursor variable



Using Cursor Variables (REF CURSORs)

6-24 Oracle Database PL/SQL Language Reference

To avoid declaring the same REF CURSOR type in each subprogram that uses it, you 
can put the REF CURSOR declaration in a package spec. You can declare cursor 
variables of that type in the corresponding package body, or within your own 
subprogram.

In the RETURN clause of a REF CURSOR type definition, you can use %ROWTYPE to refer 
to a strongly typed cursor variable, as shown in Example 6–24.

Example 6–24 Cursor Variable Returning a %ROWTYPE Variable

DECLARE
   TYPE TmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE;
   tmp_cv TmpCurTyp;  -- declare cursor variable
   TYPE EmpCurTyp IS REF CURSOR RETURN tmp_cv%ROWTYPE;
   emp_cv EmpCurTyp;  -- declare cursor variable

You can also use %ROWTYPE to provide the data type of a record variable, as shown in 
Example 6–25.

Example 6–25 Using the %ROWTYPE Attribute to Provide the Data Type

DECLARE
   dept_rec departments%ROWTYPE;  -- declare record variable
   TYPE DeptCurTyp IS REF CURSOR RETURN dept_rec%TYPE;
   dept_cv DeptCurTyp;  -- declare cursor variable

Example 6–26 specifies a user-defined RECORD type in the RETURN clause.

Example 6–26 Cursor Variable Returning a Record Type

DECLARE
   TYPE EmpRecTyp IS RECORD (
      employee_id NUMBER,
      last_name VARCHAR2(25),
      salary   NUMBER(8,2));
   TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;
   emp_cv EmpCurTyp;  -- declare cursor variable

Passing Cursor Variables As Parameters
You can declare cursor variables as the formal parameters of subprograms. 
Example 6–27 defines a REF CURSOR type, then declares a cursor variable of that type 
as a formal parameter.

Example 6–27 Passing a REF CURSOR as a Parameter

DECLARE
   TYPE empcurtyp IS REF CURSOR RETURN employees%ROWTYPE;
   emp empcurtyp;
-- after result set is built,
-- process all the rows inside a single procedure
-- rather than invoking a procedure for each row
   PROCEDURE process_emp_cv (emp_cv IN empcurtyp) IS
      person employees%ROWTYPE;
   BEGIN
      DBMS_OUTPUT.PUT_LINE('-----');
      DBMS_OUTPUT.PUT_LINE
        ('Here are the names from the result set:');
      LOOP



Using Cursor Variables (REF CURSORs)

Using Static SQL 6-25

         FETCH emp_cv INTO person;
         EXIT WHEN emp_cv%NOTFOUND;
         DBMS_OUTPUT.PUT_LINE('Name = ' || person.first_name ||
                              ' ' || person.last_name);
      END LOOP;
   END;
BEGIN
-- First find 10 arbitrary employees.
  OPEN emp FOR SELECT * FROM employees WHERE ROWNUM < 11;
  process_emp_cv(emp);
  CLOSE emp;
-- find employees matching a condition.
  OPEN emp FOR SELECT * FROM employees WHERE last_name LIKE 'R%';
  process_emp_cv(emp);
  CLOSE emp;
END;
/

Like all pointers, cursor variables increase the possibility of parameter aliasing. See 
Overloading PL/SQL Subprogram Names on page 8-12.

Controlling Cursor Variables (OPEN-FOR, FETCH, and CLOSE Statements)
You use three statements to control a cursor variable: OPEN-FOR, FETCH, and CLOSE. 
First, you OPEN a cursor variable FOR a multiple-row query. Then, you FETCH rows 
from the result set. When all the rows are processed, you CLOSE the cursor variable.

Topics:

■ Opening a Cursor Variable

■ Using a Cursor Variable as a Host Variable

■ Fetching from a Cursor Variable

■ Closing a Cursor Variable

Opening a Cursor Variable
The OPEN-FOR statement associates a cursor variable with a multiple-row query, 
executes the query, and identifies the result set. The cursor variable can be declared 
directly in PL/SQL, or in a PL/SQL host environment such as an OCI program. For 
the syntax of the OPEN-FOR statement, see OPEN-FOR Statement on page 13-87.

The SELECT statement for the query can be coded directly in the statement, or can be a 
string variable or string literal. When you use a string as the query, it can include 
placeholders for bind variables, and you specify the corresponding values with a 
USING clause.

This section explains the static SQL case, in which select_statement is used. For 
the dynamic SQL case, in which dynamic_string is used, see OPEN-FOR Statement 
on page 13-87.

Unlike cursors, cursor variables take no parameters. Instead, you can pass whole 
queries (not just parameters) to a cursor variable. The query can reference host 
variables and PL/SQL variables, parameters, and functions.

Example 6–28 opens a cursor variable. Notice that you can apply cursor attributes 
(%FOUND, %NOTFOUND, %ISOPEN, and %ROWCOUNT) to a cursor variable. 



Using Cursor Variables (REF CURSORs)

6-26 Oracle Database PL/SQL Language Reference

Example 6–28 Checking If a Cursor Variable is Open

DECLARE
   TYPE empcurtyp IS REF CURSOR RETURN employees%ROWTYPE;
   emp_cv empcurtyp;
BEGIN
   IF NOT emp_cv%ISOPEN THEN  -- open cursor variable
      OPEN emp_cv FOR SELECT * FROM employees;
   END IF;
   CLOSE emp_cv;
END;
/

Other OPEN-FOR statements can open the same cursor variable for different queries. 
You need not close a cursor variable before reopening it. Consecutive OPENs of a static 
cursor raise the predefined exception CURSOR_ALREADY_OPEN. When you reopen a 
cursor variable for a different query, the previous query is lost.

Typically, you open a cursor variable by passing it to a stored subprogram that 
declares an IN OUT parameter that is a cursor variable. In Example 6–29 the 
subprogram opens a cursor variable.

Example 6–29 Stored Procedure to Open a Ref Cursor

CREATE PACKAGE emp_data AS
  TYPE empcurtyp IS REF CURSOR RETURN employees%ROWTYPE;
  PROCEDURE open_emp_cv (emp_cv IN OUT empcurtyp);
END emp_data;
/
CREATE PACKAGE BODY emp_data AS
  PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS
  BEGIN
    OPEN emp_cv FOR SELECT * FROM employees;
  END open_emp_cv;
END emp_data;
/

You can also use a standalone stored subprogram to open the cursor variable. Define 
the REF CURSOR type in a package, then reference that type in the parameter 
declaration for the stored subprogram. 

To centralize data retrieval, you can group type-compatible queries in a stored 
subprogram. In Example 6–30, the packaged subprogram declares a selector as one of 
its formal parameters. When invoked, the subprogram opens the cursor variable emp_
cv for the chosen query.

Example 6–30 Stored Procedure to Open Ref Cursors with Different Queries

CREATE PACKAGE emp_data AS
   TYPE empcurtyp IS REF CURSOR RETURN employees%ROWTYPE;
   PROCEDURE open_emp_cv (emp_cv IN OUT empcurtyp, choice INT);
END emp_data;
/
CREATE PACKAGE BODY emp_data AS
   PROCEDURE open_emp_cv (emp_cv IN OUT empcurtyp, choice INT) IS
   BEGIN
      IF choice = 1 THEN
         OPEN emp_cv FOR SELECT *
           FROM employees
           WHERE commission_pct IS NOT NULL;
      ELSIF choice = 2 THEN



Using Cursor Variables (REF CURSORs)

Using Static SQL 6-27

         OPEN emp_cv FOR SELECT *
           FROM employees
           WHERE salary > 2500;
      ELSIF choice = 3 THEN
         OPEN emp_cv FOR SELECT *
           FROM employees
           WHERE department_id = 100;
      END IF;
   END;
END emp_data;
/

For more flexibility, a stored subprogram can execute queries with different return 
types, shown in Example 6–31.

Example 6–31 Cursor Variable with Different Return Types

CREATE PACKAGE admin_data AS
   TYPE gencurtyp IS REF CURSOR;
   PROCEDURE open_cv (generic_cv IN OUT gencurtyp, choice INT);
END admin_data;
/
CREATE PACKAGE BODY admin_data AS
   PROCEDURE open_cv (generic_cv IN OUT gencurtyp, choice INT) IS
   BEGIN
      IF choice = 1 THEN
         OPEN generic_cv FOR SELECT * FROM employees;
      ELSIF choice = 2 THEN
         OPEN generic_cv FOR SELECT * FROM departments;
      ELSIF choice = 3 THEN
         OPEN generic_cv FOR SELECT * FROM jobs;
      END IF;
   END;
END admin_data;
/

Using a Cursor Variable as a Host Variable
You can declare a cursor variable in a PL/SQL host environment such as an OCI or 
Pro*C program. To use the cursor variable, you must pass it as a host variable to 
PL/SQL. In the following Pro*C example, you pass a host cursor variable and selector 
to a PL/SQL block, which opens the cursor variable for the chosen query.

EXEC SQL BEGIN DECLARE SECTION;
  ...
  /* Declare host cursor variable. */
  SQL_CURSOR generic_cv;
  int        choice;
EXEC SQL END DECLARE SECTION;
...
/* Initialize host cursor variable. */
EXEC SQL ALLOCATE :generic_cv;
...
/* Pass host cursor variable and selector to PL/SQL block. *
/
EXEC SQL EXECUTE
BEGIN
  IF :choice = 1 THEN
    OPEN :generic_cv FOR SELECT * FROM employees;
  ELSIF :choice = 2 THEN



Using Cursor Variables (REF CURSORs)

6-28 Oracle Database PL/SQL Language Reference

    OPEN :generic_cv FOR SELECT * FROM departments;
  ELSIF :choice = 3 THEN
    OPEN :generic_cv FOR SELECT * FROM jobs;
  END IF;
END;
END-EXEC;

Host cursor variables are compatible with any query return type. They act just like 
weakly typed PL/SQL cursor variables.

Fetching from a Cursor Variable
The FETCH statement retrieves rows from the result set of a multiple-row query. It 
works the same with cursor variables as with explicit cursors. Example 6–32 fetches 
rows one at a time from a cursor variable into a record.

Example 6–32 Fetching from a Cursor Variable into a Record

DECLARE
   TYPE empcurtyp IS REF CURSOR RETURN employees%ROWTYPE;
   emp_cv empcurtyp;
   emp_rec employees%ROWTYPE;
BEGIN
   OPEN emp_cv FOR SELECT * FROM employees WHERE employee_id < 120;
   LOOP 
      FETCH emp_cv INTO emp_rec; -- fetch from cursor variable
      EXIT WHEN emp_cv%NOTFOUND; -- exit when last row is fetched
      -- process data record
      DBMS_OUTPUT.PUT_LINE
        ('Name = ' || emp_rec.first_name || ' ' || emp_rec.last_name);
   END LOOP;
   CLOSE emp_cv;
END;
/

Using the BULK COLLECT clause, you can bulk fetch rows from a cursor variable into 
one or more collections as shown in Example 6–33.

Example 6–33 Fetching from a Cursor Variable into Collections

DECLARE
   TYPE empcurtyp IS REF CURSOR;
   TYPE namelist IS TABLE OF employees.last_name%TYPE;
   TYPE sallist IS TABLE OF employees.salary%TYPE;
   emp_cv empcurtyp;
   names  namelist;
   sals   sallist;
BEGIN
   OPEN emp_cv FOR SELECT last_name, salary FROM employees 
        WHERE job_id = 'SA_REP';
   FETCH emp_cv BULK COLLECT INTO names, sals;
   CLOSE emp_cv;
-- loop through the names and sals collections
   FOR i IN names.FIRST .. names.LAST
   LOOP
      DBMS_OUTPUT.PUT_LINE
        ('Name = ' || names(i) || ', salary = ' || sals(i));
   END LOOP;
END;



Using Cursor Variables (REF CURSORs)

Using Static SQL 6-29

/

Any variables in the associated query are evaluated only when the cursor variable is 
opened. To change the result set or the values of variables in the query, reopen the 
cursor variable with the variables set to new values. You can use a different INTO 
clause on separate fetches with the same cursor variable. Each fetch retrieves another 
row from the same result set. 

PL/SQL makes sure the return type of the cursor variable is compatible with the INTO 
clause of the FETCH statement. If there is a mismatch, an error occurs at compile time if 
the cursor variable is strongly typed, or at run time if it is weakly typed. At run time, 
PL/SQL raises the predefined exception ROWTYPE_MISMATCH before the first fetch. If 
you trap the error and execute the FETCH statement using a different (compatible) 
INTO clause, no rows are lost.

When you declare a cursor variable as the formal parameter of a subprogram that 
fetches from the cursor variable, you must specify the IN or IN OUT mode. If the 
subprogram also opens the cursor variable, you must specify the IN OUT mode.

If you try to fetch from a closed or never-opened cursor variable, PL/SQL raises the 
predefined exception INVALID_CURSOR.

Closing a Cursor Variable
The CLOSE statement disables a cursor variable and makes the associated result set 
undefined. Close the cursor variable after the last row is processed.

When declaring a cursor variable as the formal parameter of a subprogram that closes 
the cursor variable, you must specify the IN or IN OUT mode. If you try to close an 
already-closed or never-opened cursor variable, PL/SQL raises the predefined 
exception INVALID_CURSOR.

Reducing Network Traffic When Passing Host Cursor Variables to PL/SQL
When passing host cursor variables to PL/SQL, you can reduce network traffic by 
grouping OPEN-FOR statements. For example, the following PL/SQL block opens 
multiple cursor variables in a single round trip:

/* anonymous PL/SQL block in host environment */
BEGIN
  OPEN :emp_cv FOR SELECT * FROM employees;
  OPEN :dept_cv FOR SELECT * FROM departments;
  OPEN :loc_cv FOR SELECT * FROM locations;
END;
/

This technique might be useful in Oracle Forms, for example, when you want to 
populate a multiblock form. When you pass host cursor variables to a PL/SQL block 
for opening, the query work areas to which they point remain accessible after the block 
completes, so your OCI or Pro*C program can use these work areas for ordinary cursor 
operations. For example, you open several such work areas in a single round trip:

BEGIN
  OPEN :c1 FOR SELECT 1 FROM DUAL;
  OPEN :c2 FOR SELECT 1 FROM DUAL;
  OPEN :c3 FOR SELECT 1 FROM DUAL;
END;
/



Using Cursor Variables (REF CURSORs)

6-30 Oracle Database PL/SQL Language Reference

The cursors assigned to c1, c2, and c3 act normally, and you can use them for any 
purpose. When finished, release the cursors as follows:

BEGIN
  CLOSE :c1; CLOSE :c2; CLOSE :c3;
END;
/

Avoiding Errors with Cursor Variables
If both cursor variables involved in an assignment are strongly typed, they must have 
exactly the same data type (not just the same return type). If one or both cursor 
variables are weakly typed, they can have different data types.

If you try to fetch from, close, or refer to cursor attributes of a cursor variable that does 
not point to a query work area, PL/SQL raises the INVALID_CURSOR exception. You 
can make a cursor variable (or parameter) point to a query work area in two ways:

■ OPEN the cursor variable FOR the query.

■ Assign to the cursor variable the value of an already opened host cursor variable 
or PL/SQL cursor variable.

If you assign an unopened cursor variable to another cursor variable, the second one 
remains invalid even after you open the first one.

Be careful when passing cursor variables as parameters. At run time, PL/SQL raises 
ROWTYPE_MISMATCH if the return types of the actual and formal parameters are 
incompatible. 

Restrictions on Cursor Variables
Currently, cursor variables are subject to the following restrictions: 

■ You cannot declare cursor variables in a package specification, as illustrated in 
Example 6–34.

■ If you bind a host cursor variable into PL/SQL from an OCI client, you cannot 
fetch from it on the server side unless you also open it there on the same server 
call. 

■ You cannot use comparison operators to test cursor variables for equality, 
inequality, or nullity. 

■ Database columns cannot store the values of cursor variables. There is no 
equivalent type to use in a CREATE TABLE statement. 

■ You cannot store cursor variables in an associative array, nested table, or varray.

■ Cursors and cursor variables are not interoperable; that is, you cannot use one 
where the other is expected. For example, you cannot reference a cursor variable in 
a cursor FOR loop.

Example 6–34 Declaration of Cursor Variables in a Package

CREATE PACKAGE emp_data AS
  TYPE EmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE;
-- emp_cv EmpCurTyp; -- not allowed
  PROCEDURE open_emp_cv;
END emp_data;
/
CREATE PACKAGE BODY emp_data AS
-- emp_cv EmpCurTyp; -- not allowed



Using Cursor Expressions

Using Static SQL 6-31

PROCEDURE open_emp_cv IS
  emp_cv EmpCurTyp; -- this is legal
  BEGIN
    OPEN emp_cv FOR SELECT * FROM employees;
  END open_emp_cv;
END emp_data;
/

Using Cursor Expressions
A cursor expression returns a nested cursor. Each row in the result set can contain 
values, as usual, and cursors produced by subqueries involving the other values in the 
row. A single query can return a large set of related values retrieved from multiple 
tables. You can process the result set with nested loops that fetch first from the rows of 
the result set, and then from any nested cursors within those rows.

PL/SQL supports queries with cursor expressions as part of cursor declarations, REF 
CURSOR declarations and REF CURSOR variables. (You can also use cursor expressions 
in dynamic SQL queries.)

The syntax of a cursor expression is:

CURSOR(subquery)

A nested cursor is implicitly opened when the containing row is fetched from the 
parent cursor. The nested cursor is closed only when:

■ The nested cursor is explicitly closed by the user

■ The parent cursor is reexecuted

■ The parent cursor is closed

■ The parent cursor is canceled

■ An error arises during a fetch on one of its parent cursors. The nested cursor is 
closed as part of the clean-up.

In Example 6–35, the cursor c1 is associated with a query that includes a cursor 
expression. For each department in the departments table, the nested cursor returns 
the last name of each employee in that department (which it retrieves from the 
employees table).

Example 6–35 Using a Cursor Expression

DECLARE
   TYPE emp_cur_typ IS REF CURSOR;

   emp_cur    emp_cur_typ;
   dept_name  departments.department_name%TYPE;
   emp_name   employees.last_name%TYPE;

   CURSOR c1 IS SELECT

Note:

■ Using a REF CURSOR variable in a server-to-server RPC results in 
an error. However, a REF CURSOR variable is permitted in a 
server-to-server RPC if the remote database is not an Oracle 
Database accessed through a Procedural Gateway.

■ LOB parameters are not permitted in a server-to-server RPC.



Overview of Transaction Processing in PL/SQL

6-32 Oracle Database PL/SQL Language Reference

     department_id,
     CURSOR (SELECT e.last_name
               FROM employees e
                 WHERE e.department_id = d.department_id) employees
       FROM departments d
         WHERE department_name LIKE 'A%';
BEGIN
  OPEN c1;
  LOOP -- Process each row of query’s result set
    FETCH c1 INTO dept_name, emp_cur;
    EXIT WHEN c1%NOTFOUND;
    DBMS_OUTPUT.PUT_LINE('Department: ' || dept_name);

    LOOP -- Process each row of subquery’s result set
         -- (this could be done in a procedure instead)
      FETCH emp_cur INTO emp_name;
      EXIT WHEN emp_cur%NOTFOUND;
      DBMS_OUTPUT.PUT_LINE('-- Employee: ' || emp_name);
    END LOOP;
  END LOOP;
  CLOSE c1;
END;
/

Using a Cursor Expression to Pass a Set of Rows to a Function
If a function has a formal parameter of the type REF CURSOR, the corresponding actual 
parameter can be a cursor expression. By using a cursor expression as an actual 
parameter, you can pass the function a set of rows as a parameter.

Cursor expressions are often used with pipelined table functions, which are explained 
in Performing Multiple Transformations with Pipelined Table Functions on page 12-34.

Restrictions on Cursor Expressions
■ You cannot use a cursor expression with a SQL cursor.

■ Cursor expressions can appear only:

■ In a SELECT statement that is not nested in any other query expression, except 
when it is a subquery of the cursor expression itself.

■ As arguments to table functions, in the FROM clause of a SELECT statement.

■ Cursor expressions can appear only in the outermost SELECT list of the query 
specification.

■ Cursor expressions cannot appear in view declarations.

■ You cannot perform BIND and EXECUTE operations on cursor expressions.

Overview of Transaction Processing in PL/SQL
This section explains transaction processing with PL/SQL using SQL COMMIT, 
SAVEPOINT, and ROLLBACK statements that ensure the consistency of a database. You 
can include these SQL statements directly in your PL/SQL programs. Transaction 
processing is a database feature, available through all programming languages, that 
lets multiple users work on the database concurrently, and ensures that each user sees 
a consistent version of data and that all changes are applied in the right order. 

You usually need not write extra code to prevent problems with multiple users 
accessing data concurrently. The database uses locks to control concurrent access to 



Overview of Transaction Processing in PL/SQL

Using Static SQL 6-33

data, and locks only the minimum amount of data necessary, for as little time as 
possible. You can request locks on tables or rows if you really do need this level of 
control. You can choose from several modes of locking such as row share and 
exclusive. 

Topics:

■ Using COMMIT in PL/SQL

■ Using ROLLBACK in PL/SQL

■ Using SAVEPOINT in PL/SQL

■ How the Database Does Implicit Rollbacks

■ Ending Transactions

■ Setting Transaction Properties (SET TRANSACTION Statement)

■ Overriding Default Locking

Using COMMIT in PL/SQL
The COMMIT statement ends the current transaction, making any changes made during 
that transaction permanent, and visible to other users. Transactions are not tied to 
PL/SQL BEGIN-END blocks. A block can contain multiple transactions, and a 
transaction can span multiple blocks.

Example 6–36 illustrates a transaction that transfers money from one bank account to 
another. It is important that the money come out of one account, and into the other, at 
exactly the same moment. Otherwise, a problem partway through might make the 
money be lost from both accounts or be duplicated in both accounts.

Example 6–36 Using COMMIT with the WRITE Clause

CREATE TABLE accounts (account_id NUMBER(6), balance NUMBER (10,2));
INSERT INTO accounts VALUES (7715, 6350.00); 
INSERT INTO accounts VALUES (7720, 5100.50); 
DECLARE
  transfer NUMBER(8,2) := 250;
BEGIN
  UPDATE accounts SET balance = balance - transfer
    WHERE account_id = 7715;
  UPDATE accounts SET balance = balance + transfer
    WHERE account_id = 7720;
  COMMIT COMMENT 'Transfer from 7715 to 7720'
    WRITE IMMEDIATE NOWAIT;
END;
/

See Also:

■ Oracle Database Concepts for information about transactions

■ Oracle Database SQL Language Reference for information about the 
COMMIT statement

■ Oracle Database SQL Language Reference for information about the 
SAVEPOINT statement

■ Oracle Database SQL Language Reference for information about the 
ROLLBACK statement



Overview of Transaction Processing in PL/SQL

6-34 Oracle Database PL/SQL Language Reference

The optional COMMENT clause lets you specify a comment to be associated with a 
distributed transaction. If a network or computer fails during the commit, the state of 
the distributed transaction might be unknown or in doubt. In that case, the database 
stores the text specified by COMMENT in the data dictionary along with the transaction 
ID. 

Asynchronous commit provides more control for the user with the WRITE clause. This 
option specifies the priority with which the redo information generated by the commit 
operation is written to the redo log.

Using ROLLBACK in PL/SQL
The ROLLBACK statement ends the current transaction and undoes any changes made 
during that transaction. If you make a mistake, such as deleting the wrong row from a 
table, a rollback restores the original data. If you cannot finish a transaction because an 
exception is raised or a SQL statement fails, a rollback lets you take corrective action 
and perhaps start over.

Example 6–37 inserts information about an employee into three different database 
tables. If an INSERT statement tries to store a duplicate employee number, the 
predefined exception DUP_VAL_ON_INDEX is raised. To make sure that changes to all 
three tables are undone, the exception handler executes a ROLLBACK.

Example 6–37 Using ROLLBACK

CREATE TABLE emp_name AS SELECT employee_id, last_name
  FROM employees;
CREATE UNIQUE INDEX empname_ix ON emp_name (employee_id);
CREATE TABLE emp_sal AS SELECT employee_id, salary FROM employees;
CREATE UNIQUE INDEX empsal_ix ON emp_sal (employee_id);
CREATE TABLE emp_job AS SELECT employee_id, job_id FROM employees;
CREATE UNIQUE INDEX empjobid_ix ON emp_job (employee_id);

DECLARE
   emp_id       NUMBER(6);
   emp_lastname VARCHAR2(25);
   emp_salary   NUMBER(8,2);
   emp_jobid    VARCHAR2(10);
BEGIN
   SELECT employee_id, last_name, salary,
     job_id INTO emp_id, emp_lastname, emp_salary, emp_jobid
     FROM employees
     WHERE employee_id = 120;
   INSERT INTO emp_name VALUES (emp_id, emp_lastname);
   INSERT INTO emp_sal VALUES (emp_id, emp_salary);
   INSERT INTO emp_job VALUES (emp_id, emp_jobid);
EXCEPTION
   WHEN DUP_VAL_ON_INDEX THEN
      ROLLBACK;
      DBMS_OUTPUT.PUT_LINE('Inserts were rolled back');

See Also:

■ Oracle Database Advanced Application Developer's Guide for more 
information about committing transactions

■ Oracle Database Concepts for information about distributed 
transactions

■ Oracle Database SQL Language Referencefor information about the 
COMMIT statement



Overview of Transaction Processing in PL/SQL

Using Static SQL 6-35

END;
/

Using SAVEPOINT in PL/SQL
SAVEPOINT names and marks the current point in the processing of a transaction. 
Savepoints let you roll back part of a transaction instead of the whole transaction. The 
number of active savepoints for each session is unlimited.

Example 6–38 marks a savepoint before doing an insert. If the INSERT statement tries 
to store a duplicate value in the employee_id column, the predefined exception 
DUP_VAL_ON_INDEX is raised. In that case, you roll back to the savepoint, undoing 
just the insert. 

Example 6–38 Using SAVEPOINT with ROLLBACK

CREATE TABLE emp_name
  AS SELECT employee_id, last_name, salary
  FROM employees;
CREATE UNIQUE INDEX empname_ix ON emp_name (employee_id);

DECLARE
   emp_id        employees.employee_id%TYPE;
   emp_lastname  employees.last_name%TYPE;
   emp_salary    employees.salary%TYPE;
BEGIN
   SELECT employee_id, last_name, salary
     INTO emp_id, emp_lastname, emp_salary 
     FROM employees
     WHERE employee_id = 120;
   UPDATE emp_name SET salary = salary * 1.1
     WHERE employee_id = emp_id;
   DELETE FROM emp_name WHERE employee_id = 130;
   SAVEPOINT do_insert;
   INSERT INTO emp_name VALUES (emp_id, emp_lastname, emp_salary);
EXCEPTION
   WHEN DUP_VAL_ON_INDEX THEN
      ROLLBACK TO do_insert;
      DBMS_OUTPUT.PUT_LINE('Insert was rolled back');
END;
/

When you roll back to a savepoint, any savepoints marked after that savepoint are 
erased. The savepoint to which you roll back is not erased. A simple rollback or 
commit erases all savepoints. 

If you mark a savepoint within a recursive subprogram, new instances of the 
SAVEPOINT statement are executed at each level in the recursive descent, but you can 
only roll back to the most recently marked savepoint. 

Savepoint names are undeclared identifiers. reusing a savepoint name within a 
transaction moves the savepoint from its old position to the current point in the 
transaction. This means that a rollback to the savepoint affects only the current part of 
your transaction, as shown in Example 6–39.

See Also: Oracle Database SQL Language Reference for more 
information about the ROLLBACK statement



Overview of Transaction Processing in PL/SQL

6-36 Oracle Database PL/SQL Language Reference

Example 6–39 reusing a SAVEPOINT with ROLLBACK

CREATE TABLE emp_name AS SELECT employee_id, last_name, salary
  FROM employees;
CREATE UNIQUE INDEX empname_ix ON emp_name (employee_id);

DECLARE
   emp_id        employees.employee_id%TYPE;
   emp_lastname  employees.last_name%TYPE;
   emp_salary    employees.salary%TYPE;
BEGIN
   SELECT employee_id, last_name, salary INTO emp_id, emp_lastname,
     emp_salary FROM employees WHERE employee_id = 120;
   SAVEPOINT my_savepoint;
   UPDATE emp_name SET salary = salary * 1.1
     WHERE employee_id = emp_id;
   DELETE FROM emp_name WHERE employee_id = 130;
   -- Move my_savepoint to current point
   SAVEPOINT my_savepoint;
   INSERT INTO emp_name VALUES (emp_id, emp_lastname, emp_salary);
EXCEPTION
   WHEN DUP_VAL_ON_INDEX THEN
      ROLLBACK TO my_savepoint;
      DBMS_OUTPUT.PUT_LINE('Transaction rolled back.');
END;
/

How the Database Does Implicit Rollbacks
Before executing an INSERT, UPDATE, or DELETE statement, the database marks an 
implicit savepoint (unavailable to you). If the statement fails, the database rolls back to 
the savepoint. Usually, just the failed SQL statement is rolled back, not the whole 
transaction. If the statement raises an unhandled exception, the host environment 
determines what is rolled back.

The database can also roll back single SQL statements to break deadlocks. The 
database signals an error to one of the participating transactions and rolls back the 
current statement in that transaction. 

Before executing a SQL statement, the database must parse it, that is, examine it to 
make sure it follows syntax rules and refers to valid schema objects. Errors detected 
while executing a SQL statement cause a rollback, but errors detected while parsing 
the statement do not.

If you exit a stored subprogram with an unhandled exception, PL/SQL does not 
assign values to OUT parameters, and does not do any rollback.

Ending Transactions
Explicitly commit or roll back every transaction. Whether you issue the commit or 
rollback in your PL/SQL program or from a client program depends on the 
application logic. If you do not commit or roll back a transaction explicitly, the client 
environment determines its final state. 

For example, in the SQL*Plus environment, if your PL/SQL block does not include a 
COMMIT or ROLLBACK statement, the final state of your transaction depends on what 
you do after running the block. If you execute a data definition, data control, or 

See Also: Oracle Database SQL Language Reference for more 
information about the SET TRANSACTION SQL statement



Overview of Transaction Processing in PL/SQL

Using Static SQL 6-37

COMMIT statement or if you issue the EXIT, DISCONNECT, or QUIT statement, the 
database commits the transaction. If you execute a ROLLBACK statement or stop the 
SQL*Plus session, the database rolls back the transaction.

Setting Transaction Properties (SET TRANSACTION Statement)
You use the SET TRANSACTION statement to begin a read-only or read/write 
transaction, establish an isolation level, or assign your current transaction to a 
specified rollback segment. Read-only transactions are useful for running multiple 
queries while other users update the same tables. 

During a read-only transaction, all queries refer to the same snapshot of the database, 
providing a multi-table, multi-query, read-consistent view. Other users can continue to 
query or update data as usual. A commit or rollback ends the transaction. In 
Example 6–40 a store manager uses a read-only transaction to gather order totals for 
the day, the past week, and the past month. The totals are unaffected by other users 
updating the database during the transaction.

Example 6–40 Using SET TRANSACTION to Begin a Read-only Transaction

DECLARE
   daily_order_total   NUMBER(12,2);
   weekly_order_total  NUMBER(12,2); 
   monthly_order_total NUMBER(12,2);
BEGIN
   COMMIT; -- ends previous transaction
   SET TRANSACTION READ ONLY NAME 'Calculate Order Totals';
   SELECT SUM (order_total) INTO daily_order_total FROM orders
     WHERE order_date = SYSDATE;
   SELECT SUM (order_total) INTO weekly_order_total FROM orders
     WHERE order_date = SYSDATE - 7;
   SELECT SUM (order_total) INTO monthly_order_total FROM orders
     WHERE order_date = SYSDATE - 30;
   COMMIT; -- ends read-only transaction
END;
/

The SET TRANSACTION statement must be the first SQL statement in a read-only 
transaction and can only appear once in a transaction. If you set a transaction to READ 
ONLY, subsequent queries see only changes committed before the transaction began. 
The use of READ ONLY does not affect other users or transactions. 

Restrictions on SET TRANSACTION
Only the SELECT INTO, OPEN, FETCH, CLOSE, LOCK TABLE, COMMIT, and ROLLBACK 
statements are allowed in a read-only transaction. Queries cannot be FOR UPDATE.

Overriding Default Locking
By default, the database locks data structures for you automatically, which is a major 
strength of the database: different applications can read and write to the same data 
without harming each other's data or coordinating with each other.

You can request data locks on specific rows or entire tables if you must override 
default locking. Explicit locking lets you deny access to data for the duration of a 
transaction:

See Also: Oracle Database SQL Language Reference for more 
information about the SQL statement SET TRANSACTION



Overview of Transaction Processing in PL/SQL

6-38 Oracle Database PL/SQL Language Reference

■ With the LOCK TABLE statement, you can explicitly lock entire tables.

■ With the SELECT FOR UPDATE statement, you can explicitly lock specific rows of a 
table to make sure they do not change after you have read them. That way, you 
can check which or how many rows will be affected by an UPDATE or DELETE 
statement before issuing the statement, and no other application can change the 
rows in the meantime.

Topics:

■ Using FOR UPDATE

■ Using LOCK TABLE

■ Fetching Across Commits

Using FOR UPDATE
When you declare a cursor that will be referenced in the CURRENT OF clause of an 
UPDATE or DELETE statement, you must use the FOR UPDATE clause to acquire 
exclusive row locks. For example: 

DECLARE
   CURSOR c1 IS SELECT employee_id, salary FROM employees
      WHERE job_id = 'SA_REP' AND commission_pct > .10
      FOR UPDATE NOWAIT;

The SELECT FOR UPDATE statement identifies the rows that will be updated or 
deleted, then locks each row in the result set. This is useful when you want to base an 
update on the existing values in a row. In that case, you must make sure the row is not 
changed by another user before the update. 

The optional keyword NOWAIT tells the database not to wait if requested rows have 
been locked by another user. Control is immediately returned to your program so that 
it can do other work before trying again to acquire the lock. If you omit the keyword 
NOWAIT, the database waits until the rows are available.

All rows are locked when you open the cursor, not as they are fetched. The rows are 
unlocked when you commit or roll back the transaction. Since the rows are no longer 
locked, you cannot fetch from a FOR UPDATE cursor after a commit.

When querying multiple tables, you can use the FOR UPDATE clause to confine row 
locking to particular tables. Rows in a table are locked only if the FOR UPDATE OF 
clause refers to a column in that table. For example, the following query locks rows in 
the employees table but not in the departments table:

DECLARE
  CURSOR c1 IS SELECT last_name, department_name
    FROM employees, departments
    WHERE employees.department_id = departments.department_id 
    AND job_id = 'SA_MAN'
    FOR UPDATE OF salary;

As shown in Example 6–41, you use the CURRENT OF clause in an UPDATE or DELETE 
statement to refer to the latest row fetched from a cursor.

Example 6–41 Using CURRENT OF to Update the Latest Row Fetched from a Cursor

DECLARE
   my_emp_id NUMBER(6);
   my_job_id VARCHAR2(10);
   my_sal    NUMBER(8,2);



Overview of Transaction Processing in PL/SQL

Using Static SQL 6-39

   CURSOR c1 IS SELECT employee_id, job_id, salary
    FROM employees FOR UPDATE;
BEGIN
   OPEN c1;
   LOOP
      FETCH c1 INTO my_emp_id, my_job_id, my_sal;
      IF my_job_id = 'SA_REP' THEN
        UPDATE employees SET salary = salary * 1.02
          WHERE CURRENT OF c1;
      END IF;
      EXIT WHEN c1%NOTFOUND;
   END LOOP;
END;
/

Using LOCK TABLE
You use the LOCK TABLE statement to lock entire database tables in a specified lock 
mode so that you can share or deny access to them. Row share locks allow concurrent 
access to a table; they prevent other users from locking the entire table for exclusive 
use. Table locks are released when your transaction issues a commit or rollback.

LOCK TABLE employees IN ROW SHARE MODE NOWAIT;

The lock mode determines what other locks can be placed on the table. For example, 
many users can acquire row share locks on a table at the same time, but only one user 
at a time can acquire an exclusive lock. While one user has an exclusive lock on a table, 
no other users can insert, delete, or update rows in that table.

A table lock never keeps other users from querying a table, and a query never acquires 
a table lock. Only if two different transactions try to modify the same row will one 
transaction wait for the other to complete.

Fetching Across Commits
PL/SQL raises an exception if you try to fetch from a FOR UPDATE cursor after doing a 
commit. The FOR UPDATE clause locks the rows when you open the cursor, and 
unlocks them when you commit.

DECLARE
-- if "FOR UPDATE OF salary" is included on following line,
-- an exception is raised
   CURSOR c1 IS SELECT * FROM employees;
   emp_rec  employees%ROWTYPE;
BEGIN
   OPEN c1;
   LOOP
     -- FETCH fails on the second iteration with FOR UPDATE
     FETCH c1 INTO emp_rec;
     EXIT WHEN c1%NOTFOUND;
     IF emp_rec.employee_id = 105 THEN
       UPDATE employees SET salary = salary * 1.05
         WHERE employee_id = 105;

See Also:

■ Oracle Database Advanced Application Developer's Guide for more 
information about lock modes

■ Oracle Database SQL Language Reference for more information about 
the LOCK TABLE SQL statement



Doing Independent Units of Work with Autonomous Transactions

6-40 Oracle Database PL/SQL Language Reference

     END IF;
     COMMIT;  -- releases locks
   END LOOP;
END;
/

If you want to fetch across commits, use the ROWID pseudocolumn to mimic the 
CURRENT OF clause. Select the rowid of each row into a UROWID variable, then use the 
rowid to identify the current row during subsequent updates and deletes.

Example 6–42 Fetching Across COMMITs Using ROWID

DECLARE
   CURSOR c1 IS SELECT last_name, job_id, rowid
     FROM employees;
   my_lastname   employees.last_name%TYPE;
   my_jobid      employees.job_id%TYPE;
   my_rowid      UROWID;
BEGIN
   OPEN c1;
   LOOP
      FETCH c1 INTO my_lastname, my_jobid, my_rowid;
      EXIT WHEN c1%NOTFOUND;
      UPDATE employees SET salary = salary * 1.02 WHERE rowid = my_rowid;
      -- this mimics WHERE CURRENT OF c1
      COMMIT;
   END LOOP;
   CLOSE c1;
END;
/

Because the fetched rows are not locked by a FOR UPDATE clause, other users might 
unintentionally overwrite your changes. The extra space needed for read consistency 
is not released until the cursor is closed, which can slow down processing for large 
updates.

The next example shows that you can use the %ROWTYPE attribute with cursors that 
reference the ROWID pseudocolumn:

DECLARE
   CURSOR c1 IS SELECT employee_id, last_name, salary, rowid FROM employees;
   emp_rec c1%ROWTYPE;
BEGIN
   OPEN c1;
   LOOP
      FETCH c1 INTO emp_rec;
      EXIT WHEN c1%NOTFOUND;
      IF emp_rec.salary = 0 THEN
         DELETE FROM employees WHERE rowid = emp_rec.rowid;
      END IF;
   END LOOP;
   CLOSE c1;
END;
/

Doing Independent Units of Work with Autonomous Transactions
An autonomous transaction is an independent transaction started by another 
transaction, the main transaction. Autonomous transactions do SQL operations and 
commit or roll back, without committing or rolling back the main transaction. For 



Doing Independent Units of Work with Autonomous Transactions

Using Static SQL 6-41

example, if you write auditing data to a log table, you want to commit the audit data 
even if the operation you are auditing later fails; if something goes wrong recording 
the audit data, you do not want the main operation to be rolled back.

Figure 6–1 shows how control flows from the main transaction (MT) to an autonomous 
transaction (AT) and back again.

Figure 6–1 Transaction Control Flow

Topics:

■ Advantages of Autonomous Transactions

■ Defining Autonomous Transactions

■ Controlling Autonomous Transactions

■ Using Autonomous Triggers

■ Invoking Autonomous Functions from SQL

Advantages of Autonomous Transactions
Once started, an autonomous transaction is fully independent. It shares no locks, 
resources, or commit-dependencies with the main transaction. You can log events, 
increment retry counters, and so on, even if the main transaction rolls back.

More important, autonomous transactions help you build modular, reusable software 
components. You can encapsulate autonomous transactions within stored 
subprograms. A calling application needs not know whether operations done by that 
stored subprogram succeeded or failed.

Defining Autonomous Transactions
To define autonomous transactions, you use the pragma (compiler directive) 
AUTONOMOUS_TRANSACTION. The pragma instructs the PL/SQL compiler to mark a 
routine as autonomous (independent). In this context, the term routine includes:

■ Top-level (not nested) anonymous PL/SQL blocks 

■ Local, standalone, and packaged subprograms 

■ Methods of a SQL object type

■ Database triggers

You can code the pragma anywhere in the declarative section of a routine. But, for 
readability, code the pragma at the top of the section. The syntax is PRAGMA 
AUTONOMOUS_TRANSACTION.

PROCEDURE proc1 IS
   emp_id NUMBER;
BEGIN
   emp_id := 7788;
   INSERT ...          MT begins
   SELECT ...
   proc2;
   DELETE ...
   COMMIT;             MT ends
END;

PROCEDURE proc2 IS
   PRAGMA AUTON...
   dept_id NUMBER;
BEGIN                  MT suspends
   dept_id := 20;
   UPDATE ...          AT begins
   INSERT ...
   UPDATE ...
   COMMIT;             AT ends
END;                   MT resumes 

Main Transaction Autonomous Transaction



Doing Independent Units of Work with Autonomous Transactions

6-42 Oracle Database PL/SQL Language Reference

Example 6–43 marks a packaged function as autonomous. You cannot use the pragma 
to mark all subprograms in a package (or all methods in an object type) as 
autonomous. Only individual routines can be marked autonomous.

Example 6–43 Declaring an Autonomous Function in a Package

CREATE OR REPLACE PACKAGE emp_actions AS  -- package specification
   FUNCTION raise_salary (emp_id NUMBER, sal_raise NUMBER)
     RETURN NUMBER;
END emp_actions;
/
CREATE OR REPLACE PACKAGE BODY emp_actions AS  -- package body
-- code for function raise_salary
   FUNCTION raise_salary (emp_id NUMBER, sal_raise NUMBER)
     RETURN NUMBER IS
     PRAGMA AUTONOMOUS_TRANSACTION;
     new_sal NUMBER(8,2);
   BEGIN
     UPDATE employees SET salary =
       salary + sal_raise WHERE employee_id = emp_id;
     COMMIT;
     SELECT salary INTO new_sal FROM employees
       WHERE employee_id = emp_id;
     RETURN new_sal;
   END raise_salary;
END emp_actions;
/

Example 6–44 marks a standalone subprogram as autonomous.

Example 6–44 Declaring an Autonomous Standalone Procedure

CREATE PROCEDURE lower_salary (emp_id NUMBER, amount NUMBER) AS
  PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
  UPDATE employees SET salary =
    salary - amount WHERE employee_id = emp_id;
  COMMIT;
END lower_salary;
/

Example 6–45 marks a PL/SQL block as autonomous. However, you cannot mark a 
nested PL/SQL block as autonomous.

Example 6–45 Declaring an Autonomous PL/SQL Block

DECLARE
  PRAGMA AUTONOMOUS_TRANSACTION;
  emp_id NUMBER(6);
  amount NUMBER(6,2);
BEGIN
  emp_id := 200;
  amount := 200;
  UPDATE employees SET salary = salary - amount WHERE employee_id = emp_id;
  COMMIT;
END;
/



Doing Independent Units of Work with Autonomous Transactions

Using Static SQL 6-43

Example 6–46 marks a database trigger as autonomous. Unlike regular triggers, 
autonomous triggers can contain transaction control statements such as COMMIT and 
ROLLBACK.

Example 6–46 Declaring an Autonomous Trigger

CREATE TABLE emp_audit ( emp_audit_id NUMBER(6), up_date DATE, 
                         new_sal NUMBER(8,2), old_sal NUMBER(8,2) );

CREATE OR REPLACE TRIGGER audit_sal
   AFTER UPDATE OF salary ON employees FOR EACH ROW
DECLARE 
   PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
-- bind variables are used here for values
   INSERT INTO emp_audit VALUES( :old.employee_id, SYSDATE, 
                                 :new.salary, :old.salary );
  COMMIT;
END;
/

Topics:

■ Comparison of Autonomous Transactions and Nested Transactions

■ Transaction Context

■ Transaction Visibility

Comparison of Autonomous Transactions and Nested Transactions
Although an autonomous transaction is started by another transaction, it is not a 
nested transaction:

■ It does not share transactional resources (such as locks) with the main transaction.

■ It does not depend on the main transaction. For example, if the main transaction 
rolls back, nested transactions roll back, but autonomous transactions do not. 

■ Its committed changes are visible to other transactions immediately. (A nested 
transaction's committed changes are not visible to other transactions until the 
main transaction commits.)

■ Exceptions raised in an autonomous transaction cause a transaction-level rollback, 
not a statement-level rollback.

Transaction Context
The main transaction shares its context with nested routines, but not with autonomous 
transactions. When one autonomous routine invokes another (or itself, recursively), 
the routines share no transaction context. When an autonomous routine invokes a 
nonautonomous routine, the routines share the same transaction context.

Transaction Visibility
Changes made by an autonomous transaction become visible to other transactions 
when the autonomous transaction commits. These changes become visible to the main 
transaction when it resumes, if its isolation level is set to READ COMMITTED (the 
default).

If you set the isolation level of the main transaction to SERIALIZABLE, changes made 
by its autonomous transactions are not visible to the main transaction when it resumes:



Doing Independent Units of Work with Autonomous Transactions

6-44 Oracle Database PL/SQL Language Reference

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Controlling Autonomous Transactions
The first SQL statement in an autonomous routine begins a transaction. When one 
transaction ends, the next SQL statement begins another transaction. All SQL 
statements executed since the last commit or rollback make up the current transaction. 
To control autonomous transactions, use the following statements, which apply only to 
the current (active) transaction:

■ COMMIT

■ ROLLBACK [TO savepoint_name]

■ SAVEPOINT savepoint_name

■ SET TRANSACTION

Topics:

■ Entering and Exiting

■ Committing and Rolling Back

■ Using Savepoints

■ Avoiding Errors with Autonomous Transactions

Entering and Exiting
When you enter the executable section of an autonomous routine, the main transaction 
suspends. When you exit the routine, the main transaction resumes.

To exit normally, you must explicitly commit or roll back all autonomous transactions. 
If the routine (or any routine invoked by it) has pending transactions, an exception is 
raised, and the pending transactions are rolled back.

Committing and Rolling Back
COMMIT and ROLLBACK end the active autonomous transaction but do not exit the 
autonomous routine. When one transaction ends, the next SQL statement begins 
another transaction. A single autonomous routine can contain several autonomous 
transactions, if it issues several COMMIT statements.

Using Savepoints
The scope of a savepoint is the transaction in which it is defined. Savepoints defined in 
the main transaction are unrelated to savepoints defined in its autonomous 
transactions. In fact, the main transaction and an autonomous transaction can use the 
same savepoint names. 

You can roll back only to savepoints marked in the current transaction. In an 
autonomous transaction, you cannot roll back to a savepoint marked in the main 

Note:

■ Transaction properties set in the main transaction apply only to 
that transaction, not to its autonomous transactions, and vice 
versa.

■ Cursor attributes are not affected by autonomous transactions.



Doing Independent Units of Work with Autonomous Transactions

Using Static SQL 6-45

transaction. To do so, you must resume the main transaction by exiting the 
autonomous routine.

When in the main transaction, rolling back to a savepoint marked before you started 
an autonomous transaction does not roll back the autonomous transaction. Remember, 
autonomous transactions are fully independent of the main transaction.

Avoiding Errors with Autonomous Transactions
To avoid some common errors, remember the following:

■ If an autonomous transaction attempts to access a resource held by the main 
transaction, a deadlock can occur. The database raises an exception in the 
autonomous transaction, which is rolled back if the exception goes unhandled.

■ The database initialization parameter TRANSACTIONS specifies the maximum 
number of concurrent transactions. That number might be exceeded because an 
autonomous transaction runs concurrently with the main transaction.

■ If you try to exit an active autonomous transaction without committing or rolling 
back, the database raises an exception. If the exception goes unhandled, the 
transaction is rolled back.

Using Autonomous Triggers
Among other things, you can use database triggers to log events transparently. 
Suppose you want to track all inserts into a table, even those that roll back. In 
Example 6–47, you use a trigger to insert duplicate rows into a shadow table. Because 
it is autonomous, the trigger can commit changes to the shadow table whether or not 
you commit changes to the main table.

Example 6–47 Using Autonomous Triggers

CREATE TABLE emp_audit ( emp_audit_id NUMBER(6), up_date DATE,
                         new_sal NUMBER(8,2), old_sal NUMBER(8,2) );

-- create an autonomous trigger that inserts
-- into the audit table before each update
-- of salary in the employees table
CREATE OR REPLACE TRIGGER audit_sal
   BEFORE UPDATE OF salary ON employees FOR EACH ROW
DECLARE 
   PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
  INSERT INTO emp_audit VALUES( :old.employee_id, SYSDATE, 
                                :new.salary, :old.salary );
  COMMIT;
END;
/
-- update the salary of an employee, and then commit the insert
UPDATE employees SET salary
  salary * 1.05 WHERE employee_id = 115;
COMMIT;

-- update another salary, then roll back the update
UPDATE employees SET salary = salary * 1.05 WHERE employee_id = 116;
ROLLBACK;

-- show that both committed and rolled-back updates
-- add rows to audit table



Doing Independent Units of Work with Autonomous Transactions

6-46 Oracle Database PL/SQL Language Reference

SELECT * FROM emp_audit WHERE emp_audit_id = 115 OR emp_audit_id = 116;

Unlike regular triggers, autonomous triggers can execute DDL statements using native 
dynamic SQL, explained in Chapter 7, "Using Dynamic SQL." In the following 
example, trigger drop_temp_table drops a temporary database table after a row is 
inserted in table emp_audit.

CREATE TABLE emp_audit ( emp_audit_id NUMBER(6), up_date DATE,
                         new_sal NUMBER(8,2), old_sal NUMBER(8,2) );
CREATE TABLE temp_audit ( emp_audit_id NUMBER(6), up_date DATE);

CREATE OR REPLACE TRIGGER drop_temp_table
   AFTER INSERT ON emp_audit
DECLARE 
   PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
   EXECUTE IMMEDIATE 'DROP TABLE temp_audit';
   COMMIT;
END;
/

For more information about database triggers, see Chapter 9, "Using Triggers."

Invoking Autonomous Functions from SQL
A function invoked from SQL statements must obey certain rules meant to control side 
effects. See Controlling Side Effects of PL/SQL Subprograms on page 8-24. To check 
for violations of the rules, you can use the pragma RESTRICT_REFERENCES. The 
pragma asserts that a function does not read or write database tables or package 
variables. For more information, See Oracle Database Advanced Application Developer's 
Guide.

However, by definition, autonomous routines never violate the rules read no 
database state (RNDS) and write no database state (WNDS) no matter what 
they do. This can be useful, as Example 6–48 shows. When you invoke the packaged 
function log_msg from a query, it inserts a message into database table debug_
output without violating the rule write no database state.

Example 6–48 Invoking an Autonomous Function

-- create the debug table
CREATE TABLE debug_output (msg VARCHAR2(200));

-- create the package spec
CREATE PACKAGE debugging AS
   FUNCTION log_msg (msg VARCHAR2) RETURN VARCHAR2;
   PRAGMA RESTRICT_REFERENCES(log_msg, WNDS, RNDS);
END debugging;
/
-- create the package body
CREATE PACKAGE BODY debugging AS
   FUNCTION log_msg (msg VARCHAR2) RETURN VARCHAR2 IS
      PRAGMA AUTONOMOUS_TRANSACTION;
   BEGIN
      -- the following insert does not violate the constraint
      -- WNDS because this is an autonomous routine
      INSERT INTO debug_output VALUES (msg);
      COMMIT;
      RETURN msg;
   END;



Doing Independent Units of Work with Autonomous Transactions

Using Static SQL 6-47

END debugging;
/
-- invoke the packaged function from a query
DECLARE
   my_emp_id    NUMBER(6);
   my_last_name VARCHAR2(25);
   my_count     NUMBER;
BEGIN
   my_emp_id := 120;
   SELECT debugging.log_msg(last_name)
     INTO my_last_name FROM employees
     WHERE employee_id = my_emp_id;
-- even if you roll back in this scope, the insert into 'debug_output' remains
-- committed because it is part of an autonomous transaction
   ROLLBACK;
END;
/



Doing Independent Units of Work with Autonomous Transactions

6-48 Oracle Database PL/SQL Language Reference



7

Using Dynamic SQL 7-1

7 Using Dynamic SQL

Dynamic SQL is a programming methodology for generating and executing SQL 
statements at run time. It is useful when writing general-purpose and flexible 
programs like ad hoc query systems, when writing programs that must execute DDL 
statements, or when you do not know at compilation time the full text of a SQL 
statement or the number or data types of its input and output variables.

PL/SQL provides two ways to write dynamic SQL:

■ Native dynamic SQL, a PL/SQL language (that is, native) feature for building and 
executing dynamic SQL statements

■ DBMS_SQL package, an API for building, executing, and describing dynamic SQL 
statements

Native dynamic SQL code is easier to read and write than equivalent code that uses 
the DBMS_SQL package, and runs noticeably faster (especially when it can be 
optimized by the compiler). However, to write native dynamic SQL code, you must 
know at compile time the number and data types of the input and output variables of 
the dynamic SQL statement. If you do not know this information at compile time, you 
must use the DBMS_SQL package.

When you need both the DBMS_SQL package and native dynamic SQL, you can switch 
between them, using the DBMS_SQL.TO_REFCURSOR Function on page 7-7 and 
DBMS_SQL.TO_CURSOR_NUMBER Function on page 7-8.

Topics:

■ When You Need Dynamic SQL

■ Using Native Dynamic SQL

■ Using DBMS_SQL Package

■ Avoiding SQL Injection in PL/SQL

When You Need Dynamic SQL
In PL/SQL, you need dynamic SQL in order to execute the following:

■ SQL whose text is unknown at compile time

For example, a SELECT statement that includes an identifier that is unknown at 
compile time (such as a table name) or a WHERE clause in which the number of 
subclauses is unknown at compile time.

■ SQL that is not supported as static SQL

That is, any SQL construct not included in Description of Static SQL on page 6-1.



Using Native Dynamic SQL

7-2 Oracle Database PL/SQL Language Reference

If you do not need dynamic SQL, use static SQL, which has the following advantages:

■ Successful compilation verifies that static SQL statements reference valid database 
objects and that the necessary privileges are in place to access those objects.

■ Successful compilation creates schema object dependencies.

For information about schema object dependencies, see Oracle Database Concepts.

For information about using static SQL statements with PL/SQL, see Chapter 6, 
"Using Static SQL."

Using Native Dynamic SQL
Native dynamic SQL processes most dynamic SQL statements by means of the 
EXECUTE IMMEDIATE statement.

If the dynamic SQL statement is a SELECT statement that returns multiple rows, native 
dynamic SQL gives you the following choices:

■ Use the EXECUTE IMMEDIATE statement with the BULK COLLECT INTO clause.

■ Use the OPEN-FOR, FETCH, and CLOSE statements.

The SQL cursor attributes work the same way after native dynamic SQL INSERT, 
UPDATE, DELETE, and single-row SELECT statements as they do for their static SQL 
counterparts. For more information about SQL cursor attributes, see Managing 
Cursors in PL/SQL on page 6-7.

Topics:

■ Using the EXECUTE IMMEDIATE Statement

■ Using the OPEN-FOR, FETCH, and CLOSE Statements

■ Repeating Placeholder Names in Dynamic SQL Statements

Using the EXECUTE IMMEDIATE Statement
The EXECUTE IMMEDIATE statement is the means by which native dynamic SQL 
processes most dynamic SQL statements.

If the dynamic SQL statement is self-contained (that is, if it has no placeholders for 
bind arguments and the only result that it can possibly return is an error), then the 
EXECUTE IMMEDIATE statement needs no clauses.

If the dynamic SQL statement includes placeholders for bind arguments, each 
placeholder must have a corresponding bind argument in the appropriate clause of the 
EXECUTE IMMEDIATE statement, as follows:

■ If the dynamic SQL statement is a SELECT statement that can return at most one 
row, put out-bind arguments (defines) in the INTO clause and in-bind arguments 
in the USING clause.

■ If the dynamic SQL statement is a SELECT statement that can return multiple 
rows, put out-bind arguments (defines) in the BULK COLLECT INTO clause and 
in-bind arguments in the USING clause.

■ If the dynamic SQL statement is a DML statement other than SELECT, without a 
RETURNING INTO clause, put all bind arguments in the USING clause.

■ If the dynamic SQL statement is a DML statement with a RETURNING INTO clause, 
put in-bind arguments in the USING clause and out-bind arguments in the 
RETURNING INTO clause.



Using Native Dynamic SQL

Using Dynamic SQL 7-3

■ If the dynamic SQL statement is an anonymous PL/SQL block or a CALL 
statement, put all bind arguments in the USING clause.

If the dynamic SQL statement invokes a subprogram, ensure that:

– Every bind argument that corresponds to a placeholder for a subprogram 
parameter has the same parameter mode as that subprogram parameter (as in 
Example 7–1) and a data type that is compatible with that of the subprogram 
parameter. (For information about compatible data types, see Formal and 
Actual Subprogram Parameters on page 8-6.)

– No bind argument has a data type that SQL does not support (such as 
BOOLEAN in Example 7–2).

The USING clause cannot contain the literal NULL. To work around this restriction, use 
an uninitialized variable where you want to use NULL, as in Example 7–3.

For syntax details of the EXECUTE IMMEDIATE statement, see EXECUTE IMMEDIATE 
Statement on page 13-42.

Example 7–1 Invoking a Subprogram from a Dynamic PL/SQL Block

-- Subprogram that dynamic PL/SQL block invokes:
CREATE PROCEDURE create_dept ( deptid IN OUT NUMBER,
                               dname  IN VARCHAR2,
                               mgrid  IN NUMBER,
                               locid  IN NUMBER
                             ) AS
BEGIN
  deptid := departments_seq.NEXTVAL;
  INSERT INTO departments VALUES (deptid, dname, mgrid, locid);
END;
/
DECLARE
  plsql_block VARCHAR2(500);
  new_deptid  NUMBER(4);
  new_dname   VARCHAR2(30) := 'Advertising';
  new_mgrid   NUMBER(6)    := 200;
  new_locid   NUMBER(4)    := 1700;
BEGIN
 -- Dynamic PL/SQL block invokes subprogram:
  plsql_block := 'BEGIN create_dept(:a, :b, :c, :d); END;';

 /* Specify bind arguments in USING clause.
    Specify mode for first parameter.
    Modes of other parameters are correct by default. */
  EXECUTE IMMEDIATE plsql_block
    USING IN OUT new_deptid, new_dname, new_mgrid, new_locid;
END;
/

Example 7–2 Unsupported Data Type in Native Dynamic SQL

DECLARE
  FUNCTION f (x INTEGER)
    RETURN BOOLEAN
  AS
  BEGIN
    ...
  END f;
  dyn_stmt VARCHAR2(200);
  b1       BOOLEAN;



Using Native Dynamic SQL

7-4 Oracle Database PL/SQL Language Reference

BEGIN
  dyn_stmt := 'BEGIN :b := f(5); END;';
  -- Fails because SQL does not support BOOLEAN data type:
  EXECUTE IMMEDIATE dyn_stmt USING OUT b1;
END;

Example 7–3 Uninitialized Variable for NULL in USING Clause

CREATE TABLE employees_temp AS
  SELECT * FROM EMPLOYEES
/
DECLARE
  a_null  CHAR(1);  -- Set to NULL automatically at run time
BEGIN
  EXECUTE IMMEDIATE 'UPDATE employees_temp SET commission_pct = :x'
    USING a_null;
END;
/

Using the OPEN-FOR, FETCH, and CLOSE Statements
If the dynamic SQL statement represents a SELECT statement that returns multiple 
rows, you can process it with native dynamic SQL as follows:

1. Use an OPEN-FOR statement to associate a cursor variable with the dynamic SQL 
statement. In the USING clause of the OPEN-FOR statement, specify a bind 
argument for each placeholder in the dynamic SQL statement.

The USING clause cannot contain the literal NULL. To work around this restriction, 
use an uninitialized variable where you want to use NULL, as in Example 7–3.

For syntax details, see OPEN-FOR Statement on page 13-87.

2. Use the FETCH statement to retrieve result set rows one at a time, several at a time, 
or all at once.

For syntax details, see FETCH Statement on page 13-60.

3. Use the CLOSE statement to close the cursor variable.

For syntax details, see CLOSE Statement on page 13-18.

Example 7–4 lists all employees who are managers, retrieving result set rows one at a 
time.

Example 7–4 Native Dynamic SQL with OPEN-FOR, FETCH, and CLOSE Statements

DECLARE
  TYPE EmpCurTyp  IS REF CURSOR;
  v_emp_cursor    EmpCurTyp;
  emp_record      employees%ROWTYPE;
  v_stmt_str      VARCHAR2(200);
  v_e_job         employees.job%TYPE;
BEGIN
  -- Dynamic SQL statement with placeholder:
  v_stmt_str := 'SELECT * FROM employees WHERE job_id = :j';

  -- Open cursor & specify bind argument in USING clause:
  OPEN v_emp_cursor FOR v_stmt_str USING 'MANAGER';

  -- Fetch rows from result set one at a time:
  LOOP
    FETCH v_emp_cursor INTO emp_record;



Using Native Dynamic SQL

Using Dynamic SQL 7-5

    EXIT WHEN v_emp_cursor%NOTFOUND;
  END LOOP;

  -- Close cursor:
  CLOSE v_emp_cursor;
END;
/

Repeating Placeholder Names in Dynamic SQL Statements
If you repeat placeholder names in dynamic SQL statements, be aware that the way 
placeholders are associated with bind arguments depends on the kind of dynamic SQL 
statement.

Topics:

■ Dynamic SQL Statement is Not Anonymous Block or CALL Statement

■ Dynamic SQL Statement is Anonymous Block or CALL Statement

Dynamic SQL Statement is Not Anonymous Block or CALL Statement
If the dynamic SQL statement does not represent an anonymous PL/SQL block or a 
CALL statement, repetition of placeholder names is insignificant. Placeholders are 
associated with bind arguments in the USING clause by position, not by name.

For example, in the following dynamic SQL statement, the repetition of the name :x is 
insignificant:

sql_stmt := 'INSERT INTO payroll VALUES (:x, :x, :y, :x)';

In the corresponding USING clause, you must supply four bind arguments. They can 
be different; for example:

EXECUTE IMMEDIATE sql_stmt USING a, b, c, d;

The preceding EXECUTE IMMEDIATE statement executes the following SQL statement:

INSERT INTO payroll VALUES (a, b, c, d)

To associate the same bind argument with each occurrence of :x, you must repeat that 
bind argument; for example:

EXECUTE IMMEDIATE sql_stmt USING a, a, b, a;

The preceding EXECUTE IMMEDIATE statement executes the following SQL statement:

INSERT INTO payroll VALUES (a, a, b, a)

Dynamic SQL Statement is Anonymous Block or CALL Statement
If the dynamic SQL statement represents an anonymous PL/SQL block or a CALL 
statement, repetition of placeholder names is significant. Each unique placeholder 
name must have a corresponding bind argument in the USING clause. If you repeat a 
placeholder name, you need not repeat its corresponding bind argument. All 
references to that placeholder name correspond to one bind argument in the USING 
clause.

In Example 7–5, all references to the first unique placeholder name, :x, are associated 
with the first bind argument in the USING clause, a, and the second unique 
placeholder name, :y, is associated with the second bind argument in the USING 
clause, b.



Using DBMS_SQL Package

7-6 Oracle Database PL/SQL Language Reference

Example 7–5 Repeated Placeholder Names in Dynamic PL/SQL Block

CREATE PROCEDURE calc_stats (
  w NUMBER,
  x NUMBER,
  y NUMBER,
  z NUMBER )
IS
BEGIN
  DBMS_OUTPUT.PUT_LINE(w + x + y + z);
END;
/
DECLARE
  a NUMBER := 4;
  b NUMBER := 7;
  plsql_block VARCHAR2(100);
BEGIN
  plsql_block := 'BEGIN calc_stats(:x, :x, :y, :x); END;';
  EXECUTE IMMEDIATE plsql_block USING a, b;  -- calc_stats(a, a, b, a)
END;
/

Using DBMS_SQL Package
The DBMS_SQL package defines an entity called a SQL cursor number. Because the 
SQL cursor number is a PL/SQL integer, you can pass it across call boundaries and 
store it. You can also use the SQL cursor number to obtain information about the SQL 
statement that you are executing.

You must use the DBMS_SQL package to execute a dynamic SQL statement when you 
don't know either of the following until run-time:

■ SELECT list 

■ What placeholders in a SELECT or DML statement must be bound

In the following situations, you must use native dynamic SQL instead of the DBMS_
SQL package:

■ The dynamic SQL statement retrieves rows into records.

■ You want to use the SQL cursor attribute %FOUND, %ISOPEN, %NOTFOUND, or 
%ROWCOUNT after issuing a dynamic SQL statement that is an INSERT, UPDATE, 
DELETE, or single-row SELECT statement.

For information about native dynamic SQL, see Using Native Dynamic SQL on 
page 7-2.

When you need both the DBMS_SQL package and native dynamic SQL, you can switch 
between them, using the following:

■ DBMS_SQL.TO_REFCURSOR Function

■ DBMS_SQL.TO_CURSOR_NUMBER Function

Note: You can invoke DBMS_SQL subprograms remotely.

See Also: Oracle Database PL/SQL Packages and Types Reference for 
more information about the DBMS_SQL package, including 
instructions for executing a dynamic SQL statement that has an 
unknown number of input or output variables ("Method 4")



Using DBMS_SQL Package

Using Dynamic SQL 7-7

DBMS_SQL.TO_REFCURSOR Function
The DBMS_SQL.TO_REFCURSOR function converts a SQL cursor number to a 
weakly-typed variable of the PL/SQL data type REF CURSOR, which you can use in 
native dynamic SQL statements.

Before passing a SQL cursor number to the DBMS_SQL.TO_REFCURSOR function, you 
must OPEN, PARSE, and EXECUTE it (otherwise an error occurs).

After you convert a SQL cursor number to a REF CURSOR variable, DBMS_SQL 
operations can access it only as the REF CURSOR variable, not as the SQL cursor 
number. For example, using the DBMS_SQL.IS_OPEN function to see if a converted 
SQL cursor number is still open causes an error.

Example 7–6 uses the DBMS_SQL.TO_REFCURSOR function to switch from the DBMS_
SQL package to native dynamic SQL.

Example 7–6 Switching from DBMS_SQL Package to Native Dynamic SQL

CREATE OR REPLACE TYPE vc_array IS TABLE OF VARCHAR2(200);
/
CREATE OR REPLACE TYPE numlist IS TABLE OF NUMBER;
/
CREATE OR REPLACE PROCEDURE do_query_1 (
  placeholder vc_array,
  bindvars vc_array,
  sql_stmt VARCHAR2                    )
IS
  TYPE curtype IS REF CURSOR;
  src_cur      curtype;
  curid        NUMBER;
  bindnames    vc_array;
  empnos       numlist;
  depts        numlist;
  ret          NUMBER;
  isopen       BOOLEAN;
BEGIN
  -- Open SQL cursor number:
  curid := DBMS_SQL.OPEN_CURSOR;

  -- Parse SQL cursor number:
  DBMS_SQL.PARSE(curid, sql_stmt, DBMS_SQL.NATIVE);

  bindnames := placeholder;

  -- Bind arguments:
  FOR i IN 1 .. bindnames.COUNT LOOP
    DBMS_SQL.BIND_VARIABLE(curid, bindnames(i), bindvars(i));
  END LOOP;

  -- Execute SQL cursor number:
  ret := DBMS_SQL.EXECUTE(curid);

  -- Switch from DBMS_SQL to native dynamic SQL:
  src_cur := DBMS_SQL.TO_REFCURSOR(curid);
  FETCH src_cur BULK COLLECT INTO empnos, depts;

  -- This would cause an error because curid was converted to a REF CURSOR:
  -- isopen := DBMS_SQL.IS_OPEN(curid);

  CLOSE src_cur;



Using DBMS_SQL Package

7-8 Oracle Database PL/SQL Language Reference

END;
/

DBMS_SQL.TO_CURSOR_NUMBER Function
The DBMS_SQL.TO_CURSOR function converts a REF CURSOR variable (either strongly 
or weakly typed) to a SQL cursor number, which you can pass to DBMS_SQL 
subprograms.

Before passing a REF CURSOR variable to the DBMS_SQL.TO_CURSOR function, you 
must OPEN it.

After you convert a REF CURSOR variable to a SQL cursor number, native dynamic 
SQL operations cannot access it.

After a FETCH operation begins, passing the DBMS_SQL cursor number to the DBMS_
SQL.TO_REFCURSOR or DBMS_SQL.TO_CURSOR function causes an error.

Example 7–7 uses the DBMS_SQL.TO_CURSOR function to switch from native dynamic 
SQL to the DBMS_SQL package.

Example 7–7 Switching from Native Dynamic SQL to DBMS_SQL Package

CREATE OR REPLACE PROCEDURE do_query_2 (sql_stmt VARCHAR2) IS
  TYPE curtype IS REF CURSOR;
  src_cur  curtype;
  curid    NUMBER;
  desctab  DBMS_SQL.DESC_TAB;
  colcnt   NUMBER;
  namevar  VARCHAR2(50);
  numvar   NUMBER;
  datevar  DATE;
  empno    NUMBER := 100;
BEGIN
  -- sql_stmt := SELECT ... FROM employees WHERE employee_id = :b1';

  -- Open REF CURSOR variable:
  OPEN src_cur FOR sql_stmt USING empno;

  -- Switch from native dynamic SQL to DBMS_SQL package:
  curid := DBMS_SQL.TO_CURSOR_NUMBER(src_cur);
  DBMS_SQL.DESCRIBE_COLUMNS(curid, colcnt, desctab);

  -- Define columns:
  FOR i IN 1 .. colcnt LOOP
    IF desctab(i).col_type = 2 THEN
      DBMS_SQL.DEFINE_COLUMN(curid, i, numvar);
    ELSIF desctab(i).col_type = 12 THEN
      DBMS_SQL.DEFINE_COLUMN(curid, i, datevar);
      -- statements
    ELSE
      DBMS_SQL.DEFINE_COLUMN(curid, i, namevar, 50);
    END IF;
  END LOOP;

  -- Fetch rows with DBMS_SQL package:
  WHILE DBMS_SQL.FETCH_ROWS(curid) > 0 LOOP
    FOR i IN 1 .. colcnt LOOP
      IF (desctab(i).col_type = 1) THEN
        DBMS_SQL.COLUMN_VALUE(curid, i, namevar);
      ELSIF (desctab(i).col_type = 2) THEN



Avoiding SQL Injection in PL/SQL

Using Dynamic SQL 7-9

        DBMS_SQL.COLUMN_VALUE(curid, i, numvar);
      ELSIF (desctab(i).col_type = 12) THEN
        DBMS_SQL.COLUMN_VALUE(curid, i, datevar);
        -- statements
      END IF;
    END LOOP;
  END LOOP;

  DBMS_SQL.CLOSE_CURSOR(curid);
END;
/

Avoiding SQL Injection in PL/SQL
SQL injection is a technique for maliciously exploiting applications that use 
client-supplied data in SQL statements, thereby gaining unauthorized access to a 
database in order to view or manipulate restricted data. This section describes SQL 
injection vulnerabilities in PL/SQL and explains how to guard against them.

To try the examples in this topic, connect to the HR schema and execute the statements 
in Example 7–8.

Example 7–8 Setup for SQL Injection Examples

CREATE TABLE secret_records (
  user_name    VARCHAR2(9),
  service_type VARCHAR2(12),
  value        VARCHAR2(30),
  date_created DATE);

INSERT INTO secret_records
  VALUES ('Andy', 'Waiter', 'Serve dinner at Cafe Pete', SYSDATE);

INSERT INTO secret_records
  VALUES ('Chuck', 'Merger', 'Buy company XYZ', SYSDATE);
Topics:

■ Overview of SQL Injection Techniques

■ Guarding Against SQL Injection

Overview of SQL Injection Techniques
SQL injection techniques differ, but they all exploit a single vulnerability: string input 
is not correctly validated and is concatenated into a dynamic SQL statement. This topic 
classifies SQL injection attacks as follows:

■ Statement Modification

■ Statement Injection

■ Data Type Conversion

Statement Modification
Statement modification means deliberately altering a dynamic SQL statement so that 
it executes in a way unintended by the application developer. Typically, the user 
retrieves unauthorized data by changing the WHERE clause of a SELECT statement or 
by inserting a UNION ALL clause. The classic example of this technique is bypassing 
password authentication by making a WHERE clause always TRUE.



Avoiding SQL Injection in PL/SQL

7-10 Oracle Database PL/SQL Language Reference

The SQL*Plus script in Example 7–9 creates a procedure that is vulnerable to statement 
modification and then invokes that procedure with and without statement 
modification. With statement modification, the procedure returns a supposedly secret 
record.

Example 7–9 Procedure Vulnerable to Statement Modification

SQL> REM Create vulnerable procedure
SQL>
SQL> CREATE OR REPLACE PROCEDURE get_record
  (user_name    IN  VARCHAR2,
   service_type IN  VARCHAR2,
   record       OUT VARCHAR2)
IS
  query VARCHAR2(4000);
BEGIN
  -- Following SELECT statement is vulnerable to modification
  -- because it uses concatenation to build WHERE clause.
  query := 'SELECT value FROM secret_records WHERE user_name='''
           || user_name 
           || ''' AND service_type=''' 
           || service_type 
           || '''';
  DBMS_OUTPUT.PUT_LINE('Query: ' || query);
  EXECUTE IMMEDIATE query INTO record;
  DBMS_OUTPUT.PUT_LINE('Record: ' || record);
END;
/

Procedure created.

SQL> REM Demonstrate procedure without SQL injection
SQL> 
SQL> SET SERVEROUTPUT ON;
SQL>
SQL> DECLARE
  2    record_value VARCHAR2(4000);
  3  BEGIN
  4    get_record('Andy', 'Waiter', record_value);
  5  END;
  6  /
Query: SELECT value FROM secret_records WHERE user_name='Andy' AND
service_type='Waiter'
Record: Serve dinner at Cafe Pete
 
PL/SQL procedure successfully completed.
 
SQL>
SQL> REM Example of statement modification
SQL> 
SQL> DECLARE
  2    record_value VARCHAR2(4000);
  3  BEGIN
  4    get_record(
  5      'Anybody '' OR service_type=''Merger''--',
  6      'Anything',
  7      record_value);
  8  END;
  9  /
Query: SELECT value FROM secret_records WHERE user_name='Anybody ' OR



Avoiding SQL Injection in PL/SQL

Using Dynamic SQL 7-11

service_type='Merger'--' AND service_type='Anything'
Record: Buy company XYZ

PL/SQL procedure successfully completed.

SQL>

Statement Injection
Statement injection means that a user appends one or more new SQL statements to a 
dynamic SQL statement. Anonymous PL/SQL blocks are vulnerable to this technique.

The SQL*Plus script in Example 7–10 creates a procedure that is vulnerable to 
statement injection and then invokes that procedure with and without statement 
injection. With statement injection, the procedure deletes the supposedly secret record 
exposed in Example 7–9.

Example 7–10 Procedure Vulnerable to Statement Injection

SQL> REM Create vulnerable procedure
SQL>
SQL> CREATE OR REPLACE PROCEDURE p
  2    (user_name    IN  VARCHAR2,
  3     service_type IN  VARCHAR2)
  4  IS
  5    block VARCHAR2(4000);
  6  BEGIN
  -- Following block is vulnerable to statement injection
  -- because it is built by concatenation.
  7    block :=
  8      'BEGIN
  9         DBMS_OUTPUT.PUT_LINE(''user_name: ' || user_name || ''');'
 10         || 'DBMS_OUTPUT.PUT_LINE(''service_type: ' || service_type || ''');
 11       END;';
 12
 13    DBMS_OUTPUT.PUT_LINE('Block: ' || block);
 14
 15    EXECUTE IMMEDIATE block;
 16  END;
 17  /

Procedure created.

SQL>

SQL> REM Demonstrate procedure without SQL injection
SQL>
SQL> SET SERVEROUTPUT ON;
SQL>
SQL> BEGIN
  2    p('Andy', 'Waiter');
  3  END;
  4  /
Block: BEGIN
         DBMS_OUTPUT.PUT_LINE('user_name: Andy');
         DBMS_OUTPUT.PUT_LINE('service_type: Waiter');
       END;
user_name: Andy
service_type: Waiter

PL/SQL procedure successfully completed.



Avoiding SQL Injection in PL/SQL

7-12 Oracle Database PL/SQL Language Reference

SQL> REM Example of statement modification
SQL>
SQL> SELECT * FROM secret_records;

USER_NAME SERVICE_TYPE VALUE
--------- ------------ ------------------------------
Andy      Waiter       Serve dinner at Cafe Pete
Chuck     Merger       Buy company XYZ
 
2 rows selected.

SQL>
SQL> BEGIN
  2    p('Anybody', 'Anything'');
  3      DELETE FROM secret_records WHERE service_type=INITCAP(''Merger');
  4  END;
  5  /
Block: BEGIN
       DBMS_OUTPUT.PUT_LINE('user_name: Anybody');
       DBMS_OUTPUT.PUT_LINE('service_type: Anything');
       DELETE FROM secret_records WHERE service_type=INITCAP('Merger');
     END;
user_name: Anybody
service_type: Anything

PL/SQL procedure successfully completed.

SQL> SELECT * FROM secret_records;

USER_NAME SERVICE_TYPE VALUE
--------- ------------ ------------------------------
Andy      Waiter       Serve dinner at Cafe Pete
 
1 row selected.

SQL>

Data Type Conversion
A less known SQL injection technique uses NLS session parameters to modify or inject 
SQL statements.

A datetime or numeric value that is concatenated into the text of a dynamic SQL 
statement must be converted to the VARCHAR2 data type. The conversion can be either 
implicit (when the value is an operand of the concatentation operator) or explicit 
(when the value is the argument of the TO_CHAR function). This data type conversion 
depends on the NLS settings of the database session that executes the dynamic SQL 
statement. The conversion of datetime values uses format models specified in the 
parameters NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, or NLS_TIMESTAMP_
TZ_FORMAT, depending on the particular datetime data type. The conversion of 
numeric values applies decimal and group separators specified in the parameter NLS_
NUMERIC_CHARACTERS.

One datetime format model is "text". The text is copied into the conversion result. 
For example, if the value of NLS_DATE_FORMAT is '"Month:" Month', then in June, 
TO_CHAR(SYSDATE) returns 'Month: June'. The datetime format model can be 
abused as shown in Example 7–11.



Avoiding SQL Injection in PL/SQL

Using Dynamic SQL 7-13

Example 7–11 Procedure Vulnerable to SQL Injection Through Data Type Conversion

SQL> REM Create vulnerable procedure
SQL> REM Return records not older than a month
SQL>
SQL> CREATE OR REPLACE PROCEDURE get_recent_record
  (user_name    IN  VARCHAR2,
   service_type IN  VARCHAR2,
   record       OUT VARCHAR2)
IS
  query VARCHAR2(4000);
BEGIN
  -- Following SELECT statement is vulnerable to modification
  -- because it uses concatenation to build WHERE clause
  -- and because SYSDATE depends on the value of NLS_DATE_FORMAT.
  query := 'SELECT value FROM secret_records WHERE user_name='''
           || user_name
           || ''' AND service_type='''
           || service_type
           || ''' AND date_created>'''
           || (SYSDATE - 30)
           || '''';
  DBMS_OUTPUT.PUT_LINE('Query: ' || query);
  EXECUTE IMMEDIATE query INTO record;
  DBMS_OUTPUT.PUT_LINE('Record: ' || record);
END;
/ 
. 
Procedure created.
. 
SQL> REM Demonstrate procedure without SQL injection
SQL>
SQL> SET SERVEROUTPUT ON;
SQL>
SQL> ALTER SESSION SET NLS_DATE_FORMAT='DD-MON-YYYY';
. 
Session altered.
. 
SQL> DECLARE
  2    record_value VARCHAR2(4000);
  3  BEGIN
  4    get_recent_record('Andy', 'Waiter', record_value);
  5  END;
  6  /
Query: SELECT value FROM secret_records WHERE user_name='Andy' AND
service_type='Waiter' AND date_created>'27-MAY-2008'
Record: Serve dinner at Cafe Pete
  
PL/SQL procedure successfully completed.
  
SQL>
SQL> REM Example of statement modification
SQL>
SQL> ALTER SESSION SET NLS_DATE_FORMAT='"'' OR service_type=''Merger"';
. 
Session altered.
. 
SQL> DECLARE
  2    record_value VARCHAR2(4000);
  3  BEGIN
  4    get_recent_record('Anybody', 'Anything', record_value);



Avoiding SQL Injection in PL/SQL

7-14 Oracle Database PL/SQL Language Reference

  5  END;
  6  /
Query: SELECT value FROM secret_records WHERE user_name='Anybody' AND
service_type='Anything' AND date_created>'' OR service_type='Merger'
Record: Buy company XYZ
. 
PL/SQL procedure successfully completed.
. 
SQL> 

Guarding Against SQL Injection
If you use dynamic SQL in your PL/SQL applications, you must check the input text 
to ensure that it is exactly what you expected. You can use the following techniques:

■ Using Bind Arguments to Guard Against SQL Injection

■ Using Validation Checks to Guard Against SQL Injection

■ Using Explicit Format Models to Guard Against SQL Injection

Using Bind Arguments to Guard Against SQL Injection
The most effective way to make your PL/SQL code invulnerable to SQL injection 
attacks is to use bind arguments. The database uses the values of bind arguments 
exclusively and does not interpret their contents in any way. (Bind arguments also 
improve performance.)

The procedure in Example 7–12 is invulnerable to SQL injection because it builds the 
dynamic SQL statement with bind arguments (not by concatenation as in the 
vulnerable procedure in Example 7–9). The same binding technique fixes the 
vulnerable procedure shown in Example 7–10.

Example 7–12 Using Bind Arguments to Guard Against SQL Injection

SQL> REM Create invulnerable procedure
SQL> 
SQL> CREATE OR REPLACE PROCEDURE get_record_2
  2    (user_name    IN  VARCHAR2,
  3     service_type IN  VARCHAR2,
  4     record       OUT VARCHAR2)
  5  IS
  6    query VARCHAR2(4000);
  7  BEGIN
  8    query := 'SELECT value FROM secret_records
  9              WHERE user_name=:a
 10              AND service_type=:b';
 11  
 12    DBMS_OUTPUT.PUT_LINE('Query: ' || query);
 13  
 14    EXECUTE IMMEDIATE query INTO record USING user_name, service_type;
 15  
 16    DBMS_OUTPUT.PUT_LINE('Record: ' || record);
 17  END;
 18  /
 
Procedure created.
 
SQL> REM Demonstrate procedure without SQL injection
SQL> 
SQL> SET SERVEROUTPUT ON;



Avoiding SQL Injection in PL/SQL

Using Dynamic SQL 7-15

SQL> 
SQL> DECLARE
  2    record_value VARCHAR2(4000);
  3  BEGIN
  4    get_record_2('Andy', 'Waiter', record_value);
  5  END;
  6  /
Query: SELECT value FROM secret_records
            WHERE user_name=:a
            AND service_type=:b
Record: Serve dinner at Cafe Pete
 
PL/SQL procedure successfully completed.
 
SQL> 
SQL> REM Attempt statement modification
SQL> 
SQL> DECLARE
  2    record_value VARCHAR2(4000);
  3  BEGIN
  4    get_record_2('Anybody '' OR service_type=''Merger''--',
  5                 'Anything',
  6                 record_value);
  7  END;
  8  /
Query: SELECT value FROM secret_records
            WHERE user_name=:a
            AND service_type=:b
DECLARE
*
ERROR at line 1:
ORA-01403: no data found
ORA-06512: at "HR.GET_RECORD_2", line 14
ORA-06512: at line 4
 
SQL>

Using Validation Checks to Guard Against SQL Injection
Always have your program validate user input to ensure that it is what is intended. 
For example, if the user is passing a department number for a DELETE statement, 
check the validity of this department number by selecting from the departments 
table. Similarly, if a user enters the name of a table to be deleted, check that this table 
exists by selecting from the static data dictionary view ALL_TABLES.

In validation-checking code, the subprograms in the package DBMS_ASSERT are often 
useful. For example, you can use the DBMS_ASSERT.ENQUOTE_LITERAL function to 
enclose a string literal in quotation marks, as Example 7–13 does. This prevents a 
malicious user from injecting text between an opening quotation mark and its 
corresponding closing quotation mark.

Caution: When checking the validity of a user name and its 
password, always return the same error regardless of which item is 
invalid. Otherwise, a malicious user who receives the error message 
"invalid password" but not "invalid user name" (or the reverse) will 
realize that he or she has guessed one of these correctly.



Avoiding SQL Injection in PL/SQL

7-16 Oracle Database PL/SQL Language Reference

In Example 7–13, the procedure raise_emp_salary checks the validity of the 
column name that was passed to it before it updates the employees table, and then 
the anonymous PL/SQL block invokes the procedure from both a dynamic PL/SQL 
block and a dynamic SQL statement.

Example 7–13 Using Validation Checks to Guard Against SQL Injection

CREATE OR REPLACE PROCEDURE raise_emp_salary (
  column_value  NUMBER,
  emp_column    VARCHAR2,
  amount NUMBER                              )
IS
  v_column  VARCHAR2(30);
  sql_stmt  VARCHAR2(200);
BEGIN
  -- Check validity of column name that was given as input:
  SELECT COLUMN_NAME INTO v_column
    FROM USER_TAB_COLS
      WHERE TABLE_NAME = 'EMPLOYEES'
        AND COLUMN_NAME = emp_column;
  sql_stmt := 'UPDATE employees SET salary = salary + :1 WHERE '
    || DBMS_ASSERT.ENQUOTE_NAME(v_column,FALSE) || ' = :2';
  EXECUTE IMMEDIATE sql_stmt USING amount, column_value;
  -- If column name is valid:
  IF SQL%ROWCOUNT > 0 THEN
    DBMS_OUTPUT.PUT_LINE('Salaries were updated for: '
      || emp_column || ' = ' || column_value);
  END IF;
  -- If column name is not valid:
  EXCEPTION
    WHEN NO_DATA_FOUND THEN
      DBMS_OUTPUT.PUT_LINE ('Invalid Column: ' || emp_column);
END raise_emp_salary;
/

DECLARE
  plsql_block  VARCHAR2(500);
BEGIN
  -- Invoke raise_emp_salary from a dynamic PL/SQL block:
  plsql_block :=
    'BEGIN raise_emp_salary(:cvalue, :cname, :amt); END;';
  EXECUTE IMMEDIATE plsql_block
    USING 110, 'DEPARTMENT_ID', 10;

  -- Invoke raise_emp_salary from a dynamic SQL statement:
  EXECUTE IMMEDIATE 'BEGIN raise_emp_salary(:cvalue, :cname, :amt); END;'
    USING 112, 'EMPLOYEE_ID', 10;
END;
/

Caution: Although the DBMS_ASSERT subprograms are useful in 
validation code, they do not replace it. For example, an input string 
can be a qualified SQL name (verified by DBMS_ASSERT.QUALIFIED_
SQL_NAME) and still be a fraudulent password.

See Also: Oracle Database PL/SQL Packages and Types Reference for 
information about DBMS_ASSERT subprograms



Avoiding SQL Injection in PL/SQL

Using Dynamic SQL 7-17

Using Explicit Format Models to Guard Against SQL Injection
If you use datetime and numeric values that are concatenated into the text of a SQL or 
PL/SQL statement, and you cannot pass them as bind variables, convert them to text 
using explicit format models that are independent from the values of the NLS 
parameters of the executing session. Ensure that the converted values have the format 
of SQL datetime or numeric literals. Using explicit locale-independent format models 
to construct SQL is recommended not only from a security perspective, but also to 
ensure that the dynamic SQL statement runs correctly in any globalization 
environment.

The procedure in Example 7–14 is invulnerable to SQL injection because it converts the 
datetime parameter value, SYSDATE - 30, to a VARCHAR2 value explicitly, using the 
TO_CHAR function and a locale-independent format model (not implicitly, as in the 
vulnerable procedure in Example 7–11).

Example 7–14 Using Explicit Format Models to Guard Against SQL Injection

SQL> REM Create invulnerable procedure 
SQL> REM Return records not older than a month 
SQL> 
SQL> CREATE OR REPLACE PROCEDURE get_recent_record 
  (user_name    IN  VARCHAR2, 
   service_type IN  VARCHAR2, 
   record       OUT VARCHAR2) 
IS 
  query VARCHAR2(4000); 
BEGIN 
  -- Following SELECT statement is vulnerable to modification 
  -- because it uses concatenation to build WHERE clause. 
  query := 'SELECT value FROM secret_records WHERE user_name=''' 
           || user_name 
           || ''' AND service_type=''' 
           || service_type 
           || ''' AND date_created> DATE ''' 
           || TO_CHAR(SYSDATE - 30,'YYYY-MM-DD') 
           || ''''; 
  DBMS_OUTPUT.PUT_LINE('Query: ' || query); 
  EXECUTE IMMEDIATE query INTO record; 
  DBMS_OUTPUT.PUT_LINE('Record: ' || record); 
END; 
/ 
. 
Procedure created. 
. 
SQL> 
SQL> REM Attempt statement modification 
SQL> 
SQL> ALTER SESSION SET NLS_DATE_FORMAT='"'' OR service_type=''Merger"'; 
. 
Session altered. 
. 
SQL> DECLARE 
  2    record_value VARCHAR2(4000); 
  3  BEGIN 
  4    get_recent_record('Anybody', 'Anything', record_value); 
  5  END; 
  6  / 
Query: SELECT value FROM secret_records WHERE user_name='Anybody' AND 
service_type='Anything' AND date_created> DATE '2008-05-27' 



Avoiding SQL Injection in PL/SQL

7-18 Oracle Database PL/SQL Language Reference

DECLARE 
* 
ERROR at line 1: 
ORA-01403: no data found 
ORA-06512: at "SYS.GET_RECENT_RECORD", line 18 
ORA-06512: at line 4 
. 
SQL> 



8

Using PL/SQL Subprograms 8-1

8 Using PL/SQL Subprograms

This chapter explains how to turn sets of statements into reusable subprograms. 
Subprograms are the building blocks of modular, maintainable applications.

Topics:

■ Overview of PL/SQL Subprograms

■ Subprogram Parts

■ Creating Nested Subprograms that Invoke Each Other

■ Declaring and Passing Subprogram Parameters

■ Overloading PL/SQL Subprogram Names

■ How PL/SQL Subprogram Calls Are Resolved

■ Using Invoker's Rights or Definer's Rights (AUTHID Clause)

■ Using Recursive PL/SQL Subprograms

■ Invoking External Subprograms

■ Controlling Side Effects of PL/SQL Subprograms

■ Understanding PL/SQL Subprogram Parameter Aliasing

■ Using the PL/SQL Function Result Cache

Overview of PL/SQL Subprograms
A PL/SQL subprogram is a named PL/SQL block that can be invoked with a set of 
parameters. A subprogram can be either a procedure or a function. Typically, you use a 
procedure to perform an action and a function to compute and return a value.

You can create a subprogram either at schema level, inside a package, or inside a 
PL/SQL block (which can be another subprogram).

A subprogram created at schema level is a standalone stored subprogram. You create 
it with the CREATE PROCEDURE or CREATE FUNCTION statement. It is stored in the 
database until you drop it with the DROP PROCEDURE or DROP FUNCTION statement.

A subprogram created inside a package is a packaged subprogram. It is stored in the 
database until you drop the package with the DROP PACKAGE statement.

A subprogram created inside a PL/SQL block is a nested subprogram. You can either 
declare and define it at the same time, or you can declare it first (forward declaration) 
and then define it later in the same block. A nested subprogram is stored in the 
database only if it is nested within a standalone or packaged subprogram.



Overview of PL/SQL Subprograms

8-2 Oracle Database PL/SQL Language Reference

Subprogram Calls
A subprogram call has this form:

subprogram_name [ (parameter [, parameter]... ) ]

A procedure call is a PL/SQL statement. For example:

raise_salary(employee_id, amount);

A function call is part of an expression. For example:

IF salary_ok(new_salary, new_title) THEN ...

Reasons to Use Subprograms
■ Subprograms let you extend the PL/SQL language.

Procedure calls are like new statements. Function calls are like new expressions 
and operators.

■ Subprograms let you break a program into manageable, well-defined modules.

You can use top-down design and the stepwise refinement approach to problem 
solving.

■ Subprograms promote re-usability.

Once tested, a subprogram can be reused in any number of applications. You can 
invoke PL/SQL subprograms from many different environments, so that you need 
not rewrite them each time you use a new language or use a new API to access the 
database.

■ Subprograms promote maintainability.

You can change the internal details of a subprogram without changing the other 
subprograms that invoke it. Subprograms are an important component of other 
maintainability features, such as packages and object types.

■ Dummy subprograms ("stubs") let you defer the definition of procedures and 
functions until after you have tested the main program.

You can design applications from the top down, thinking abstractly, without 
worrying about implementation details.

■ Subprograms can be grouped into PL/SQL packages.

See Also:

■ CREATE PROCEDURE Statement on page 14-42 for more 
information about creating standalone stored procedures

■ CREATE FUNCTION Statement on page 14-27 for more 
information about creating standalone stored functions

■ CREATE PACKAGE Statement on page 14-36 for more 
information about creating standalone stored functions

■ Procedure Declaration and Definition on page 13-92 for more 
information about creating procedures inside PL/SQL blocks

■ Function Declaration and Definition on page 13-66 for more 
information about creating functions inside PL/SQL blocks

See Also: Declaring and Passing Subprogram Parameters on 
page 8-6 for more information about subprogram calls



Subprogram Parts

Using PL/SQL Subprograms 8-3

Packages make code even more reusable and maintainable, and can be used to 
define an API.

■ You can hide the implementation details of subprograms by placing them in 
PL/SQL packages.

You can define subprograms in a package body without declaring their 
specifications in the package specification. However, such subprograms can be 
invoked only from inside the package. At least one statement must appear in the 
executable part of a subprogram. The NULL statement meets this requirement.

Subprogram Parts
A subprogram always has a name, and can have a parameter list.

Like every PL/SQL block, a subprogram has an optional declarative part, a required 
executable part, and an optional exception-handling part, and can specify PRAGMA 
AUTONOMOUS_TRANSACTION, which makes it autonomous (independent).

The declarative part of a subprogram does not begin with the keyword DECLARE, as 
the declarative part of a non-subprogram block does. The declarative part contains 
declarations of types, cursors, constants, variables, exceptions, and nested 
subprograms. These items are local to the subprogram and cease to exist when the 
subprogram completes execution.

The executable part of a subprogram contains statements that assign values, control 
execution, and manipulate data.

The exception-handling part of a subprogram contains code that handles run-time 
errors.

Example 8–1 declares and defines a procedure (at the same time) inside an anonymous 
block. The procedure has the required executable part and the optional 
exception-handling part, but not the optional declarative part. The executable part of 
the block invokes the procedure.

Example 8–1 Declaring, Defining, and Invoking a Simple PL/SQL Procedure

-- Declarative part of block begins
DECLARE
  in_string  VARCHAR2(100) := 'This is my test string.';
  out_string VARCHAR2(200);

  -- Procedure declaration and definition begins
  PROCEDURE double (original IN VARCHAR2,
                    new_string OUT VARCHAR2)
  IS
    -- Declarative part of procedure (optional) goes here
    -- Executable part of procedure begins
    BEGIN
      new_string := original || ' + ' || original;
    -- Executable part of procedure ends
    -- Exception-handling part of procedure begins
    EXCEPTION
      WHEN VALUE_ERROR THEN
        DBMS_OUTPUT.PUT_LINE('Output buffer not long enough.');
    END;
    -- Exception-handling part of procedure ends
    -- Procedure declaration and definition ends
-- Declarative part of block ends
-- Executable part of block begins



Subprogram Parts

8-4 Oracle Database PL/SQL Language Reference

BEGIN
  double(in_string, out_string);  -- Procedure invocation
  DBMS_OUTPUT.PUT_LINE(in_string || ' - ' || out_string);
END;
-- Executable part of block ends
/

A procedure and a function have the same structure, except that:

■ A function heading must include a RETURN clause that specifies the data type of 
the return value. A procedure heading cannot have a RETURN clause.

■ A function must have at least one RETURN statement in its executable part. In a 
procedure, the RETURN statement is optional. For details, see RETURN Statement 
on page 8-4.

■ Only a function heading can include the following options:

RETURN Statement
The RETURN statement (not to be confused with the RETURN clause, which specifies 
the data type of the return value of a function) immediately ends the execution of the 
subprogram that contains it and returns control to the caller. Execution continues with 
the statement following the subprogram call.

A subprogram can contain several RETURN statements. The subprogram need not end 
with a RETURN statement. Executing any RETURN statement completes the 
subprogram immediately.

In a procedure, a RETURN statement cannot contain an expression and does not return 
a value.

In a function, a RETURN statement must contain an expression. When the RETURN 
statement executes, the expression is evaluated, and its value is assigned to the 

Option Description

DETERMINISTIC option Helps the optimizer avoid redundant function calls.

PARALLEL_ENABLED option Allows the function to be used safely in slave sessions of 
parallel DML evaluations.

PIPELINED option Returns the results of a table function iteratively.

RESULT_CACHE option Stores function results in the PL/SQL function result cache.

RESULT_CACHE clause Specifies the data sources on which the results of a function.

See Also:

■ Procedure Declaration and Definition on page 13-92 for the syntax 
of procedure declarations and definitions

■ Function Declaration and Definition on page 13-66 for the syntax 
of function declarations and definitions, including descriptions of 
the items in the preceding table

■ Declaring and Passing Subprogram Parameters on page 8-6 for 
more information about subprogram parameters

■ Using the PL/SQL Function Result Cache on page 8-27 for more 
information about the RESULT_CACHE option and the RESULT_
CACHE clause



Creating Nested Subprograms that Invoke Each Other

Using PL/SQL Subprograms 8-5

function identifier. The function identifier acts like a variable of the type specified in 
the RETURN clause.

The expression in a function RETURN statement can be arbitrarily complex. For 
example:

CREATE OR REPLACE FUNCTION half_of_square(original NUMBER)
  RETURN NUMBER IS
BEGIN
  RETURN (original * original)/2 + (original * 4);
END half_of_square;
/

A function must have at least one execution path that leads to a RETURN statement.

Example 8–2 declares and defines a function (at the same time) inside an anonymous 
block. The function has the optional declarative part  and the required executable part, 
but not the optional exception-handling part. The executable part of the block invokes 
the function.

Example 8–2 Declaring, Defining, and Invoking a Simple PL/SQL Function

-- Declarative part of block begins
DECLARE
  -- Function declaration and definition begins
  FUNCTION square (original NUMBER)
    RETURN NUMBER  -- RETURN clause
  AS
  -- Declarative part of function begins
    original_squared NUMBER;
  -- Declarative part of function ends
  -- Executable part of function begins
  BEGIN
    original_squared := original * original;
    RETURN original_squared;  -- RETURN statement
  -- Exception-handling part of function (optional) goes here
  END;
  -- Executable part of function ends
  -- Function declaration and definition ends
-- Declarative part of block ends
-- Executable part of block begins
BEGIN
  DBMS_OUTPUT.PUT_LINE(square(100));  -- Function invocation
END;
-- Executable part of block ends
/

Creating Nested Subprograms that Invoke Each Other
In a block, you can create multiple nested subprograms. If they invoke each other, you 
need forward declaration, because a subprogram must be declared before it can be 
invoked. With forward declaration, you declare a subprogram, but do not define it 
until after you have defined the other subprograms that invoke it. A forward 
declaration and its corresponding definition must appear in the same block.

The block in Example 8–3 creates two procedures that invoke each other.

See Also: RETURN Statement on page 13-100 for the syntax of the 
RETURN statement



Declaring and Passing Subprogram Parameters

8-6 Oracle Database PL/SQL Language Reference

Example 8–3 Creating Nested Subprograms that Invoke Each Other

DECLARE
  -- Declare proc1 (forward declaration):
  PROCEDURE proc1(number1 NUMBER);

  -- Declare and define proc 2:
  PROCEDURE proc2(number2 NUMBER) IS
  BEGIN
    proc1(number2);
  END;

  -- Define proc 1:
  PROCEDURE proc1(number1 NUMBER) IS
  BEGIN
    proc2 (number1);
  END;

BEGIN
  NULL;
END;
/

Declaring and Passing Subprogram Parameters
A subprogram heading can declare formal parameters. Each formal parameter 
declaration can specify a mode and a default value. When you invoke the subprogram, 
you can pass actual parameters to it.

Topics:

■ Formal and Actual Subprogram Parameters

■ Specifying Subprogram Parameter Modes

■ Specifying Default Values for Subprogram Parameters

■ Passing Actual Subprogram Parameters with Positional, Named, or Mixed 
Notation

Formal and Actual Subprogram Parameters
Formal parameters are the variables declared in the subprogram header and 
referenced in its execution part. Actual parameters are the variables or expressions 
that you pass to the subprogram when you invoke it. Corresponding formal and actual 
parameters must have compatible data types.

A good programming practice is to use different names for formal and actual 
parameters, as in Example 8–4.

Example 8–4 Formal Parameters and Actual Parameters

DECLARE
  emp_num NUMBER(6) := 120;
  bonus   NUMBER(6) := 100;
  merit   NUMBER(4) := 50;

  PROCEDURE raise_salary (
    emp_id NUMBER,  -- formal parameter
    amount NUMBER   -- formal parameter
  ) IS
  BEGIN



Declaring and Passing Subprogram Parameters

Using PL/SQL Subprograms 8-7

    UPDATE employees
      SET salary = salary + amount
        WHERE employee_id = emp_id;
  END raise_salary;

BEGIN
  raise_salary(emp_num, bonus);  -- actual parameters
  raise_salary(emp_num, merit + bonus);  -- actual parameters
END;
/

When you invoke a subprogram, PL/SQL evaluates each actual parameter and assigns 
its value to the corresponding formal parameter. If necessary, PL/SQL implicitly 
converts the data type of the actual parameter to the data type of the corresponding 
formal parameter before the assignment (this is why corresponding formal and actual 
parameters must have compatible data types). For information about implicit 
conversion, see Implicit Conversion on page 3-29.

A good programming practice is to avoid implicit conversion, either by using explicit 
conversion (explained in Explicit Conversion on page 3-28) or by declaring the 
variables that you intend to use as actual parameters with the same data types as their 
corresponding formal parameters. For example, suppose that pkg has this 
specification:

PACKAGE pkg IS
  PROCEDURE s (n IN PLS_INTEGER);
END pkg;

The following invocation of pkg.s avoids implicit conversion:

DECLARE
  y PLS_INTEGER :=1;
BEGIN
  pkg.s(y);
END;

The following invocation of pkg.s causes implicit conversion:

DECLARE
  y INTEGER :=1;
BEGIN
  pkg.s(y);
END;

Specifying Subprogram Parameter Modes
Parameter modes define the action of formal parameters. The three parameter modes 
are IN (the default), OUT, and IN OUT.

Note: The specifications of many packages and types that Oracle 
supplies declare formal parameters with the following notation:

i1 IN VARCHAR2 CHARACTER SET ANY_CS
i2 IN VARCHAR2 CHARACTER SET i1%CHARSET

Do not use this notation when declaring your own formal or actual 
parameters. It is reserved for Oracle implementation of the supplied 
packages types.



Declaring and Passing Subprogram Parameters

8-8 Oracle Database PL/SQL Language Reference

Any parameter mode can be used with any subprogram. Avoid using the OUT and IN 
OUT modes with functions. To have a function return multiple values is poor 
programming practice. Also, make functions free from side effects, which change the 
values of variables not local to the subprogram.

Topics:

■ Using IN Mode

■ Using OUT Mode

■ Using IN OUT Mode

■ Summary of Subprogram Parameter Modes

Using IN Mode
An IN parameter lets you pass a value to the subprogram being invoked. Inside the 
subprogram, an IN parameter acts like a constant. It cannot be assigned a value.

You can pass a constant, literal, initialized variable, or expression as an IN parameter.

An IN parameter can be initialized to a default value, which is used if that parameter 
is omitted from the subprogram call. For more information, see Specifying Default 
Values for Subprogram Parameters on page 8-9.

Using OUT Mode
An OUT parameter returns a value to the caller of a subprogram. Inside the 
subprogram, an OUT parameter acts like a variable. You can change its value and 
reference the value after assigning it, as in Example 8–5.

Example 8–5 Using OUT Mode

DECLARE
  emp_num       NUMBER(6) := 120;
  bonus         NUMBER(6) := 50;
  emp_last_name VARCHAR2(25);
  PROCEDURE raise_salary (emp_id IN NUMBER, amount IN NUMBER, 
                          emp_name OUT VARCHAR2) IS
    BEGIN
      UPDATE employees SET salary =
        salary + amount WHERE employee_id = emp_id;
      SELECT last_name INTO emp_name
        FROM employees
       WHERE employee_id = emp_id;
  END raise_salary;
BEGIN
  raise_salary(emp_num, bonus, emp_last_name);
  DBMS_OUTPUT.PUT_LINE
    ('Salary was updated for: ' || emp_last_name);
END;
/

You must pass a variable, not a constant or an expression, to an OUT parameter. Its 
previous value is lost unless you specify the NOCOPY keyword or the subprogram exits 
with an unhandled exception. See Specifying Default Values for Subprogram 
Parameters on page 8-9.

The initial value of an OUT parameter is NULL; therefore, the data type of an OUT 
parameter cannot be a subtype defined as NOT NULL, such as the built-in subtype 



Declaring and Passing Subprogram Parameters

Using PL/SQL Subprograms 8-9

NATURALN or POSITIVEN. Otherwise, when you invoke the subprogram, PL/SQL 
raises VALUE_ERROR.

Before exiting a subprogram, assign values to all OUT formal parameters. Otherwise, 
the corresponding actual parameters will be null. If you exit successfully, PL/SQL 
assigns values to the actual parameters. If you exit with an unhandled exception, 
PL/SQL does not assign values to the actual parameters.

Using IN OUT Mode
An IN OUT parameter passes an initial value to a subprogram and returns an updated 
value to the caller. It can be assigned a value and its value can be read. Typically, an IN 
OUT parameter is a string buffer or numeric accumulator, that is read inside the 
subprogram and then updated.

The actual parameter that corresponds to an IN OUT formal parameter must be a 
variable, not a constant or an expression.

If you exit a subprogram successfully, PL/SQL assigns values to the actual parameters. 
If you exit with an unhandled exception, PL/SQL does not assign values to the actual 
parameters.

Summary of Subprogram Parameter Modes
 Table 8–1 summarizes the characteristics of parameter modes.

Specifying Default Values for Subprogram Parameters
By initializing formal IN parameters to default values, you can pass different numbers 
of actual parameters to a subprogram, accepting the default values for omitted actual 
parameters. You can also add new formal parameters without having to change every 
call to the subprogram.

If an actual parameter is omitted, the default value of its corresponding formal 
parameter is used.

Table 8–1 Parameter Modes

IN OUT IN OUT

The default Must be specified Must be specified

Passes a value to the 
subprogram

Returns a value to the caller Passes an initial value to the 
subprogram and returns an 
updated value to the caller

Formal parameter acts like a 
constant

Formal parameter acts like 
an uninitialized variable

Formal parameter acts like 
an initialized variable

Formal parameter cannot be 
assigned a value

Formal parameter must be 
assigned a value

Formal parameter should be 
assigned a value

Actual parameter can be a 
constant, initialized variable, 
literal, or expression

Actual parameter must be a 
variable

Actual parameter must be a 
variable

Actual parameter is passed 
by reference (the caller 
passes the subprogram a 
pointer to the value)

Actual parameter is passed 
by value (the subprogram 
passes the caller a copy of 
the value) unless NOCOPY is 
specified

Actual parameter is passed 
by value (the caller passes 
the subprogram a copy of 
the value and the 
subprogram passes the 
caller a copy of the value) 
unless NOCOPY is specified



Declaring and Passing Subprogram Parameters

8-10 Oracle Database PL/SQL Language Reference

You cannot skip a formal parameter by omitting its actual parameter. To omit the first 
parameter and specify the second, use named notation (see Passing Actual 
Subprogram Parameters with Positional, Named, or Mixed Notation on page 8-11).

You cannot assign NULL to an uninitialized formal parameter by omitting its actual 
parameter. You must either assign NULL as a default value or pass NULL explicitly.

Example 8–6 illustrates the use of default values for subprogram parameters.

Example 8–6 Procedure with Default Parameter Values

DECLARE
  emp_num NUMBER(6) := 120;
  bonus   NUMBER(6);
  merit   NUMBER(4);
  PROCEDURE raise_salary (emp_id IN NUMBER,
    amount IN NUMBER DEFAULT 100,
                          extra IN NUMBER DEFAULT 50) IS
    BEGIN
      UPDATE employees SET salary = salary + amount + extra 
        WHERE employee_id = emp_id;
  END raise_salary;
BEGIN
  -- Same as raise_salary(120, 100, 50)
  raise_salary(120);
  -- Same as raise_salary(120, 100, 25)
  raise_salary(emp_num, extra => 25);
END;
/

If the default value of a formal parameter is an expression, and you provide a 
corresponding actual parameter when you invoke the subprogram, the expression is 
not evaluated, as in Example 8–7.

Example 8–7 Formal Parameter with Expression as Default Value

DECLARE
  cnt pls_integer := 0;
  FUNCTION dflt RETURN pls_integer IS
  BEGIN
    cnt := cnt + 1;
    RETURN 42;
  END dflt;
  -- Default is expression
  PROCEDURE p(i IN pls_integer DEFAULT dflt()) IS
     BEGIN
       DBMS_Output.Put_Line(i);
  END p;
BEGIN
  FOR j IN 1..5 LOOP
    p(j);  -- Actual parameter is provided
  END loop;
  DBMS_Output.Put_Line('cnt: '||cnt);
  p();  -- Actual parameter is not provided
  DBMS_Output.Put_Line('cnt: '||cnt);
END;

The output of Example 8–7 is:

1
2



Declaring and Passing Subprogram Parameters

Using PL/SQL Subprograms 8-11

3
4
5
Cnt: 0
42
Cnt: 1

Passing Actual Subprogram Parameters with Positional, Named, or Mixed Notation
When invoking a subprogram, you can specify the actual parameters using either 
positional, named, or mixed notation. Table 8–2 compares these notations.

Example 8–8 shows equivalent subprogram calls using positional, named, and mixed 
notation.

Example 8–8 Subprogram Calls Using Positional, Named, and Mixed Notation

SQL> DECLARE
  2    emp_num NUMBER(6) := 120;
  3    bonus   NUMBER(6) := 50;
  4    PROCEDURE raise_salary (emp_id NUMBER, amount NUMBER) IS
  5      BEGIN
  6        UPDATE employees SET salary =
  7          salary + amount WHERE employee_id = emp_id;
  8    END raise_salary;
  9  BEGIN
 10    -- Positional notation:
 11    raise_salary(emp_num, bonus);
 12    -- Named notation (parameter order is insignificant):
 13    raise_salary(amount => bonus, emp_id => emp_num);
 14    raise_salary(emp_id => emp_num, amount => bonus);
 15    -- Mixed notation:
 16    raise_salary(emp_num, amount => bonus);
 17  END;
 18  /
 

Table 8–2 PL/SQL Subprogram Parameter Notations

Notation Description Usage Notes

Positional Specify the same 
parameters in the same 
order as the procedure 
declares them.

Compact and readable, but has these disadvantages:

■ If you specify the parameters (especially 
literals) in the wrong order, the bug can be hard 
to detect.

■ If the procedure's parameter list changes, you 
must change your code.

Named Specify the name and 
value of each parameter, 
using the association 
operator, =>. Order of 
parameters is 
insignificant.

More verbose than positional notation, but easier to 
read and maintain. You can sometimes avoid 
changing your code if the procedure's parameter list 
changes (for example, if parameters are reordered or 
a new optional parameter is added). Safer than 
positional notation when you invoke an API that 
you did not define, or define an API for others to 
use.

Mixed Start with positional 
notation, then use named 
notation for the remaining 
parameters.

Recommended when you invoke procedures that 
have required parameters followed by optional 
parameters, and you must specify only a few of the 
optional parameters.



Overloading PL/SQL Subprogram Names

8-12 Oracle Database PL/SQL Language Reference

PL/SQL procedure successfully completed.
 
SQL> REM Clean up
SQL> ROLLBACK;
 
Rollback complete.
 
SQL> 
SQL> CREATE OR REPLACE FUNCTION compute_bonus (emp_id NUMBER, bonus NUMBER)
  2    RETURN NUMBER
  3  IS
  4    emp_sal NUMBER;
  5  BEGIN
  6    SELECT salary INTO emp_sal
  7      FROM employees
  8        WHERE employee_id = emp_id;
  9    RETURN emp_sal + bonus;
 10  END compute_bonus;
 11  /
 
Function created.
 
SQL> SELECT compute_bonus(120, 50) FROM DUAL;                   -- positional
  2  SELECT compute_bonus(bonus => 50, emp_id => 120) FROM DUAL; -- named
  3  SELECT compute_bonus(120, bonus => 50) FROM DUAL;           -- mixed
  4  
SQL>

Overloading PL/SQL Subprogram Names
PL/SQL lets you overload local subprograms, packaged subprograms, and type 
methods. You can use the same name for several different subprograms as long as 
their formal parameters differ in number, order, or data type family.

Example 8–9 defines two subprograms with the same name, initialize. The 
procedures initialize different types of collections. Because the processing in these two 
procedures is the same, it is logical to give them the same name.

You can place the two initialize procedures in the same block, subprogram, 
package, or object type. PL/SQL determines which procedure to invoke by checking 
their formal parameters. The version of initialize that PL/SQL uses depends on 
whether you invoke the procedure with a date_tab_typ or num_tab_typ 
parameter.

Example 8–9 Overloading a Subprogram Name

DECLARE
  TYPE date_tab_typ IS TABLE OF DATE   INDEX BY PLS_INTEGER;
  TYPE num_tab_typ  IS TABLE OF NUMBER INDEX BY PLS_INTEGER;

  hiredate_tab  date_tab_typ;
  sal_tab       num_tab_typ;

  PROCEDURE initialize (tab OUT date_tab_typ, n INTEGER) IS
  BEGIN
    FOR i IN 1..n LOOP
      tab(i) := SYSDATE;
    END LOOP;
  END initialize;



Overloading PL/SQL Subprogram Names

Using PL/SQL Subprograms 8-13

  PROCEDURE initialize (tab OUT num_tab_typ, n INTEGER) IS
  BEGIN
    FOR i IN 1..n LOOP
      tab(i) := 0.0;
    END LOOP;
  END initialize;

BEGIN
  initialize(hiredate_tab, 50);  -- Invokes first (date_tab_typ) version
  initialize(sal_tab, 100);      -- Invokes second (num_tab_typ) version
END;
/
For an example of an overloaded procedure in a package, see Example 10–3 on 
page 10-6.

Topics:

■ Guidelines for Overloading with Numeric Types

■ Restrictions on Overloading

■ When Compiler Catches Overloading Errors

Guidelines for Overloading with Numeric Types
You can overload subprograms if their formal parameters differ only in numeric data 
type. This technique is useful in writing mathematical application programming 
interfaces (APIs), because several versions of a function can use the same name, and 
each can accept a different numeric type. For example, a function that accepts 
BINARY_FLOAT might be faster, while a function that accepts BINARY_DOUBLE might 
provide more precision.

To avoid problems or unexpected results passing parameters to such overloaded 
subprograms:

■ Ensure that the expected version of a subprogram is invoked for each set of 
expected parameters. For example, if you have overloaded functions that accept 
BINARY_FLOAT and BINARY_DOUBLE, which is invoked if you pass a VARCHAR2 
literal such as '5.0'?

■ Qualify numeric literals and use conversion functions to make clear what the 
intended parameter types are. For example, use literals such as 5.0f (for BINARY_
FLOAT), 5.0d (for BINARY_DOUBLE), or conversion functions such as TO_
BINARY_FLOAT, TO_BINARY_DOUBLE, and TO_NUMBER.

PL/SQL looks for matching numeric parameters in this order:

1. PLS_INTEGER (or BINARY_INTEGER, an identical data type)

2. NUMBER

3. BINARY_FLOAT

4. BINARY_DOUBLE

A VARCHAR2 value can match a NUMBER, BINARY_FLOAT, or BINARY_DOUBLE 
parameter.

PL/SQL uses the first overloaded subprogram that matches the supplied parameters. 
For example, the SQRT function takes a single parameter. There are overloaded 
versions that accept a NUMBER, a BINARY_FLOAT, or a BINARY_DOUBLE parameter. If 
you pass a PLS_INTEGER parameter, the first matching overload is the one with a 
NUMBER parameter.



Overloading PL/SQL Subprogram Names

8-14 Oracle Database PL/SQL Language Reference

The SQRT function that takes a NUMBER parameter is likely to be slowest. To use a 
faster version, use the TO_BINARY_FLOAT or TO_BINARY_DOUBLE function to 
convert the parameter to another data type before passing it to the SQRT function.

If PL/SQL must convert a parameter to another data type, it first tries to convert it to a 
higher data type. For example:

■ The ATAN2 function takes two parameters of the same type. If you pass 
parameters of different types—for example, one PLS_INTEGER and one BINARY_
FLOAT—PL/SQL tries to find a match where both parameters use the higher type. 
In this case, that is the version of ATAN2 that takes two BINARY_FLOAT 
parameters; the PLS_INTEGER parameter is converted upwards.

■ A function takes two parameters of different types. One overloaded version takes 
a PLS_INTEGER and a BINARY_FLOAT parameter. Another overloaded version 
takes a NUMBER and a BINARY_DOUBLE parameter. If you invoke this function and 
pass two NUMBER parameters, PL/SQL first finds the overloaded version where 
the second parameter is BINARY_FLOAT. Because this parameter is a closer match 
than the BINARY_DOUBLE parameter in the other overload, PL/SQL then looks 
downward and converts the first NUMBER parameter to PLS_INTEGER.

Restrictions on Overloading
You cannot overload the following subprograms:

■ Standalone subprograms

■ Subprograms whose formal parameters differ only in mode; for example:

PACKAGE pkg IS
  PROCEDURE s (p IN  VARCHAR2);
  PROCEDURE s (p OUT VARCHAR2);
END pkg;

■ Subprograms whose formal parameters differ only in subtype; for example:

PACKAGE pkg IS
  PROCEDURE s (p INTEGER);
  PROCEDURE s (p REAL);
END pkg;

INTEGER and REAL are subtypes of NUMBER, so they belong to the same data type 
family.

■ Functions that differ only in return value data type, even if the data types are in 
different families; for example:

PACKAGE pkg IS
  FUNCTION f (p INTEGER) RETURN BOOLEAN;
  FUNCTION f (p INTEGER) RETURN INTEGER;
END pkg;

When Compiler Catches Overloading Errors
The PL/SQL compiler catches overloading errors as soon as it can determine that it 
will be unable to tell which subprogram was invoked. When subprograms have 
identical headings, the compiler catches the overloading error when you try to compile 
the subprograms themselves (if they are local) or when you try to compile the package 
specification that declares them (if they are packaged); otherwise, it catches the error 
when you try to compile an ambiguous invocation of a subprogram.



Overloading PL/SQL Subprogram Names

Using PL/SQL Subprograms 8-15

When you try to compile the package specification in Example 8–10, which declares 
subprograms with identical headings, you get compile-time error PLS-00305.

Example 8–10 Package Specification with Overloading Violation that Causes 
Compile-Time Error

PACKAGE pkg1 IS
  PROCEDURE s (p VARCHAR2);
  PROCEDURE s (p VARCHAR2);
END pkg1;

Although the package specification in Example 8–11 violates the rule that you cannot 
overload subprograms whose formal parameters differ only in subtype, you can 
compile it without error.

Example 8–11 Package Specification with Overloading Violation that Compiles Without 
Error

PACKAGE pkg2 IS
  SUBTYPE t1 IS VARCHAR2(10);
  SUBTYPE t2 IS VARCHAR2(10);
  PROCEDURE s (p t1);
  PROCEDURE s (p t2);
END pkg2;

However, when you try to compile an invocation of pkg2.s, such as the one in 
Example 8–12, you get compile-time error PLS-00307.

Example 8–12 Invocation of Improperly Overloaded Subprogram

PROCEDURE p IS
  a pkg.t1 := 'a';
BEGIN
  pkg.s(a)  -- Causes compile-time error PLS-00307;
END p;

Suppose that you correct the overloading violation in Example 8–11 by giving the 
formal parameters of the overloaded subprograms different names, as follows:

PACKAGE pkg2 IS
  SUBTYPE t1 IS VARCHAR2(10);
  SUBTYPE t2 IS VARCHAR2(10);
  PROCEDURE s (p1 t1);
  PROCEDURE s (p2 t2);
END pkg2;

Now you can compile an invocation of pkg2.s without error if you specify the actual 
parameter with named notation. For example:

PROCEDURE p IS
  a pkg.t1 := 'a';
BEGIN
  pkg.s(p1=>a);  -- Compiles without error
END p;

If you specify the actual parameter with positional notation, as in Example 8–12, you 
still get compile-time error PLS-00307.

The package specification in Example 8–13 violates no overloading rules and compiles 
without error. However, you can still get compile-time error PLS-00307 when invoking 
its overloaded procedure, as in the second invocation in Example 8–14.



How PL/SQL Subprogram Calls Are Resolved

8-16 Oracle Database PL/SQL Language Reference

Example 8–13 Package Specification Without Overloading Violations

PACKAGE pkg3 IS
  PROCEDURE s (p1 VARCHAR2);
  PROCEDURE s (p1 VARCHAR2, p2 VARCHAR2 := 'p2');
END pkg3;

Example 8–14 Improper Invocation of Properly Overloaded Subprogram

PROCEDURE p IS
  a1 VARCHAR2(10) := 'a1';
  a2 VARCHAR2(10) := 'a2';
BEGIN
  pkg.s(p1=>a1, p2=>a2);  -- Compiles without error
  pkg.s(p1=>a1);          -- Causes compile-time error PLS-00307
END p;

How PL/SQL Subprogram Calls Are Resolved
Figure 8–1 shows how the PL/SQL compiler resolves subprogram calls. When the 
compiler encounters a subprogram call, it tries to find a declaration that matches the 
call. The compiler searches first in the current scope and then, if necessary, in 
successive enclosing scopes. The compiler looks more closely when it finds one or 
more subprogram declarations in which the subprogram name matches the name of 
the called subprogram. 

To resolve a call among possibly like-named subprograms at the same level of scope, 
the compiler must find an exact match between the actual and formal parameters. 
They must match in number, order, and data type (unless some formal parameters 
were assigned default values). If no match is found or if multiple matches are found, 
the compiler generates a semantic error.



How PL/SQL Subprogram Calls Are Resolved

Using PL/SQL Subprograms 8-17

Figure 8–1 How the PL/SQL Compiler Resolves Calls

Example 8–15 invokes the enclosing procedure swap from the function balance, 
generating an error because neither declaration of swap within the current scope 
matches the procedure call.

Example 8–15 Resolving PL/SQL Procedure Names

DECLARE
  PROCEDURE swap (n1 NUMBER, n2 NUMBER) IS
    num1 NUMBER;
    num2 NUMBER;
    FUNCTION balance (bal NUMBER) RETURN NUMBER IS
      x NUMBER := 10;
      PROCEDURE swap (d1 DATE, d2 DATE) IS BEGIN NULL; END;
      PROCEDURE swap (b1 BOOLEAN, b2 BOOLEAN) IS BEGIN NULL; END;
    BEGIN
      DBMS_OUTPUT.PUT_LINE('The following raises an exception');
--      swap(num1, num2);
--      wrong number or types of arguments in call to 'SWAP'

generate semantic error resolve call 

multiple matches? 

match(es) found? 

match(es) found? enclosing scope? 

go to enclosing scope

encounter
subprogram call

compare name of
called subprogram with
names of any 
subprograms declared 
in current scope

Yes

Yes

Yes

Yes

No

No

No

No

compare actual 
parameter list in 
subprogram call with
formal parameter list in
subprogram declaration(s)



Using Invoker's Rights or Definer's Rights (AUTHID Clause)

8-18 Oracle Database PL/SQL Language Reference

      RETURN x;
    END balance;
  BEGIN NULL;END swap;
BEGIN
  NULL;
END;
/

Using Invoker's Rights or Definer's Rights (AUTHID Clause)
The AUTHID property of a stored PL/SQL unit affects the name resolution and 
privilege checking of SQL statements that the unit issues at run time. The AUTHID 
property does not affect compilation, and has no meaning for units that have no code, 
such as collection types.

AUTHID property values are exposed in the static data dictionary view *_
PROCEDURES. For units for which AUTHID has meaning, the view shows the value 
CURRENT_USER or DEFINER; for other units, the view shows NULL.

For stored PL/SQL units that you create or alter with the following statements, you 
can use the optional AUTHID clause to specify either CURRENT_USER or DEFINER. The 
default is DEFINER.

■ CREATE FUNCTION Statement on page 14-27

■ CREATE PACKAGE Statement on page 14-36

■ CREATE PROCEDURE Statement on page 14-42

■ CREATE TYPE Statement on page 14-60

■ ALTER TYPE Statement on page 14-14

A unit whose AUTHID value is CURRENT_USER is called an invoker’s rights unit, or 
IR unit. A unit whose AUTHID value is DEFINER is called a definer’s rights unit, or 
DR unit. An anonymous block always behaves like an IR unit. A trigger or view 
always behaves like a DR unit.

The AUTHID property of a unit determines whether the unit is IR or DR, and it affects 
both name resolution and privilege checking at run time:

■ The context for name resolution is CURRENT_SCHEMA.

■ The privileges checked are those of the CURRENT_USER and the enabled roles.

When a session starts, CURRENT_SCHEMA has the value of the schema owned by 
SESSION_USER, and CURRENT_USER has the same value as SESSION_USER. (To get 
the current value of CURRENT_SCHEMA, CURRENT_USER, or SESSION_USER, use the 
SYS_CONTEXT function, documented in Oracle Database SQL Language Reference.)

CURRENT_SCHEMA can be changed during the session with the SQL statement ALTER 
SESSION SET CURRENT_SCHEMA. CURRENT_USER cannot be changed 
programmatically, but it might change when a PL/SQL unit or a view is pushed onto, 
or popped from, the call stack.

During a server call, when a DR unit is pushed onto the  call stack, the database stores 
the currently enabled roles and the current values of CURRENT_USER and CURRENT_
SCHEMA. It then changes both CURRENT_USER and CURRENT_SCHEMA to the owner of 

Note: Oracle recommends against issuing ALTER SESSION SET 
CURRENT_SCHEMA from within a stored PL/SQL unit.



Using Invoker's Rights or Definer's Rights (AUTHID Clause)

Using PL/SQL Subprograms 8-19

the DR unit, and enables only the role PUBLIC. (The stored and new roles and values 
are not necessarily different.) When the DR unit is popped from the call stack, the 
database restores the stored roles and values. In contrast, when an IR unit is pushed 
onto, or popped from, the call stack, the values of CURRENT_USER and CURRENT_
SCHEMA, and the currently enabled roles do not change.

For dynamic SQL statements issued by a PL/SQL unit, name resolution and privilege 
checking are done only once, at run time. For static SQL statements, name resolution 
and privilege checking are done twice: first, when the PL/SQL unit is compiled, and 
then again at run time. At compilation time, the AUTHID property has no effect—both 
DR and IR units are treated like DR units. At run time, however, the AUTHID property 
determines whether a unit is IR or DR, and the unit is treated accordingly.

Topics:

■ Choosing Between AUTHID CURRENT_USER and AUTHID DEFINER

■ AUTHID and the SQL Command SET ROLE

■ Need for Template Objects in IR Subprograms

■ Overriding Default Name Resolution in IR Subprograms

■ Using Views and Database Triggers with IR Subprograms

■ Using Database Links with IR Subprograms

■ Using Object Types with IR Subprograms

■ Invoking IR Instance Methods

Choosing Between AUTHID CURRENT_USER and AUTHID DEFINER
Scenario: Suppose that you want to create an API whose procedures have unrestricted 
access to its tables, but you want to prevent ordinary users from selecting table data 
directly, and from changing it with INSERT, UPDATE, and DELETE statements.

Solution: In a special schema, create the tables and the procedures that comprise the 
API. By default, each procedure is a DR unit, so you need not specify AUTHID 
DEFINER when you create it. To other users, grant the EXECUTE privilege, but do not 
grant any privileges that allow data access.

Scenario: Suppose that you want to write a PL/SQL procedure that presents 
compilation errors to a developer. The procedure will join the static data dictionary 
views ALL_SOURCE and ALL_ERRORS and use the procedure DBMS_OUTPUT.PUT_
LINE to show a window of numbered source lines around each error, following the list 
of errors for that window. You want all developers to be able to execute the procedure, 
and you want the procedure to treat each developer as the CURRENT_USER with 
respect to ALL_SOURCE and ALL_ERRORS.

Solution: When you create the procedure, specify AUTHID CURRENT_USER. Grant the 
EXECUTE privilege to PUBLIC. Because the procedure is an IR unit, ALL_SOURCE and 
ALL_ERRORS will operate from the perspective of the user who invokes the procedure.

Note: Another solution is to make the procedure a DR unit and grant 
its owner the SELECT privilege on both DBA_SOURCE and DBA_
ERRORS. However, this solution is harder to program, and far harder 
to audit with respect to the criterion that a user must never see source 
code for units for which he or she does not have the EXECUTE 
privilege.



Using Invoker's Rights or Definer's Rights (AUTHID Clause)

8-20 Oracle Database PL/SQL Language Reference

AUTHID and the SQL Command SET ROLE
The SQL command SET ROLE succeeds only if there are no DR units on the call stack. 
If at least one DR unit is on the call stack, issuing the SET ROLE command causes 
ORA-06565.

Need for Template Objects in IR Subprograms
The PL/SQL compiler must resolve all references to tables and other objects at compile 
time. The owner of an IR subprogram must have objects in the same schema with the 
right names and columns, even if they do not contain any data. At run time, the 
corresponding objects in the invoker's schema must have matching definitions. 
Otherwise, you get an error or unexpected results, such as ignoring table columns that 
exist in the invoker's schema but not in the schema that contains the subprogram.

Overriding Default Name Resolution in IR Subprograms
Sometimes, the run-time name resolution rules for an IR unit (that cause different 
invocations to resolve the same unqualified name to different objects) are not desired. 
Rather, it is required that a specific object be used on every invocation. Nevertheless, 
an IR unit is needed for other reasons. For example, it might be critical that privileges 
are evaluated with respect to the CURRENT_USER. Under these circumstances, qualify 
the name with the schema that owns the object.

Notice that an unqualified name that intends to denote a public synonym is exposed to 
the risk of capture if the schema of the CURRENT_USER has a colliding name. A public 
synonym can be qualified with "PUBLIC". You must enclose PUBLIC in double 
quotation marks. For example:

SELECT sysdate INTO today FROM "PUBLIC".DUAL;

Using Views and Database Triggers with IR Subprograms
For IR subprograms executed within a view expression, the user who created the view, 
not the user who is querying the view, is considered to be the current user. This rule 
also applies to database triggers.

Using Database Links with IR Subprograms
You can create a database link to use invoker's rights:

CREATE DATABASE LINK link_name CONNECT TO CURRENT_USER
  USING connect_string;

Note: To execute the SET ROLE command from PL/SQL, you must 
use dynamic SQL, preferably the EXECUTE IMMEDIATE statement. For 
information about this statement, see Using the EXECUTE 
IMMEDIATE Statement on page 7-2.

Note: Oracle recommends against issuing the SQL statement ALTER 
SESSION SET CURRENT_SCHEMA from within a stored PL/SQL unit.

Note: If SYS_CONTEXT is used directly in the defining SQL 
statement of a view, then the value it returns for CURRENT_USER is the 
querying user and not the owner of the view.



Using Invoker's Rights or Definer's Rights (AUTHID Clause)

Using PL/SQL Subprograms 8-21

A current-user link lets you connect to a remote database as another user, with that 
user's privileges. To connect, the database uses the username of the current user (who 
must be a global user). Suppose an IR subprogram owned by user OE references the 
following database link. If global user HR invokes the subprogram, it connects to the 
Dallas database as user HR, who is the current user.

CREATE DATABASE LINK dallas CONNECT TO CURRENT_USER USING ...

If it were a definer's rights subprogram, the current user would be OE, and the 
subprogram would connect to the Dallas database as global user OE.

Using Object Types with IR Subprograms
To define object types for use in any schema, specify the AUTHID CURRENT_USER 
clause. For information about object types, see Oracle Database Object-Relational 
Developer's Guide.

Suppose that user HR creates the object type in Example 8–16.

Example 8–16 Creating an Object Type with AUTHID CURRENT USER

CREATE TYPE person_typ AUTHID CURRENT_USER AS OBJECT (
  person_id   NUMBER,
  person_name VARCHAR2(30),
  person_job  VARCHAR2(10),
  STATIC PROCEDURE new_person_typ (
    person_id NUMBER, person_name VARCHAR2, person_job VARCHAR2,
    schema_name VARCHAR2, table_name VARCHAR2),
  MEMBER PROCEDURE change_job (SELF IN OUT NOCOPY person_typ,
                               new_job VARCHAR2) 
  );
/
CREATE TYPE BODY person_typ AS
  STATIC PROCEDURE new_person_typ (
    person_id NUMBER, person_name VARCHAR2, person_job VARCHAR2,
    schema_name VARCHAR2, table_name VARCHAR2) IS
    sql_stmt VARCHAR2(200);
  BEGIN 
    sql_stmt := 'INSERT INTO ' || schema_name || '.'
       || table_name || ' VALUES (HR.person_typ(:1, :2, :3))';
    EXECUTE IMMEDIATE sql_stmt
      USING person_id, person_name, person_job;
  END;
  MEMBER PROCEDURE change_job (SELF IN OUT NOCOPY person_typ,
                               new_job VARCHAR2) IS
  BEGIN
    person_job := new_job;
  END;
END;
/

Then user HR grants the EXECUTE privilege on object type person_typ to user OE:

GRANT EXECUTE ON person_typ TO OE;

Finally, user OE creates an object table to store objects of type person_typ, then 
invokes procedure new_person_typ to populate the table:

CREATE TABLE person_tab OF hr.person_typ;



Using Invoker's Rights or Definer's Rights (AUTHID Clause)

8-22 Oracle Database PL/SQL Language Reference

BEGIN
  hr.person_typ.new_person_typ(1001,
                               'Jane Smith',
                               'CLERK',
                               'oe',
                               'person_tab');
  hr.person_typ.new_person_typ(1002,
                               'Joe Perkins',
                               'SALES','oe',
                               'person_tab');
  hr.person_typ.new_person_typ(1003,
                               'Robert Lange',
                               'DEV',
                               'oe', 'person_tab');
                               'oe', 'person_tab');
END;
/

The calls succeed because the procedure executes with the privileges of its current user 
(OE), not its owner (HR).

For subtypes in an object type hierarchy, the following rules apply:

■ If a subtype does not explicitly specify an AUTHID clause, it inherits the AUTHID of 
its supertype.

■ If a subtype does specify an AUTHID clause, its AUTHID must match the AUTHID of 
its supertype. Also, if the AUTHID is DEFINER, both the supertype and subtype 
must have been created in the same schema.

Invoking IR Instance Methods
An IR instance method executes with the privileges of the invoker, not the creator of 
the instance. Suppose that person_typ is an IR object type as created in 
Example 8–16, and that user HR creates p1, an object of type person_typ. If user OE 
invokes instance method change_job to operate on object p1, the current user of the 
method is OE, not HR, as shown in Example 8–17.

Example 8–17 Invoking an IR Instance Methods

-- OE creates a procedure that invokes change_job
CREATE PROCEDURE reassign
  (p IN OUT NOCOPY hr.person_typ, new_job VARCHAR2) AS
BEGIN
   p.change_job(new_job); -- executes with the privileges of oe
END;
/
-- OE grants EXECUTE to HR on procedure reassign
GRANT EXECUTE ON reassign to HR;

-- HR passes a person_typ object to the procedure reassign
DECLARE
   p1 person_typ;
BEGIN
   p1 := person_typ(1004,  'June Washburn', 'SALES');
   oe.reassign(p1, 'CLERK'); -- current user is oe, not hr
END;
/



Invoking External Subprograms

Using PL/SQL Subprograms 8-23

Using Recursive PL/SQL Subprograms
A recursive subprogram is one that invokes itself. Each recursive call creates a new 
instance of any items declared in the subprogram, including parameters, variables, 
cursors, and exceptions. Likewise, new instances of SQL statements are created at each 
level in the recursive descent. 

Be careful where you place a recursive call. If you place it inside a cursor FOR loop or 
between OPEN and CLOSE statements, another cursor is opened at each call, which 
might exceed the limit set by the database initialization parameter OPEN_CURSORS.

There must be at least two paths through a recursive subprogram: one that leads to the 
recursive call and one that does not. At least one path must lead to a terminating 
condition. Otherwise, the recursion continues until PL/SQL runs out of memory and 
raises the predefined exception STORAGE_ERROR.

Recursion is a powerful technique for simplifying the design of algorithms. Basically, 
recursion means self-reference. In a recursive mathematical sequence, each term is 
derived by applying a formula to preceding terms. The Fibonacci sequence (0, 1, 1, 2, 3, 
5, 8, 13, 21, ...), is an example. Each term in the sequence (after the second) is the sum 
of the two terms that immediately precede it. 

In a recursive definition, something is defined as simpler versions of itself. Consider 
the definition of n factorial (n!), the product of all integers from 1 to n:

n! = n * (n - 1)!

Invoking External Subprograms
Although PL/SQL is a powerful, flexible language, some tasks are more easily done in 
another language. Low-level languages such as C are very fast. Widely used languages 
such as Java have reusable libraries for common design patterns.

You can use PL/SQL call specifications to invoke external subprograms written in 
other languages, making their capabilities and libraries available from PL/SQL. For 
example, you can invoke Java stored procedures from any PL/SQL block, 
subprogram, or package. For more information about Java stored procedures, see 
Oracle Database Java Developer's Guide. 

If the following Java class is stored in the database, it can be invoked as shown in 
Example 8–18.

import java.sql.*;
import oracle.jdbc.driver.*;
public class Adjuster {
  public static void raiseSalary (int empNo, float percent)
  throws SQLException {
    Connection conn = new OracleDriver().defaultConnection();
    String sql = "UPDATE employees SET salary = salary * ?
                    WHERE employee_id = ?";
    try {
      PreparedStatement pstmt = conn.prepareStatement(sql);
      pstmt.setFloat(1, (1 + percent / 100));
      pstmt.setInt(2, empNo);
      pstmt.executeUpdate();
      pstmt.close();
    } catch (SQLException e)
          {System.err.println(e.getMessage());}
    }
}



Controlling Side Effects of PL/SQL Subprograms

8-24 Oracle Database PL/SQL Language Reference

The class Adjuster has one method, which raises the salary of an employee by a 
given percentage. Because raiseSalary is a void method, you publish it as a 
procedure using the call specification shown in Example 8–18 and then can invoke the 
procedure raise_salary from an anonymous PL/SQL block.

Example 8–18 Invoking an External Procedure from PL/SQL

CREATE OR REPLACE PROCEDURE raise_salary (empid NUMBER, pct NUMBER)
AS LANGUAGE JAVA
NAME 'Adjuster.raiseSalary(int, float)';
/

DECLARE
   emp_id  NUMBER := 120;
   percent NUMBER := 10;
BEGIN
   -- get values for emp_id and percent
   raise_salary(emp_id, percent);  -- invoke external subprogram
END;
/

Java call specifications cannot be declared as nested procedures, but can be specified in 
object type specifications, object type bodies, PL/SQL package specifications, PL/SQL 
package bodies, and as top level PL/SQL procedures and functions.

Example 8–19 shows a call to a Java function from a PL/SQL procedure.

Example 8–19 Invoking a Java Function from PL/SQL

-- the following invalid nested Java call spec throws PLS-00999
--   CREATE PROCEDURE sleep (milli_seconds in number) IS
--     PROCEDURE java_sleep (milli_seconds IN NUMBER) AS ...

-- Create Java call spec, then call from PL/SQL procedure
CREATE PROCEDURE java_sleep (milli_seconds IN NUMBER)
  AS LANGUAGE JAVA NAME 'java.lang.Thread.sleep(long)';
/
CREATE PROCEDURE sleep (milli_seconds in number) IS
-- the following nested PROCEDURE spec is not legal
--  PROCEDURE java_sleep (milli_seconds IN NUMBER)
--    AS LANGUAGE JAVA NAME 'java.lang.Thread.sleep(long)';
BEGIN
  DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.get_time());
  java_sleep (milli_seconds);
  DBMS_OUTPUT.PUT_LINE(DBMS_UTILITY.get_time());
END;
/ 

External C subprograms are used to interface with embedded systems, solve 
engineering problems, analyze data, or control real-time devices and processes. 
External C subprograms extend the functionality of the database server, and move 
computation-bound programs from client to server, where they execute faster. For 
more information about external C subprograms, see Oracle Database Advanced 
Application Developer's Guide.

Controlling Side Effects of PL/SQL Subprograms
The fewer side effects a function has, the better it can be optimized within a query, 
particularly when the PARALLEL_ENABLE or DETERMINISTIC hints are used.



Understanding PL/SQL Subprogram Parameter Aliasing

Using PL/SQL Subprograms 8-25

To be callable from SQL statements, a stored function (and any subprograms that it 
invokes) must obey the following purity rules, which are meant to control side effects:

■ When invoked from a SELECT statement or a parallelized INSERT, UPDATE, or 
DELETE statement, the function cannot modify any database tables.

■ When invoked from an INSERT, UPDATE, or DELETE statement, the function 
cannot query or modify any database tables modified by that statement.

■ When invoked from a SELECT, INSERT, UPDATE, or DELETE statement, the 
function cannot execute SQL transaction control statements (such as COMMIT), 
session control statements (such as SET ROLE), or system control statements (such 
as ALTER SYSTEM). Also, it cannot execute DDL statements (such as CREATE) 
because they are followed by an automatic commit.

If any SQL statement inside the function body violates a rule, you get an error at run 
time (when the statement is parsed).

To check for purity rule violations at compile time, use the RESTRICT_REFERENCES 
pragma to assert that a function does not read or write database tables or package 
variables (for syntax, see RESTRICT_REFERENCES Pragma on page 13-98).

In Example 8–20, the RESTRICT_REFERENCES pragma asserts that packaged function 
credit_ok writes no database state (WNDS) and reads no package state (RNPS).

Example 8–20 RESTRICT_REFERENCES Pragma

CREATE PACKAGE loans AS
   FUNCTION credit_ok RETURN BOOLEAN;
   PRAGMA RESTRICT_REFERENCES (credit_ok, WNDS, RNPS);
END loans;
/

A static INSERT, UPDATE, or DELETE statement always violates WNDS, and if it reads 
columns, it also violates RNDS (reads no database state). A dynamic INSERT, UPDATE, 
or DELETE statement always violates both WNDS and RNDS.

Understanding PL/SQL Subprogram Parameter Aliasing
To optimize a subprogram call, the PL/SQL compiler can choose between two 
methods of parameter passing. with the BY VALUE method, the value of an actual 
parameter is passed to the subprogram. With the BY REFERENCE method, only a 
pointer to the value is passed; the actual and formal parameters reference the same 
item.

The NOCOPY compiler hint increases the possibility of aliasing (that is, having two 
different names refer to the same memory location). This can occur when a global 
variable appears as an actual parameter in a subprogram call and then is referenced 
within the subprogram. The result is indeterminate because it depends on the method 
of parameter passing chosen by the compiler.

In Example 8–21, procedure ADD_ENTRY refers to varray LEXICON both as a 
parameter and as a global variable. When ADD_ENTRY is invoked, the identifiers 
WORD_LIST and LEXICON point to the same varray. 

Example 8–21 Aliasing from Passing Global Variable with NOCOPY Hint

DECLARE
  TYPE Definition IS RECORD (
    word    VARCHAR2(20),
    meaning VARCHAR2(200));



Understanding PL/SQL Subprogram Parameter Aliasing

8-26 Oracle Database PL/SQL Language Reference

  TYPE Dictionary IS VARRAY(2000) OF Definition;
  lexicon Dictionary := Dictionary();
  PROCEDURE add_entry (word_list IN OUT NOCOPY Dictionary) IS
    BEGIN
      word_list(1).word := 'aardvark';
      lexicon(1).word := 'aardwolf';
    END;
BEGIN
  lexicon.EXTEND;
  add_entry(lexicon);
  DBMS_OUTPUT.PUT_LINE(lexicon(1).word);
END;
/

The program prints aardwolf if the compiler obeys the NOCOPY hint. The assignment 
to WORD_LIST is done immediately through a pointer, then is overwritten by the 
assignment to LEXICON.

The program prints aardvark if the NOCOPY hint is omitted, or if the compiler does 
not obey the hint. The assignment to WORD_LIST uses an internal copy of the varray, 
which is copied back to the actual parameter (overwriting the contents of LEXICON) 
when the procedure ends.

Aliasing can also occur when the same actual parameter appears more than once in a 
subprogram call. In Example 8–22, n2 is an IN OUT parameter, so the value of the 
actual parameter is not updated until the procedure exits. That is why the first PUT_
LINE prints 10 (the initial value of n) and the third PUT_LINE prints 20. However, n3 
is a NOCOPY parameter, so the value of the actual parameter is updated immediately. 
That is why the second PUT_LINE prints 30. 

Example 8–22 Aliasing Passing Same Parameter Multiple Times

DECLARE
   n NUMBER := 10;
   PROCEDURE do_something (
      n1 IN NUMBER,
      n2 IN OUT NUMBER,
      n3 IN OUT NOCOPY NUMBER) IS
   BEGIN
      n2 := 20;
      DBMS_OUTPUT.put_line(n1);  -- prints 10
      n3 := 30;
      DBMS_OUTPUT.put_line(n1);  -- prints 30
   END;
BEGIN
   do_something(n, n, n);
   DBMS_OUTPUT.put_line(n);  -- prints 20
END;
/

Because they are pointers, cursor variables also increase the possibility of aliasing. In 
Example 8–23, after the assignment, emp_cv2 is an alias of emp_cv1; both point to the 
same query work area. The first fetch from emp_cv2 fetches the third row, not the 
first, because the first two rows were already fetched from emp_cv1. The second fetch 
from emp_cv2 fails because emp_cv1 is closed. 

Example 8–23 Aliasing from Assigning Cursor Variables to Same Work Area

DECLARE
  TYPE EmpCurTyp IS REF CURSOR;



Using the PL/SQL Function Result Cache

Using PL/SQL Subprograms 8-27

  c1 EmpCurTyp;
  c2 EmpCurTyp;
  PROCEDURE get_emp_data (emp_cv1 IN OUT EmpCurTyp,
                          emp_cv2 IN OUT EmpCurTyp) IS
    emp_rec employees%ROWTYPE;
  BEGIN
    OPEN emp_cv1 FOR SELECT * FROM employees;
    emp_cv2 := emp_cv1;
    FETCH emp_cv1 INTO emp_rec;  -- fetches first row
    FETCH emp_cv1 INTO emp_rec;  -- fetches second row
    FETCH emp_cv2 INTO emp_rec;  -- fetches third row
    CLOSE emp_cv1;
    DBMS_OUTPUT.put_line('The following raises an invalid cursor');
--  FETCH emp_cv2 INTO emp_rec;
--  raises invalid cursor when get_emp_data is invoked
  END;
BEGIN
  get_emp_data(c1, c2);
END;
/

Using the PL/SQL Function Result Cache
The PL/SQL function result caching mechanism provides a language-supported and 
system-managed means for caching the results of PL/SQL functions in a shared global 
area (SGA), which is available to every session that runs your application. The caching 
mechanism is both efficient and easy to use, and it relieves you of the burden of 
designing and developing your own caches and cache-management policies.

To enable result-caching for a function, use the RESULT_CACHE clause. When a 
result-cached function is invoked, the system checks the cache. If the cache contains 
the result from a previous call to the function with the same parameter values, the 
system returns the cached result to the invoker and does not reexecute the function 
body. If the cache does not contain the result, the system executes the function body 
and adds the result (for these parameter values) to the cache before returning control 
to the invoker.

The cache can accumulate very many results—one result for every unique 
combination of parameter values with which each result-cached function was invoked. 
If the system needs more memory, it ages out (deletes) one or more cached results.

You can specify the database objects that are used to compute a cached result, so that if 
any of them are updated, the cached result becomes invalid and must be recomputed. 
The best candidates for result-caching are functions that are invoked frequently but 
depend on information that changes infrequently or never.

Topics:

■ Enabling Result-Caching for a Function

■ Developing Applications with Result-Cached Functions

■ Restrictions on Result-Cached Functions

■ Examples of Result-Cached Functions

Note: If function execution results in an unhandled exception, the 
exception result is not stored in the cache.



Using the PL/SQL Function Result Cache

8-28 Oracle Database PL/SQL Language Reference

■ Advanced Result-Cached Function Topics

Enabling Result-Caching for a Function
To make a function result-cached, do the following:

■ In the function declaration, include the option RESULT_CACHE.

■ In the function definition:

– Include the RESULT_CACHE clause.

– In the optional RELIES_ON clause, specify any tables or views on which the 
function results depend.

For the syntax of the RESULT_CACHE and RELIES_ON clauses, see Function 
Declaration and Definition on page 13-66.

In Example 8–24, the package department_pks declares and then defines a 
result-cached function, get_dept_info, which returns the average salary and 
number of employees in a given department. get_dept_info depends on the 
database table EMPLOYEES.

Example 8–24 Declaration and Definition of Result-Cached Function

-- Package specification
CREATE OR REPLACE PACKAGE department_pks IS
  TYPE dept_info_record IS RECORD (average_salary      NUMBER,
                                   number_of_employees NUMBER);
  -- Function declaration
  FUNCTION get_dept_info (dept_id NUMBER) RETURN dept_info_record
  RESULT_CACHE;
END department_pks;
/
CREATE OR REPLACE PACKAGE BODY department_pks AS
  -- Function definition
  FUNCTION get_dept_info (dept_id NUMBER) RETURN dept_info_record
    RESULT_CACHE RELIES_ON (EMPLOYEES)
  IS
    rec dept_info_record;
  BEGIN
    SELECT AVG(SALARY), COUNT(*) INTO rec
      FROM EMPLOYEES
        WHERE DEPARTMENT_ID = dept_id;
    RETURN rec;
  END get_dept_info;
END department_pks;
/
DECLARE
  dept_id   NUMBER := 50;
  avg_sal   NUMBER;
  no_of_emp NUMBER;
BEGIN
  avg_sal   := department_pks.get_dept_info(50).average_salary;
  no_of_emp := department_pks.get_dept_info(50).number_of_employees;
  DBMS_OUTPUT.PUT_LINE('dept_id = ' ||dept_id);
  DBMS_OUTPUT.PUT_LINE('average_salary = '|| avg_sal);
  DBMS_OUTPUT.PUT_LINE('number_of_employees = ' ||no_of_emp);
END;
/



Using the PL/SQL Function Result Cache

Using PL/SQL Subprograms 8-29

You invoke the function get_dept_info as you invoke any function. For example, 
the following call returns the average salary and the number of employees in 
department number 10:

department_pks.get_dept_info(10);

The following call returns only the average salary in department number 10:

department_pks.get_dept_info(10).average_salary;

If the result for get_dept_info(10) is already in the result cache, the result is 
returned from the cache; otherwise, the result is computed and added to the cache. 
Because the RELIES_ON clause specifies EMPLOYEES, any update to EMPLOYEES 
invalidates all cached results for department_pks.get_dept_info, relieving you 
of programming cache invalidation logic everywhere that EMPLOYEES might change.

Developing Applications with Result-Cached Functions
When developing an application that uses a result-cached function, make no 
assumptions about the number of times the body of the function will execute for a 
given set of parameter values.

Some situations in which the body of a result-cached function executes are:

■ The first time a session on this database instance invokes the function with these 
parameter values

■ When the cached result for these parameter values is invalid

A cached result becomes invalid when any database object specified in the 
RELIES_ON clause of the function definition changes.

■ When the cached results for these parameter values have aged out

If the system needs memory, it might discard the oldest cached values.

■ When the function bypasses the cache (see Bypassing the Result Cache on 
page 8-33)

Restrictions on Result-Cached Functions
To be result-cached, a function must meet all of the following criteria:

■ It is not defined in a module that has invoker's rights or in an anonymous block.

■ It is not a pipelined table function.

■ It has no OUT or IN OUT parameters.

■ No IN parameter has one of the following types:

– BLOB

– CLOB

– NCLOB

– REF CURSOR

– Collection

– Object

– Record

■ The return type is none of the following:



Using the PL/SQL Function Result Cache

8-30 Oracle Database PL/SQL Language Reference

– BLOB

– CLOB

– NCLOB

– REF CURSOR

– Object

– Record or PL/SQL collection that contains one of the preceding unsupported 
return types

It is recommended that a result-cached function also meet the following criteria:

■ It has no side effects.

For example, it does not modify the database state, or modify the external state by 
invoking DBMS_OUTPUT or sending e-mail.

■ It does not depend on session-specific settings.

For more information, see Making Result-Cached Functions Handle 
Session-Specific Settings on page 8-33.

■ It does not depend on session-specific application contexts.

For more information, see Making Result-Cached Functions Handle 
Session-Specific Application Contexts on page 8-34.

Examples of Result-Cached Functions
The best candidates for result-caching are functions that are invoked frequently but 
depend on information that changes infrequently (as might be the case in the first 
example). Result-caching avoids redundant computations in recursive functions.

Examples:

■ Result-Cached Application Configuration Parameters

■ Result-Cached Recursive Function

Result-Cached Application Configuration Parameters
Consider an application that has configuration parameters that can be set at either the 
global level, the application level, or the role level. The application stores the 
configuration information in the following tables:

-- Global Configuration Settings
CREATE TABLE global_config_params
  (name  VARCHAR2(20), -- parameter NAME
   value VARCHAR2(20), -- parameter VALUE
   PRIMARY KEY (name)
  );

-- Application-Level Configuration Settings
CREATE TABLE app_level_config_params
  (app_id  VARCHAR2(20), -- application ID
   name    VARCHAR2(20), -- parameter NAME
   value   VARCHAR2(20), -- parameter VALUE
   PRIMARY KEY (app_id, name)
  );

-- Role-Level Configuration Settings
CREATE TABLE role_level_config_params



Using the PL/SQL Function Result Cache

Using PL/SQL Subprograms 8-31

  (role_id  VARCHAR2(20), -- application (role) ID
   name     VARCHAR2(20),  -- parameter NAME
   value    VARCHAR2(20),  -- parameter VALUE
   PRIMARY KEY (role_id, name)
  );

For each configuration parameter, the role-level setting overrides the application-level 
setting, which overrides the global setting. To determine which setting applies to a 
parameter, the application defines the PL/SQL function get_value. Given a 
parameter name, application ID, and role ID, get_value returns the setting that 
applies to the parameter.

The function get_value is a good candidate for result-caching if it is invoked 
frequently and if the configuration information changes infrequently. To ensure that a 
committed change to global_config_params, app_level_config_params, or 
role_level_config_params invalidates the cached results of get_value, include 
their names in the RELIES_ON clause.

Example 8–25 shows a possible definition for get_value.

Example 8–25 Result-Cached Function that Returns Configuration Parameter Setting

CREATE OR REPLACE FUNCTION get_value
  (p_param VARCHAR2,
   p_app_id  NUMBER,
   p_role_id NUMBER
  )
  RETURN VARCHAR2
  RESULT_CACHE RELIES_ON
    (role_level_config_params,
     app_level_config_params,
     global_config_params
    )
IS
  answer VARCHAR2(20);
BEGIN
  -- Is parameter set at role level?
  BEGIN
    SELECT value INTO answer
      FROM role_level_config_params
        WHERE role_id = p_role_id
          AND name = p_param;
    RETURN answer;  -- Found
    EXCEPTION
      WHEN no_data_found THEN
        NULL;  -- Fall through to following code
  END;
  -- Is parameter set at application level?
  BEGIN
    SELECT value INTO answer
      FROM app_level_config_params
        WHERE app_id = p_app_id
          AND name = p_param;
    RETURN answer;  -- Found
    EXCEPTION
      WHEN no_data_found THEN
        NULL;  -- Fall through to following code
  END;
  -- Is parameter set at global level?
    SELECT value INTO answer



Using the PL/SQL Function Result Cache

8-32 Oracle Database PL/SQL Language Reference

     FROM global_config_params
      WHERE name = p_param;
    RETURN answer;
END;

Result-Cached Recursive Function
A recursive function for finding the nth term of a Fibonacci series that mirrors the 
mathematical definition of the series might do many redundant computations. For 
example, to evaluate fibonacci(7), the function must compute fibonacci(6) and 
fibonacci(5). To compute fibonacci(6), the function must compute 
fibonacci(5) and fibonacci(4). Therefore, fibonacci(5) and several other 
terms are computed redundantly. Result-caching avoids these redundant 
computations. A RELIES_ON clause is unnecessary.

CREATE OR REPLACE FUNCTION fibonacci (n NUMBER)
   RETURN NUMBER RESULT_CACHE IS
BEGIN
  IF (n =0) OR (n =1) THEN
    RETURN 1;
  ELSE
    RETURN fibonacci(n - 1) + fibonacci(n - 2);
  END IF;
END;
/

Advanced Result-Cached Function Topics
Topics:

■ Rules for a Cache Hit

■ Bypassing the Result Cache

■ Making Result-Cached Functions Handle Session-Specific Settings

■ Making Result-Cached Functions Handle Session-Specific Application Contexts

■ Choosing Result-Caching Granularity

■ Result Caches in Oracle RAC Environment

■ Managing the Result Cache

■ Hot-Patching PL/SQL Units on Which Result-Cached Functions Depend

Rules for a Cache Hit
Each time a result-cached function is invoked with different parameter values, those 
parameters and their result are stored in the cache. Subsequently, when the same 
function is invoked with the same parameter values (that is, when there is a cache hit), 
the result is retrieved from the cache, instead of being recomputed.

The rules for parameter comparison for a cache hit differ from the rules for the 
PL/SQL "equal to" (=) operator, as follows:

Cache Hit Rules "Equal To" Operator Rules

NULL is the same as NULL NULL = NULL evaluates to NULL.



Using the PL/SQL Function Result Cache

Using PL/SQL Subprograms 8-33

Bypassing the Result Cache
In some situations, the cache is bypassed. When the cache is bypassed:

■ The function computes the result instead of retrieving it from the cache.

■ The result that the function computes is not added to the cache.

Some examples of situations in which the cache is bypassed are:

■ The cache is unavailable to all sessions.

For example, the database administrator has disabled the use of the result cache 
during application patching (as in Hot-Patching PL/SQL Units on Which 
Result-Cached Functions Depend on page 8-37).

■ A session is performing a DML statement on a table or view that was specified in 
the RELIES_ON clause of a result-cached function. The session bypasses the result 
cache for that function until the DML statement is completed (either committed or 
rolled back), and then resumes using the cache for that function.

Cache bypass ensures the following:

■ The user of each session sees his or her own uncommitted changes.

■ The PL/SQL function result cache has only committed changes that are visible 
to all sessions, so that uncommitted changes in one session are not visible to 
other sessions.

Making Result-Cached Functions Handle Session-Specific Settings
If a function depends on settings that might vary from session to session (such as NLS_
DATE_FORMAT and TIME ZONE), make the function result-cached only if you can 
modify it to handle the various settings.

Consider the following function:

Example 8–26

CREATE OR REPLACE FUNCTION get_hire_date (emp_id NUMBER) RETURN VARCHAR
 RESULT_CACHE RELIES_ON (HR.EMPLOYEES)
IS
  date_hired DATE;
BEGIN
  SELECT hire_date INTO date_hired
    FROM HR.EMPLOYEES
      WHERE EMPLOYEE_ID = emp_id;
  RETURN TO_CHAR(date_hired);
END;
/

The preceding function, get_hire_date, uses the TO_CHAR function to convert a 
DATE item to a VARCHAR item. The function get_hire_date does not specify a 

Non-null scalars are the same if and only if 
their values are identical; that is, if and only 
if their values have identical bit patterns on 
the given platform. For example, CHAR 
values 'AA' and 'AA  ' are not the same. 
(This rule is stricter than the rule for the 
"equal to" operator.)

Non-null scalars can be equal even if their 
values do not have identical bit patterns on the 
given platform; for example, CHAR values 'AA' 
and 'AA  ' are equal.

Cache Hit Rules "Equal To" Operator Rules



Using the PL/SQL Function Result Cache

8-34 Oracle Database PL/SQL Language Reference

format mask, so the format mask defaults to the one that NLS_DATE_FORMAT 
specifies. If sessions that call get_hire_date have different NLS_DATE_FORMAT 
settings, cached results can have different formats. If a cached result computed by one 
session ages out, and another session recomputes it, the format might vary even for 
the same parameter value. If a session gets a cached result whose format differs from 
its own format, that result will probably be incorrect.

Some possible solutions to this problem are:

■ Change the return type of get_hire_date to DATE and have each session invoke 
the TO_CHAR function.

■ If a common format is acceptable to all sessions, specify a format mask, removing 
the dependency on NLS_DATE_FORMAT. For example:

TO_CHAR(date_hired, 'mm/dd/yy');

■ Add a format mask parameter to get_hire_date. For example:

CREATE OR REPLACE FUNCTION get_hire_date
  (emp_id NUMBER, fmt VARCHAR) RETURN VARCHAR
  RESULT_CACHE RELIES_ON (HR.EMPLOYEES)
IS
  date_hired DATE;
BEGIN
  SELECT hire_date INTO date_hired
    FROM HR.EMPLOYEES
      WHERE EMPLOYEE_ID = emp_id;
  RETURN TO_CHAR(date_hired, fmt);
END;
/

Making Result-Cached Functions Handle Session-Specific Application Contexts
An application context, which can be either global or session-specific, is a set of 
attributes and their values. A PL/SQL function depends on session-specific 
application contexts if it does at least one of the following:

■ Directly invokes the built-in function SYS_CONTEXT, which returns the value of a 
specified attribute in a specified context

■ Indirectly invokes SYS_CONTEXT by using Virtual Private Database (VPD) 
mechanisms for fine-grained security

(For information about VPD, see Oracle Database Security Guide.)

The PL/SQL function result-caching feature does not automatically handle 
dependence on session-specific application contexts. If you must cache the results of a 
function that depends on session-specific application contexts, you must pass the 
application context to the function as a parameter. You can give the parameter a 
default value, so that not every user must specify it.

In Example 8–27, assume that a table, config_tab, has a VPD policy that translates 
this query:

SELECT value FROM config_tab
   WHERE name = param_name;

To this query:

SELECT value FROM config_tab
   WHERE name = param_name
     AND app_id = SYS_CONTEXT('Config', 'App_ID');



Using the PL/SQL Function Result Cache

Using PL/SQL Subprograms 8-35

Example 8–27 Result-Cached Function that Depends on Session-Specific Application 
Context

CREATE OR REPLACE FUNCTION get_param_value
  (param_name VARCHAR,
   appctx     VARCHAR  DEFAULT SYS_CONTEXT('Config', 'App_ID')
  )
  RETURN VARCHAR
  RESULT_CACHE RELIES_ON (config_tab)
IS
  rec VARCHAR(2000);
BEGIN
  SELECT value INTO rec
    FROM config_tab
      WHERE Name = param_name;
END;
/

Choosing Result-Caching Granularity
PL/SQL provides the function result cache, but you choose the caching granularity. To 
understand the concept of granularity, consider the Product_Descriptions table in 
the Order Entry (OE) sample schema:

NAME                     NULL?      TYPE
----------------------   --------   ---------------
PRODUCT_ID               NOT NULL   NUMBER(6)
LANGUAGE_ID              NOT NULL   VARCHAR2(3)
TRANSLATED_NAME          NOT NULL   NVARCHAR2(50)
TRANSLATED_DESCRIPTION   NOT NULL   NVARCHAR2(2000)

The table has the name and description of each product in several languages. The 
unique key for each row is PRODUCT_ID,LANGUAGE_ID.

Suppose that you want to define a function that takes a PRODUCT_ID and a 
LANGUAGE_ID and returns the associated TRANSLATED_NAME. You also want to cache 
the translated names. Some of the granularity choices for caching the names are:

■ One name at a time (finer granularity)

■ One language at a time (coarser granularity)

In each of the following four examples, the function productName takes a PRODUCT_
ID and a LANGUAGE_ID and returns the associated TRANSLATED_NAME. Each version 
of productName caches translated names, but at a different granularity.

In Example 8–28, get_product_name_1 is a result-cached function. Whenever get_
product_name_1 is invoked with a different PRODUCT_ID and LANGUAGE_ID, it 
caches the associated TRANSLATED_NAME. Each call to get_product_name_1 adds 
at most one TRANSLATED_NAME to the cache.

Table 8–3 Comparison of Finer and Coarser Caching Granularity

Finer Granularity Coarser Granularity

Each function result corresponds to one logical 
result.

Each function result contains many logical 
subresults.

Stores only data that is needed at least once. Might store data that is never used.

Each data item ages out individually. One aged-out data item ages out the whole 
set.

Does not allow bulk loading optimizations. Allows bulk loading optimizations.



Using the PL/SQL Function Result Cache

8-36 Oracle Database PL/SQL Language Reference

Example 8–28 Caching One Name at a Time (Finer Granularity)

CREATE OR REPLACE FUNCTION get_product_name_1 (prod_id NUMBER, lang_id VARCHAR2)
  RETURN NVARCHAR2
  RESULT_CACHE RELIES_ON (Product_Descriptions)
IS
  result VARCHAR2(50);
BEGIN
  SELECT translated_name INTO result
    FROM Product_Descriptions
      WHERE PRODUCT_ID = prod_id
        AND LANGUAGE_ID = lang_id;
  RETURN result;
END;

In Example 8–29, get_product_name_2 defines a result-cached function, all_
product_names. Whenever get_product_name_2 invokes all_product_names 
with a different LANGUAGE_ID, all_product_names caches every TRANSLATED_
NAME associated with that LANGUAGE_ID. Each call to all_product_names adds 
every TRANSLATED_NAME of at most one LANGUAGE_ID to the cache.

Example 8–29 Caching Translated Names One Language at a Time (Coarser Granularity)

CREATE OR REPLACE FUNCTION get_product_name_2 (prod_id NUMBER, lang_id VARCHAR2)
  RETURN NVARCHAR2
IS
  TYPE product_names IS TABLE OF NVARCHAR2(50) INDEX BY PLS_INTEGER;

  FUNCTION all_product_names (lang_id NUMBER) RETURN product_names
    RESULT_CACHE RELIES_ON (Product_Descriptions)
  IS
    all_names product_names;
  BEGIN
    FOR c IN (SELECT * FROM Product_Descriptions
      WHERE LANGUAGE_ID = lang_id) LOOP
        all_names(c.PRODUCT_ID) := c.TRANSLATED_NAME;
    END LOOP;
    RETURN all_names;
  END;
BEGIN
  RETURN all_product_names(lang_id)(prod_id);
END;

Result Caches in Oracle RAC Environment
Cached results are stored in the system global area (SGA). In an Oracle RAC 
environment, each database instance has a private function result cache, available only 
to sessions on that instance.

The access pattern and work load of an instance determine the set of results in its 
private cache; therefore, the private caches of different instances can have different sets 
of results.

If a required result is missing from the private cache of the local instance, the body of 
the function executes to compute the result, which is then added to the local cache. The 
result is not retrieved from the private cache of another instance.

Although each database instance might have its own set of cached results, the 
mechanisms for handling invalid results are Oracle RAC environment-wide. If results 
were invalidated only in the local instance’s result cache, other instances might use 
invalid results. For example, consider a result cache of item prices that are computed 



Using the PL/SQL Function Result Cache

Using PL/SQL Subprograms 8-37

from data in database tables. If any of these database tables is updated in a way that 
affects the price of an item, the cached price of that item must be invalidated in every 
database instance in the Oracle RAC environment.

Managing the Result Cache
The PL/SQL function result cache shares its administrative and manageability 
infrastructure with the Result Cache, which is described in Oracle Database Performance 
Tuning Guide.

The database administrator can use the following to manage the Result Cache:

■ RESULT_CACHE_MAX_SIZE and RESULT_CACHE_MAX_RESULT initialization 
parameters

RESULT_CACHE_MAX_SIZE specifies the maximum amount of SGA memory (in 
bytes) that the Result Cache can use, and RESULT_CACHE_MAX_RESULT specifies 
the maximum percentage of the Result Cache that any single result can use. For 
more information about these parameters, see Oracle Database Reference and Oracle 
Database Performance Tuning Guide.

■ DBMS_RESULT_CACHE package

The DBMS_RESULT_CACHE package provides an interface to allow the DBA to 
administer that part of the shared pool that is used by the SQL result cache and the 
PL/SQL function result cache. For more information about this package, see Oracle 
Database PL/SQL Packages and Types Reference.

■ Dynamic performance views:

■ [G]V$RESULT_CACHE_STATISTICS

■ [G]V$RESULT_CACHE_MEMORY

■ [G]V$RESULT_CACHE_OBJECTS

■ [G]V$RESULT_CACHE_DEPENDENCY

See Oracle Database Reference for more information about [G]V$RESULT_CACHE_
STATISTICS, [G]V$RESULT_CACHE_MEMORY, [G]V$RESULT_CACHE_
OBJECTS, and [G]V$RESULT_CACHE_DEPENDENCY.

Hot-Patching PL/SQL Units on Which Result-Cached Functions Depend
When you hot-patch a PL/SQL unit on which a result-cached function depends 
(directly or indirectly), the cached results associated with the result-cached function 
might not be automatically flushed in all cases.

For example, suppose that the result-cached function P1.foo() depends on the 
packaged subprogram P2.bar(). If a new version of the body of package P2 is 
loaded, the cached results associated with P1.foo() are not automatically flushed.

Therefore, this is the recommended procedure for hot-patching a PL/SQL unit:

See Also:

■ Oracle Database Reference for more information about RESULT_
CACHE_MAX_SIZE

■ Oracle Database Reference for more information about RESULT_
CACHE_MAX_RESULT

■ Oracle Database Performance Tuning Guide for more information 
about Result Cache concepts



Using the PL/SQL Function Result Cache

8-38 Oracle Database PL/SQL Language Reference

1. Put the result cache in bypass mode and flush existing results:

BEGIN
  DBMS_RESULT_CACHE.Bypass(TRUE);
  DBMS_RESULT_CACHE.Flush;
END;
/
In an Oracle RAC environment, perform this step for each database instance.

2. Patch the PL/SQL code.

3. Resume using the result cache:

BEGIN
  DBMS_RESULT_CACHE.Bypass(FALSE);
END;
/
In an Oracle RAC environment, perform this step for each database instance.



9

Using Triggers 9-1

9 Using Triggers

A trigger is a named PL/SQL unit that is stored in the database and executed (fired) in 
response to a specified event that occurs in the database.

Topics:

■ Overview of Triggers

■ Guidelines for Designing Triggers

■ Privileges Required to Use Triggers

■ Creating Triggers

■ Coding the Trigger Body

■ Compiling Triggers

■ Modifying Triggers

■ Debugging Triggers

■ Enabling Triggers

■ Disabling Triggers

■ Viewing Information About Triggers

■ Examples of Trigger Applications

■ Responding to Database Events Through Triggers

Overview of Triggers
A trigger is a named program unit that is stored in the database and fired (executed) 
in response to a specified event. The specified event is associated with either a table, a 
view, a schema, or the database, and it is one of the following:

■ A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)

■ A database definition (DDL) statement (CREATE, ALTER, or DROP)

■ A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN)

The trigger is said to be defined on the table, view, schema, or database.

Topics:

■ Trigger Types

■ Trigger States

■ Data Access for Triggers



Overview of Triggers

9-2 Oracle Database PL/SQL Language Reference

■ Uses of Triggers

Trigger Types
A DML trigger is fired by a DML statement, a DDL trigger is fired by a DDL 
statement, a DELETE trigger is fired by a DELETE statement, and so on.

An INSTEAD OF trigger is a DML trigger that is defined on a view (not a table). The 
database fires the INSTEAD OF trigger instead of executing the triggering DML 
statement. For more information, see Modifying Complex Views (INSTEAD OF 
Triggers) on page 9-8.

A system trigger is defined on a schema or the database. A trigger defined on a 
schema fires for each event associated with the owner of the schema (the current user). 
A trigger defined on a database fires for each event associated with all users.

A simple trigger can fire at exactly one of the following timing points:

■ Before the triggering statement executes

■ After the triggering statement executes

■ Before each row that the triggering statement affects

■ After each row that the triggering statement affects

A compound trigger can fire at more than one timing point. Compound triggers make 
it easier to program an approach where you want the actions you implement for the 
various timing points to share common data. For more information, see Compound 
Triggers on page 9-13.

Trigger States
A trigger can be in either of two states:

Enabled. An enabled trigger executes its trigger body if a triggering statement is 
entered and the trigger restriction (if any) evaluates to TRUE.

Disabled. A disabled trigger does not execute its trigger body, even if a triggering 
statement is entered and the trigger restriction (if any) evaluates to TRUE.

By default, a trigger is created in enabled state. To create a trigger in disabled state, use 
the DISABLE clause of the CREATE TRIGGER statement.

Data Access for Triggers
When a trigger is fired, the tables referenced in the trigger action might be currently 
undergoing changes by SQL statements in other users’ transactions. In all cases, the 
SQL statements running within triggers follow the common rules used for standalone 
SQL statements. In particular, if an uncommitted transaction has modified values that 
a trigger being fired either must read (query) or write (update), then the SQL 
statements in the body of the trigger being fired use the following guidelines:

■ Queries see the current read-consistent materialized view of referenced tables and 
any data changed within the same transaction.

■ Updates wait for existing data locks to be released before proceeding.

See Also: CREATE TRIGGER Statement on page 14-47



Guidelines for Designing Triggers

Using Triggers 9-3

Uses of Triggers
Triggers supplement the standard capabilities of your database to provide a highly 
customized database management system. For example, you can use triggers to:

■ Automatically generate derived column values 

■ Enforce referential integrity across nodes in a distributed database 

■ Enforce complex business rules 

■ Provide transparent event logging 

■ Provide auditing 

■ Maintain synchronous table replicates 

■ Gather statistics on table access 

■ Modify table data when DML statements are issued against views 

■ Publish information about database events, user events, and SQL statements to 
subscribing applications 

■ Restrict DML operations against a table to those issued during regular business 
hours 

■ Enforce security authorizations 

■ Prevent invalid transactions 

Guidelines for Designing Triggers
Use the following guidelines when designing triggers:

■ Use triggers to guarantee that when a specific operation is performed, related 
actions are performed.

■ Do not define triggers that duplicate database features.

For example, do not define triggers to reject bad data if you can do the same 
checking through constraints.

Although you can use both triggers and integrity constraints to define and enforce 
any type of integrity rule, Oracle strongly recommends that you use triggers to 
constrain data input only in the following situations:

■ To enforce referential integrity when child and parent tables are on different 
nodes of a distributed database

■ To enforce complex business rules not definable using integrity constraints

■ When a required referential integrity rule cannot be enforced using the 
following integrity constraints:

– NOT NULL, UNIQUE 

– PRIMARY KEY

– FOREIGN KEY

Caution: Triggers are not reliable security mechanisms, because they 
are programmatic and easy to disable. For high assurance security, use 
Oracle Database Vault. For more information, see Oracle Database Vault 
Administrator's Guide.



Privileges Required to Use Triggers

9-4 Oracle Database PL/SQL Language Reference

– CHECK

– DELETE CASCADE

– DELETE SET NULL

■ Limit the size of triggers.

If the logic for your trigger requires much more than 60 lines of PL/SQL code, put 
most of the code in a stored subprogram and invoke the subprogram from the 
trigger.

The size of the trigger cannot exceed 32K.

■ Use triggers only for centralized, global operations that must fire for the triggering 
statement, regardless of which user or database application issues the statement.

■ Do not create recursive triggers.

For example, if you create an AFTER UPDATE statement trigger on the employees 
table, and the trigger itself issues an UPDATE statement on the employees table, 
the trigger fires recursively until it runs out of memory.

■ Use triggers on DATABASE judiciously. They are executed for every user every 
time the event occurs on which the trigger is created.

■ If you use a LOGON trigger to monitor logons by users, include an 
exception-handling part in the trigger, and include a WHEN OTHERS exception in 
the exception-handling part. Otherwise, an unhandled exception might block all 
connections to the database.

■ If you use a LOGON trigger only to execute a package (for example, an application 
context-setting package), put the exception-handling part in the package instead of 
in the trigger.

Privileges Required to Use Triggers
To create a trigger in your schema:

■ You must have the CREATE TRIGGER system privilege

■ One of the following must be true:

– You own the table specified in the triggering statement

– You have the ALTER privilege for the table specified in the triggering 
statement

– You have the ALTER ANY TABLE system privilege

To create a trigger in another schema, or to reference a table in another schema from a 
trigger in your schema:

■ You must have the CREATE ANY TRIGGER system privilege.

■ You must have the EXECUTE privilege on the referenced subprograms or 
packages.

To create a trigger on the database, you must have the ADMINISTER DATABASE 
TRIGGER privilege. If this privilege is later revoked, you can drop the trigger but not 
alter it.

The object privileges to the schema objects referenced in the trigger body must be 
granted to the trigger owner explicitly (not through a role). The statements in the 
trigger body operate under the privilege domain of the trigger owner, not the privilege 



Creating Triggers

Using Triggers 9-5

domain of the user issuing the triggering statement (this is similar to the privilege 
model for stored subprograms).

Creating Triggers 
To create a trigger, use the CREATE TRIGGER statement. By default, a trigger is created 
in enabled state. To create a trigger in disabled state, use the DISABLE clause of the 
CREATE TRIGGER statement. For information about trigger states, see Overview of 
Triggers on page 9-1.

When using the CREATE TRIGGER statement with an interactive tool, such as 
SQL*Plus or Enterprise Manager, put a single slash (/) on the last line, as in 
Example 9–1, which creates a simple trigger for the emp table.

Example 9–1 CREATE TRIGGER Statement

CREATE OR REPLACE TRIGGER Print_salary_changes
  BEFORE DELETE OR INSERT OR UPDATE ON emp
  FOR EACH ROW
WHEN (NEW.EMPNO > 0)
DECLARE
    sal_diff number;
BEGIN
    sal_diff  := :NEW.SAL  - :OLD.SAL;
    dbms_output.put('Old salary: ' || :OLD.sal);
    dbms_output.put('  New salary: ' || :NEW.sal);
    dbms_output.put_line('  Difference ' || sal_diff);
END;
/

The trigger in Example 9–1 fires when DML operations are performed on the table. 
You can choose what combination of operations must fire the trigger.

Because the trigger uses the BEFORE keyword, it can access the new values before they 
go into the table, and can change the values if there is an easily-corrected error by 
assigning to :NEW.column_name. You might use the AFTER keyword if you want the 
trigger to query or change the same table, because triggers can only do that after the 
initial changes are applied and the table is back in a consistent state.

Because the trigger uses the FOR EACH ROW clause, it might be executed multiple times, 
such as when updating or deleting multiple rows. You might omit this clause if you 
just want to record the fact that the operation occurred, but not examine the data for 
each row.

After the trigger is created, following SQL statement fires the trigger once for each row 
that is updated, in each case printing the new salary, the old salary, and the difference 
between them:

UPDATE emp SET sal = sal + 500.00 WHERE deptno = 10;

The CREATE (or CREATE OR REPLACE) statement fails if any errors exist in the 
PL/SQL block.

The following sections use Example 9–1 on page 9-5 to show how parts of a trigger are 
specified. For additional examples of CREATE TRIGGER statements, see Examples of 
Trigger Applications on page 9-31.

Topics:

See Also: CREATE TRIGGER Statement on page 14-47



Creating Triggers

9-6 Oracle Database PL/SQL Language Reference

■ Naming Triggers

■ When Does the Trigger Fire?

■ Controlling When a Trigger Fires (BEFORE and AFTER Options)

■ Modifying Complex Views (INSTEAD OF Triggers)

■ Firing Triggers One or Many Times (FOR EACH ROW Option)

■ Firing Triggers Based on Conditions (WHEN Clause)

■ Compound Triggers

■ Ordering of Triggers

Naming Triggers 
Trigger names must be unique with respect to other triggers in the same schema. 
Trigger names need not be unique with respect to other schema objects, such as tables, 
views, and subprograms. For example, a table and a trigger can have the same name 
(however, to avoid confusion, this is not recommended).

When Does the Trigger Fire? 
A trigger fires based on a triggering statement, which specifies:

■ The SQL statement, database event, or DDL event that fires the trigger body. The 
options include DELETE, INSERT, and UPDATE. One, two, or all three of these 
options can be included in the triggering statement specification.

■ The table, view, DATABASE, or SCHEMA on which the trigger is defined.

In Example 9–1 on page 9-5, the PRINT_SALARY_CHANGES trigger fires after any 
DELETE, INSERT, or UPDATE on the emp table. Any of the following statements trigger 
the PRINT_SALARY_CHANGES trigger:

DELETE FROM emp;
INSERT INTO emp VALUES ( ... );
INSERT INTO emp SELECT ... FROM ... ;
UPDATE emp SET ... ;

Do Import and SQL*Loader Fire Triggers?
INSERT triggers fire during SQL*Loader conventional loads. (For direct loads, triggers 
are disabled before the load.)

The IGNORE parameter of the IMP statement determines whether triggers fire during 
import operations:

■ If IGNORE=N (default) and the table already exists, then import does not change 
the table and no existing triggers fire.

■ If the table does not exist, then import creates and loads it before any triggers are 
defined, so again no triggers fire.

Note: Exactly one table or view can be specified in the triggering 
statement. If the INSTEAD OF option is used, then the triggering 
statement must specify a view; conversely, if a view is specified in the 
triggering statement, then only the INSTEAD OF option can be used.



Creating Triggers

Using Triggers 9-7

■ If IGNORE=Y, then import loads rows into existing tables. Any existing triggers 
fire, and indexes are updated to account for the imported data.

How Column Lists Affect UPDATE Triggers 
An UPDATE statement might include a list of columns. If a triggering statement 
includes a column list, the trigger fires only when one of the specified columns is 
updated. If a triggering statement omits a column list, the trigger fires when any 
column of the associated table is updated. A column list cannot be specified for 
INSERT or DELETE triggering statements.

The previous example of the PRINT_SALARY_CHANGES trigger can include a column 
list in the triggering statement. For example:

... BEFORE DELETE OR INSERT OR UPDATE OF ename ON emp ...

Controlling When a Trigger Fires (BEFORE and AFTER Options) 

The BEFORE or AFTER option in the CREATE TRIGGER statement specifies exactly 
when to fire the trigger body in relation to the triggering statement that is being run. In 
a CREATE TRIGGER statement, the BEFORE or AFTER option is specified just before the 
triggering statement. For example, the PRINT_SALARY_CHANGES trigger in the 
previous example is a BEFORE trigger. 

In general, you use BEFORE or AFTER triggers to achieve the following results: 

■ Use BEFORE row triggers to modify the row before the row data is written to disk. 

■ Use AFTER row triggers to obtain, and perform operations, using the row ID.

An AFTER row trigger fires when the triggering statement results in ORA-2292.

If an UPDATE or DELETE statement detects a conflict with a concurrent UPDATE, then 
the database performs a transparent ROLLBACK to SAVEPOINT and restarts the 
update. This can occur many times before the statement completes successfully. Each 

Note:

■ You cannot specify a column list for UPDATE with INSTEAD OF 
triggers.

■ If the column specified in the UPDATE OF clause is an object 
column, then the trigger also fires if any of the attributes of the 
object are modified.

■ You cannot specify UPDATE OF clauses on collection columns.

Note: This topic applies only to simple triggers. For the options of 
compound triggers, see Compound Triggers on page 9-13.

Note: BEFORE row triggers are slightly more efficient than AFTER 
row triggers. With AFTER row triggers, affected data blocks must be 
read (logical read, not physical read) once for the trigger and then 
again for the triggering statement. Alternatively, with BEFORE row 
triggers, the data blocks must be read only once for both the triggering 
statement and the trigger. 



Creating Triggers

9-8 Oracle Database PL/SQL Language Reference

time the statement is restarted, the BEFORE statement trigger fires again. The rollback 
to savepoint does not undo changes to any package variables referenced in the trigger. 
Include a counter variable in your package to detect this situation.

Ordering of Triggers
A relational database does not guarantee the order of rows processed by a SQL 
statement. Therefore, do not create triggers that depend on the order in which rows are 
processed. For example, do not assign a value to a global package variable in a row 
trigger if the current value of the global variable is dependent on the row being 
processed by the row trigger. Also, if global package variables are updated within a 
trigger, then it is best to initialize those variables in a BEFORE statement trigger.

When a statement in a trigger body causes another trigger to fire, the triggers are said 
to be cascading. The database allows up to 32 triggers to cascade at simultaneously. 
You can limit the number of trigger cascades by using the initialization parameter 
OPEN_CURSORS, because a cursor must be opened for every execution of a trigger.

Although any trigger can run a sequence of operations either inline or by invoking 
subprograms, using multiple triggers of the same type allows the modular installation 
of applications that have triggers on the same tables.

Each subsequent trigger sees the changes made by the previously fired triggers. Each 
trigger can see the old and new values. The old values are the original values, and the 
new values are the current values, as set by the most recently fired UPDATE or INSERT 
trigger.

The database executes all triggers of the same type before executing triggers of a 
different type. If you have multiple triggers of the same type on the same table, and 
the order in which they execute is important, use the FOLLOWS clause. Without the 
FOLLOWS clause, the database chooses an arbitrary, unpredictable order.

Modifying Complex Views (INSTEAD OF Triggers)

An updatable view is one that lets you perform DML on the underlying table. Some 
views are inherently updatable, but others are not because they were created with one 
or more of the constructs listed in Views that Require INSTEAD OF Triggers on 
page 9-9.

Any view that contains one of those constructs can be made updatable by using an 
INSTEAD OF trigger. INSTEAD OF triggers provide a transparent way of modifying 
views that cannot be modified directly through UPDATE, INSERT, and DELETE 
statements. These triggers are invoked INSTEAD OF triggers because, unlike other 
types of triggers, the database fires the trigger instead of executing the triggering 
statement. The trigger must determine what operation was intended and perform 
UPDATE, INSERT, or DELETE operations directly on the underlying tables.

With an INSTEAD OF trigger, you can write normal UPDATE, INSERT, and DELETE 
statements against the view, and the INSTEAD OF trigger works invisibly in the 
background to make the right actions take place.

See Also: CREATE TRIGGER Statement on page 14-47 for more 
information about ordering of triggers and the FOLLOWS clause

Note: INSTEAD OF triggers can be defined only on views, not on 
tables.



Creating Triggers

Using Triggers 9-9

INSTEAD OF triggers can only be activated for each row.

Views that Require INSTEAD OF Triggers
A view cannot be modified by UPDATE, INSERT, or DELETE statements if the view 
query contains any of the following constructs:

■ A set operator 

■ A DISTINCT operator 

■ An aggregate or analytic function

■ A GROUP BY, ORDER BY, MODEL, CONNECT BY, or START WITH clause

■ A collection expression in a SELECT list

■ A subquery in a SELECT list

■ A subquery designated WITH READ ONLY

■ Joins, with some exceptions, as documented in Oracle Database Administrator's 
Guide

If a view contains pseudocolumns or expressions, then you can only update the view 
with an UPDATE statement that does not refer to any of the pseudocolumns or 
expressions.

INSTEAD OF triggers provide the means to modify object view instances on the 
client-side through OCI calls.

To modify an object materialized by an object view in the client-side object cache and 
flush it back to the persistent store, you must specify INSTEAD OF triggers, unless the 
object view is modifiable. If the object is read only, then it is not necessary to define 
triggers to pin it.

Triggers on Nested Table View Columns
INSTEAD OF triggers can also be created over nested table view columns. These 
triggers provide a way of updating elements of the nested table. They fire for each 
nested table element being modified. The row correlation variables inside the trigger 
correspond to the nested table element. This type of trigger also provides an additional 
correlation name for accessing the parent row that contains the nested table being 
modified.

See Also: Firing Triggers One or Many Times (FOR EACH ROW 
Option) on page 9-12

Note:

■ The INSTEAD OF option can be used only for triggers defined on 
views.

■ The BEFORE and AFTER options cannot be used for triggers 
defined on views.

■ The CHECK option for views is not enforced when inserts or 
updates to the view are done using INSTEAD OF triggers. The 
INSTEAD OF trigger body must enforce the check.

See Also: Oracle Call Interface Programmer's Guide



Creating Triggers

9-10 Oracle Database PL/SQL Language Reference

For example, consider a department view that contains a nested table of employees.

CREATE OR REPLACE VIEW Dept_view AS
  SELECT d.Deptno, d.Dept_type, d.Dname,
    CAST (MULTISET ( SELECT e.Empno, e.Empname, e.Salary)
      FROM emp e
        WHERE e.Deptno = d.Deptno) AS Amp_list_ Emplist
      FROM dept d;

The CAST (MULTISET) operator creates a multiset of employees for each department. 
To modify the emplist column, which is the nested table of employees, define an 
INSTEAD OF trigger over the column to handle the operation.

The following example shows how an insert trigger might be written:

CREATE OR REPLACE TRIGGER Dept_emplist_tr
  INSTEAD OF INSERT ON NESTED TABLE Emplist OF Dept_view
    REFERENCING NEW AS Employee
      PARENT AS Department
        FOR EACH ROW
BEGIN
  -- Insert on nested table translates to insert on base table:
  INSERT INTO emp VALUES (:Employee.Empno,
    :Employee.Ename,:Employee.Sal, :Department.Deptno);
END;

Any INSERT into the nested table fires the trigger, and the emp table is filled with the 
correct values. For example:

INSERT INTO TABLE (SELECT d.Emplist FROM Dept_view d WHERE Deptno = 10)
  VALUES (1001, 'John Glenn', 10000);

The :department.deptno correlation variable in this example has the value 10.

Note: These triggers:

■ Can only be defined over nested table columns in views.

■ Fire only when the nested table elements are modified using the 
TABLE clause. They do not fire when a DML statement is 
performed on the view.



Creating Triggers

Using Triggers 9-11

Example: INSTEAD OF Trigger

The following example shows an INSTEAD OF trigger for inserting rows into the 
MANAGER_INFO view. 

CREATE OR REPLACE VIEW manager_info AS
  SELECT e.ename, e.empno, d.dept_type, d.deptno, p.prj_level,  p.projno
    FROM emp e, dept d, Project_tab p
      WHERE e.empno =  d.mgr_no
        AND d.deptno = p.resp_dept;

CREATE OR REPLACE TRIGGER manager_info_insert
  INSTEAD OF INSERT ON manager_info
    REFERENCING NEW AS n  -- new manager information
      FOR EACH ROW
DECLARE
  rowcnt number;
BEGIN
  SELECT COUNT(*) INTO rowcnt FROM emp WHERE empno = :n.empno;
  IF rowcnt = 0  THEN
    INSERT INTO emp (empno,ename) VALUES (:n.empno, :n.ename);
  ELSE
    UPDATE emp SET emp.ename = :n.ename WHERE emp.empno = :n.empno;
  END IF;
  SELECT COUNT(*) INTO rowcnt FROM dept WHERE deptno = :n.deptno;
  IF rowcnt = 0 THEN
    INSERT INTO dept (deptno, dept_type) 
      VALUES(:n.deptno, :n.dept_type);
  ELSE
    UPDATE dept SET dept.dept_type = :n.dept_type
      WHERE dept.deptno = :n.deptno;
  END IF;
  SELECT COUNT(*) INTO rowcnt FROM Project_tab
    WHERE Project_tab.projno = :n.projno;
  IF rowcnt = 0 THEN

Note: You might need to set up the following data structures for this 
example to work:

CREATE TABLE Project_tab (
  Prj_level NUMBER,
  Projno    NUMBER,
  Resp_dept NUMBER);
CREATE TABLE emp (
  Empno     NUMBER NOT NULL,
  Ename     VARCHAR2(10),
  Job       VARCHAR2(9),
  Mgr       NUMBER(4),
  Hiredate  DATE,
  Sal       NUMBER(7,2),
  Comm      NUMBER(7,2),
  Deptno    NUMBER(2) NOT NULL);

CREATE TABLE dept (
  Deptno    NUMBER(2) NOT NULL,
  Dname     VARCHAR2(14),
  Loc       VARCHAR2(13),
  Mgr_no    NUMBER,
  Dept_type NUMBER);



Creating Triggers

9-12 Oracle Database PL/SQL Language Reference

    INSERT INTO Project_tab (projno, prj_level) 
      VALUES(:n.projno, :n.prj_level);
  ELSE
    UPDATE Project_tab SET Project_tab.prj_level = :n.prj_level
      WHERE Project_tab.projno = :n.projno;
  END IF;
END;

The actions shown for rows being inserted into the MANAGER_INFO view first test to 
see if appropriate rows already exist in the base tables from which MANAGER_INFO is 
derived. The actions then insert new rows or update existing rows, as appropriate. 
Similar triggers can specify appropriate actions for UPDATE and DELETE. 

Firing Triggers One or Many Times (FOR EACH ROW Option) 

The FOR EACH ROW option determines whether the trigger is a row trigger or a 
statement trigger. If you specify FOR EACH ROW, then the trigger fires once for each row 
of the table that is affected by the triggering statement. The absence of the FOR EACH 
ROW option indicates that the trigger fires only once for each applicable statement, but 
not separately for each row affected by the statement.

For example, assume that the table Emp_log was created as follows:

CREATE TABLE Emp_log (
  Emp_id     NUMBER,
  Log_date   DATE,
  New_salary NUMBER,
  Action     VARCHAR2(20));

Then, define the following trigger:

CREATE OR REPLACE TRIGGER Log_salary_increase
  AFTER UPDATE ON emp
    FOR EACH ROW
      WHEN (NEW.Sal > 1000)
BEGIN
  INSERT INTO Emp_log (Emp_id, Log_date, New_salary, Action)
    VALUES (:NEW.Empno, SYSDATE, :NEW.SAL, 'NEW SAL');
END;

Then, you enter the following SQL statement:

UPDATE emp SET Sal = Sal + 1000.0
   WHERE Deptno = 20;

If there are five employees in department 20, then the trigger fires five times when this 
statement is entered, because five rows are affected.

The following trigger fires only once for each UPDATE of the emp table:

CREATE OR REPLACE TRIGGER Log_emp_update
  AFTER UPDATE ON emp
BEGIN
  INSERT INTO Emp_log (Log_date, Action)
    VALUES (SYSDATE, 'emp COMMISSIONS CHANGED');
END;

Note: This topic applies only to simple triggers. For the options of 
compound triggers, see Compound Triggers on page 9-13.



Creating Triggers

Using Triggers 9-13

The statement level triggers are useful for performing validation checks for the entire 
statement.

Firing Triggers Based on Conditions (WHEN Clause) 
Optionally, a trigger restriction can be included in the definition of a row trigger by 
specifying a Boolean SQL expression in a WHEN clause.

If included, then the expression in the WHEN clause is evaluated for each row that the 
trigger affects. 

If the expression evaluates to TRUE for a row, then the trigger body executes on behalf 
of that row. However, if the expression evaluates to FALSE or NOT TRUE for a row 
(unknown, as with nulls), then the trigger body does not execute for that row. The 
evaluation of the WHEN clause does not have an effect on the execution of the triggering 
SQL statement (in other words, the triggering statement is not rolled back if the 
expression in a WHEN clause evaluates to FALSE).

For example, in the PRINT_SALARY_CHANGES trigger, the trigger body is not run if 
the new value of Empno is zero, NULL, or negative. In more realistic examples, you 
might test if one column value is less than another.

The expression in a WHEN clause of a row trigger can include correlation names, which 
are explained later. The expression in a WHEN clause must be a SQL expression, and it 
cannot include a subquery. You cannot use a PL/SQL expression (including 
user-defined functions) in the WHEN clause. 

Compound Triggers
A compound trigger can fire at more than one timing point.

Topics:

■ Why Use Compound Triggers?

■ Compound Trigger Sections

■ Triggering Statements of Compound Triggers

■ Compound Trigger Restrictions

■ Compound Trigger Example

■ Using Compound Triggers to Avoid Mutating-Table Error

Why Use Compound Triggers?
The compound trigger makes it easier to program an approach where you want the 
actions you implement for the various timing points to share common data. To achieve 
the same effect with simple triggers, you had to model the common state with an 
ancillary package. This approach was both cumbersome to program and subject to 
memory leak when the triggering statement caused an error and the after-statement 
trigger did not fire.

Note: A WHEN clause cannot be included in the definition of a 
statement trigger.

Note: You cannot specify the WHEN clause for INSTEAD OF triggers.



Creating Triggers

9-14 Oracle Database PL/SQL Language Reference

A compound trigger has an optional declarative part and a section for each of its 
timing points (see Example 9–2). All of these sections can access a common PL/SQL 
state. The common state is established when the triggering statement starts and is 
destroyed when the triggering statement completes, even when the triggering 
statement causes an error.

Example 9–2 Compound Trigger

SQL> CREATE OR REPLACE TRIGGER compound_trigger
  2    FOR UPDATE OF salary ON employees
  3      COMPOUND TRIGGER
  4  
  5    -- Declarative part (optional)
  6    -- Variables declared here have firing-statement duration.
  7    threshold CONSTANT SIMPLE_INTEGER := 200;
  8  
  9    BEFORE STATEMENT IS
 10    BEGIN
 11      NULL;
 12    END BEFORE STATEMENT;
 13  
 14    BEFORE EACH ROW IS
 15    BEGIN
 16      NULL;
 17    END BEFORE EACH ROW;
 18  
 19    AFTER EACH ROW IS
 20    BEGIN
 21      NULL;
 22    END AFTER EACH ROW;
 23  
 24    AFTER STATEMENT IS
 25    BEGIN
 26      NULL;
 27    END AFTER STATEMENT;
 28  END compound_trigger;
 29  /
 
Trigger created.
 
SQL>

Two common reasons to use compound triggers are:

■ To accumulate rows destined for a second table so that you can periodically 
bulk-insert them (as in Compound Trigger Example on page 9-16)

■ To avoid the mutating-table error (ORA-04091) (as in Using Compound Triggers to 
Avoid Mutating-Table Error on page 9-18)

Compound Trigger Sections
A compound trigger has a declarative part and at least one timing-point section. It 
cannot have multiple sections for the same timing point.

The optional declarative part (the first part) declares variables and subprograms that 
timing-point sections can use. When the trigger fires, the declarative part executes 
before any timing-point sections execute. Variables and subprograms declared in this 
section have firing-statement duration.



Creating Triggers

Using Triggers 9-15

A compound trigger defined on a view has an INSTEAD OF EACH ROW timing-point 
section, and no other timing-point section.

A compound trigger defined on  a table has one or more of the timing-point sections 
described in Table 9–1. Timing-point sections must appear in the order shown in 
Table 9–1. If a timing-point section is absent, nothing happens at its timing point.

A timing-point section cannot be enclosed in a PL/SQL block.

Table 9–1 summarizes the timing point sections of a compound trigger that can be 
defined on a table.

Any section can include the functions Inserting, Updating, Deleting, and 
Applying.

Triggering Statements of Compound Triggers
The triggering statement of a compound trigger must be a DML statement.

If the triggering statement affects no rows, and the compound trigger has neither a 
BEFORE STATEMENT section nor an AFTER STATEMENT section, the trigger never fires.

It is when the triggering statement affects many rows that a compound trigger has a 
performance benefit. This is why it is important to use the BULK COLLECT clause with 
the FORALL statement. For example, without the BULK COLLECT clause, a FORALL 
statement that contains an INSERT statement simply performs a single-row insertion 
operation many times, and you get no benefit from using a compound trigger. For 
more information about using the BULK COLLECT clause with the FORALL statement, 
see Using FORALL and BULK COLLECT Together on page 12-21.

If the triggering statement of a compound trigger is an INSERT statement that 
includes a subquery, the compound trigger retains some of its performance benefit. For 
example, suppose that a compound trigger is triggered by the following statement:

INSERT INTO Target
  SELECT c1, c2, c3
    FROM Source
      WHERE Source.c1 > 0

For each row of Source whose column c1 is greater than zero, the BEFORE EACH ROW 
and AFTER EACH ROW sections of the compound trigger execute. However, the BEFORE 
STATEMENT and AFTER STATEMENT sections each execute only once (before and after 
the INSERT statement executes, respectively).

Compound Trigger Restrictions
■ The body of a compound trigger must be a compound trigger block.

Table 9–1 Timing-Point Sections of a Compound Trigger Defined

Timing Point Section

Before the triggering statement executes BEFORE STATEMENT

After the triggering statement executes AFTER STATEMENT

Before each row that the triggering statement affects BEFORE EACH ROW

After each row that the triggering statement affects AFTER EACH ROW

See Also: CREATE TRIGGER Statement on page 14-47 for more 
information about the syntax of compound triggers



Creating Triggers

9-16 Oracle Database PL/SQL Language Reference

■ A compound trigger must be a DML trigger.

■ A compound trigger must be  defined on either a table or a view.

■ The declarative part cannot include PRAGMA AUTONOMOUS_TRANSACTION.

■ A compound trigger body cannot have an initialization block; therefore, it cannot 
have an exception section.

This is not a problem, because the BEFORE STATEMENT section always  executes 
exactly once before any other timing-point section executes.

■ An exception that occurs in one section must be handled in that section. It cannot 
transfer control to another section.

■ If a section includes a GOTO statement, the target of the GOTO statement must be in 
the same section.

■ :OLD, :NEW,  and :PARENT cannot appear in the declarative part, the BEFORE 
STATEMENT section, or the AFTER STATEMENT section.

■ Only the BEFORE EACH ROW section can change the value of :NEW.

■ If, after the compound trigger fires, the triggering statement rolls back due to a 
DML exception:

– Local variables declared in the compound trigger sections are re-initialized, 
and any values computed thus far are lost.

– Side effects from firing the compound trigger are not rolled back.

■ The firing order of compound triggers is not guaranteed. Their firing can be 
interleaved with the firing of simple triggers.

■ If compound triggers are ordered using the FOLLOWS option, and if the target of 
FOLLOWS does not contain the corresponding section as source code, the ordering 
is ignored.

Compound Trigger Example
Scenario: You want to record every change to hr.employees.salary in a new table, 
employee_salaries. A single UPDATE statement will update many rows of the 
table hr.employees; therefore, bulk-inserting rows into employee.salaries is 
more efficient than inserting them individually.

Solution: Define a compound trigger on updates of the table hr.employees, as in 
Example 9–3. You do not need a BEFORE STATEMENT section to initialize idx or 
salaries, because they are state variables, which are initialized each time the trigger 
fires (even when the triggering statement is interrupted and restarted).

Example 9–3 Compound Trigger Records Changes to One Table in Another Table

CREATE TABLE employee_salaries (
  employee_id NUMBER NOT NULL,
  change_date DATE   NOT NULL,
  salary NUMBER(8,2) NOT NULL,
  CONSTRAINT pk_employee_salaries PRIMARY KEY (employee_id, change_date),
  CONSTRAINT fk_employee_salaries FOREIGN KEY (employee_id)
    REFERENCES employees (employee_id)
      ON DELETE CASCADE)
/
CREATE OR REPLACE TRIGGER maintain_employee_salaries
  FOR UPDATE OF salary ON employees
    COMPOUND TRIGGER



Creating Triggers

Using Triggers 9-17

-- Declarative Part:
-- Choose small threshhold value to show how example works:
  threshhold CONSTANT SIMPLE_INTEGER := 7;

  TYPE salaries_t IS TABLE OF employee_salaries%ROWTYPE INDEX BY SIMPLE_INTEGER;
  salaries  salaries_t;
  idx       SIMPLE_INTEGER := 0;

  PROCEDURE flush_array IS
    n CONSTANT SIMPLE_INTEGER := salaries.count();
  BEGIN
    FORALL j IN 1..n
      INSERT INTO employee_salaries VALUES salaries(j);
    salaries.delete();
    idx := 0;
    DBMS_OUTPUT.PUT_LINE('Flushed ' || n || ' rows');
  END flush_array;

  -- AFTER EACH ROW Section:

  AFTER EACH ROW IS
  BEGIN
    idx := idx + 1;
    salaries(idx).employee_id := :NEW.employee_id;
    salaries(idx).change_date := SYSDATE();
    salaries(idx).salary := :NEW.salary;
    IF idx >= threshhold THEN
      flush_array();
    END IF;
  END AFTER EACH ROW;

  -- AFTER STATEMENT Section:

  AFTER STATEMENT IS
  BEGIN
    flush_array();
  END AFTER STATEMENT;
END maintain_employee_salaries;
/
/* Increase salary of every employee in department 50 by 10%: */

UPDATE employees
  SET salary = salary * 1.1
  WHERE department_id = 50
/

/* Wait two seconds: */

BEGIN
  DBMS_LOCK.SLEEP(2);
END;
/

/* Increase salary of every employee in department 50 by 5%: */

UPDATE employees
  SET salary = salary * 1.05
  WHERE department_id = 50
/



Coding the Trigger Body

9-18 Oracle Database PL/SQL Language Reference

Using Compound Triggers to Avoid Mutating-Table Error
You can use compound triggers to avoid the mutating-table error (ORA-04091) 
described in Trigger Restrictions on Mutating Tables on page 9-25.

Scenario: A business rule states that an employee's salary increase must not exceed 
10% of the average salary for the employee's department. This rule must be enforced 
by a trigger.

Solution: Define a compound trigger on updates of the table hr.employees, as in 
Example 9–4. The state variables are initialized each time the trigger fires (even when 
the triggering statement is interrupted and restarted).

Example 9–4 Compound Trigger that Avoids Mutating-Table Error

CREATE OR REPLACE TRIGGER Check_Employee_Salary_Raise
  FOR UPDATE OF Salary ON Employees
COMPOUND TRIGGER
  Ten_Percent                 CONSTANT NUMBER := 0.1;
  TYPE Salaries_t             IS TABLE OF Employees.Salary%TYPE;
  Avg_Salaries                Salaries_t;
  TYPE Department_IDs_t       IS TABLE OF Employees.Department_ID%TYPE;
  Department_IDs              Department_IDs_t;

  TYPE Department_Salaries_t  IS TABLE OF Employees.Salary%TYPE
                                INDEX BY VARCHAR2(80);
  Department_Avg_Salaries     Department_Salaries_t;

  BEFORE STATEMENT IS
  BEGIN
    SELECT               AVG(e.Salary), NVL(e.Department_ID, -1)
      BULK COLLECT INTO  Avg_Salaries, Department_IDs
      FROM               Employees e
      GROUP BY           e.Department_ID;
    FOR j IN 1..Department_IDs.COUNT() LOOP
      Department_Avg_Salaries(Department_IDs(j)) := Avg_Salaries(j);
    END LOOP;
  END BEFORE STATEMENT;

  AFTER EACH ROW IS
  BEGIN
    IF :NEW.Salary - :Old.Salary >
      Ten_Percent*Department_Avg_Salaries(:NEW.Department_ID)
    THEN
      Raise_Application_Error(-20000, 'Raise too big');
    END IF;
  END AFTER EACH ROW;
END Check_Employee_Salary_Raise;

Coding the Trigger Body 

The trigger body is either a CALL subprogram (a PL/SQL subprogram, or a Java 
subprogram encapsulated in a PL/SQL wrapper) or a PL/SQL block, and as such, it 

Note: This topic applies primarily to simple triggers. The body of a 
compound trigger has a different format (see Compound Triggers on 
page 9-13).



Coding the Trigger Body

Using Triggers 9-19

can include SQL and PL/SQL statements. These statements are executed if the 
triggering statement is entered and if the trigger restriction (if any) evaluates to TRUE.

If the trigger body for a row trigger is a PL/SQL block (not a CALL subprogram), it can 
include the following constructs:

■ REFERENCING clause, which can specify correlation names OLD, NEW, and PARENT

■ Conditional predicates INSERTING, DELETING, and UPDATING

The LOGON trigger in Example 9–5 executes the procedure sec_mgr.check_user 
after a user logs onto the database. The body of the trigger includes an 
exception-handling part, which includes a WHEN OTHERS exception that invokes 
RAISE_APPLICATION_ERROR.

Example 9–5 Monitoring Logons with a Trigger

CREATE OR REPLACE TRIGGER check_user
  AFTER LOGON ON DATABASE
  BEGIN
    sec_mgr.check_user;
  EXCEPTION
    WHEN OTHERS THEN
      RAISE_APPLICATION_ERROR
        (-20000, 'Unexpected error: '|| DBMS_Utility.Format_Error_Stack);
 END;
/
Although triggers are declared using PL/SQL, they can call subprograms in other 
languages. The trigger in Example 9–6 invokes a Java subprogram.

Example 9–6 Invoking a Java Subprogram from a Trigger

CREATE OR REPLACE PROCEDURE Before_delete (Id IN NUMBER, Ename VARCHAR2)
IS language Java
name 'thjvTriggers.beforeDelete (oracle.sql.NUMBER, oracle.sql.CHAR)';

CREATE OR REPLACE TRIGGER Pre_del_trigger BEFORE DELETE ON Tab 
FOR EACH ROW
CALL Before_delete (:OLD.Id, :OLD.Ename)
/

The corresponding Java file is thjvTriggers.java:

import java.sql.*
import java.io.*
import oracle.sql.*
import oracle.oracore.*
public class thjvTriggers
{
public state void
beforeDelete (NUMBER old_id, CHAR old_name)
Throws SQLException, CoreException
   {
   Connection conn = JDBCConnection.defaultConnection();
   Statement stmt = conn.CreateStatement();
   String sql = "insert into logtab values
   ("+ old_id.intValue() +", '"+ old_ename.toString() + ", BEFORE DELETE');
   stmt.executeUpdate (sql);

See Also: CREATE TRIGGER Statement on page 14-47 for syntax 
and semantics of this statement



Coding the Trigger Body

9-20 Oracle Database PL/SQL Language Reference

   stmt.close();
   return;
   }
}
Topics:

■ Accessing Column Values in Row Triggers

■ Triggers on Object Tables

■ Triggers and Handling Remote Exceptions

■ Restrictions on Creating Triggers

■ Who Uses the Trigger?

Accessing Column Values in Row Triggers 
Within a trigger body of a row trigger, the PL/SQL code and SQL statements have 
access to the old and new column values of the current row affected by the triggering 
statement. Two correlation names exist for every column of the table being modified: 
one for the old column value, and one for the new column value. Depending on the 
type of triggering statement, certain correlation names might not have any meaning.

■ A trigger fired by an INSERT statement has meaningful access to new column 
values only. Because the row is being created by the INSERT, the old values are 
null.

■ A trigger fired by an UPDATE statement has access to both old and new column 
values for both BEFORE and AFTER row triggers.

■ A trigger fired by a DELETE statement has meaningful access to :OLD column 
values only. Because the row no longer exists after the row is deleted, the :NEW 
values are NULL. However, you cannot modify :NEW values because ORA-4084 is 
raised if you try to modify :NEW values.

The new column values are referenced using the NEW qualifier before the column 
name, while the old column values are referenced using the OLD qualifier before the 
column name. For example, if the triggering statement is associated with the emp table 
(with the columns SAL, COMM, and so on), then you can include statements in the 
trigger body. For example:

IF :NEW.Sal > 10000 ...
IF :NEW.Sal < :OLD.Sal ...

Old and new values are available in both BEFORE and AFTER row triggers. A NEW 
column value can be assigned in a BEFORE row trigger, but not in an AFTER row 
trigger (because the triggering statement takes effect before an AFTER row trigger 
fires). If a BEFORE row trigger changes the value of NEW.column, then an AFTER row 
trigger fired by the same statement sees the change assigned by the BEFORE row 
trigger.

Correlation names can also be used in the Boolean expression of a WHEN clause. A 
colon (:) must precede the OLD and NEW qualifiers when they are used in a trigger 
body, but a colon is not allowed when using the qualifiers in the WHEN clause or the 
REFERENCING option.

Example: Modifying LOB Columns with a Trigger
You can treat LOB columns the same as other columns, using regular SQL and 
PL/SQL functions with CLOB columns, and calls to the DBMS_LOB package with BLOB 
columns:



Coding the Trigger Body

Using Triggers 9-21

drop table tab1;

create table tab1 (c1 clob);
insert into tab1 values ('<h1>HTML Document Fragment</h1><p>Some text.');

create or replace trigger trg1
  before update on tab1
  for each row
begin
  dbms_output.put_line('Old value of CLOB column: '||:OLD.c1);
  dbms_output.put_line('Proposed new value of CLOB column: '||:NEW.c1);

-- Previously, you couldn't change the new value for a LOB.
-- Now, you can replace it, or construct a new value using SUBSTR, INSTR...
-- operations for a CLOB, or DBMS_LOB calls for a BLOB.
  :NEW.c1 := :NEW.c1 || to_clob('<hr><p>Standard footer paragraph.');

  dbms_output.put_line('Final value of CLOB column: '||:NEW.c1);
end;
/ 

set serveroutput on;
update tab1 set c1 = '<h1>Different Document Fragment</h1><p>Different text.';

select * from tab1;

INSTEAD OF Triggers on Nested Table View Columns
In the case of INSTEAD OF triggers on nested table view columns, the NEW and OLD 
qualifiers correspond to the new and old nested table elements. The parent row 
corresponding to this nested table element can be accessed using the parent qualifier. 
The parent correlation name is meaningful and valid only inside a nested table trigger.

Avoiding Trigger Name Conflicts (REFERENCING Option) 
The REFERENCING option can be specified in a trigger body of a row trigger to avoid 
name conflicts among the correlation names and tables that might be named OLD or 
NEW. Because this is rare, this option is infrequently used.

For example, assume that the table new was created as follows:

CREATE TABLE new (
   field1     NUMBER, 
   field2     VARCHAR2(20));

The following CREATE TRIGGER example shows a trigger defined on the new table 
that can use correlation names and avoid naming conflicts between the correlation 
names and the table name:

CREATE OR REPLACE TRIGGER Print_salary_changes
BEFORE UPDATE ON new
REFERENCING new AS Newest
FOR EACH ROW
BEGIN
   :Newest.Field2 := TO_CHAR (:newest.field1);
END;

Notice that the NEW qualifier is renamed to newest using the REFERENCING option, 
and it is then used in the trigger body.



Coding the Trigger Body

9-22 Oracle Database PL/SQL Language Reference

Detecting the DML Operation that Fired a Trigger
If more than one type of DML operation can fire a trigger (for example, ON INSERT OR 
DELETE OR UPDATE OF emp), the trigger body can use the conditional predicates 
INSERTING, DELETING, and UPDATING to check which type of statement fire the 
trigger.

Within the code of the trigger body, you can execute blocks of code depending on the 
kind of DML operation that fired the trigger:

IF INSERTING THEN ... END IF;
IF UPDATING THEN ... END IF;

The first condition evaluates to TRUE only if the statement that fired the trigger is an 
INSERT statement; the second condition evaluates to TRUE only if the statement that 
fired the trigger is an UPDATE statement.

In an UPDATE trigger, a column name can be specified with an UPDATING conditional 
predicate to determine if the named column is being updated. For example, assume a 
trigger is defined as the following:

CREATE OR REPLACE TRIGGER ...
... UPDATE OF Sal, Comm ON emp ...
BEGIN

... IF UPDATING ('SAL') THEN ... END IF;

END;

The code in the THEN clause runs only if the triggering UPDATE statement updates the 
SAL column. This way, the trigger can minimize its overhead when the column of 
interest is not being changed.

Error Conditions and Exceptions in the Trigger Body 
If a predefined or user-defined error condition (exception) is raised during the 
execution of a trigger body, then all effects of the trigger body, as well as the triggering 
statement, are rolled back (unless the error is trapped by an exception handler). 
Therefore, a trigger body can prevent the execution of the triggering statement by 
raising an exception. User-defined exceptions are commonly used in triggers that 
enforce complex security authorizations or constraints.

If the LOGON trigger raises an exception, logon fails except in the following cases:

■ Database startup and shutdown operations do not fail even if the system triggers 
for these events raise exceptions. Only the trigger action is rolled back. The error is 
logged in trace files and the alert log.

■ If the system trigger is a DATABASE LOGON trigger and the user has ADMINISTER  
DATABASE TRIGGER privilege, then the user is able to log on successfully even if 
the trigger raises an exception. For SCHEMA LOGON triggers, if the user logging on 
is the trigger owner or has ALTER ANY TRIGGER privileges then logon is 
permitted. Only the trigger action is rolled back and an error is logged in the trace 
files and alert log.

Triggers on Object Tables
You can use the OBJECT_VALUE pseudocolumn in a trigger on an object table because, 
as of 10g Release 1 (10.1), OBJECT_VALUE means the object as a whole. This is one 
example of its use. You can also invoke a PL/SQL function with OBJECT_VALUE as 
the data type of an IN formal parameter.



Coding the Trigger Body

Using Triggers 9-23

Here is an example of the use of OBJECT_VALUE in a trigger. To keep track of updates 
to values in an object table tbl, a history table, tbl_history, is also created in the 
following example. For tbl, the values 1 through 5 are inserted into n, while m is kept 
at 0. The trigger is a row-level trigger that executes once for each row affected by a 
DML statement. The trigger causes the old and new values of the object t in tbl to be 
written in tbl_history when tbl is updated. These old and new values are 
:OLD.OBJECT_VALUE and :NEW.OBJECT_VALUE. An update of the table tbl is done 
(each value of n is increased by 1). A select from the history table to check that the 
trigger works is then shown at the end of the example:

CREATE OR REPLACE TYPE t AS OBJECT (n NUMBER, m NUMBER)
/
CREATE TABLE tbl OF t
/
BEGIN
  FOR j IN 1..5 LOOP
    INSERT INTO tbl VALUES (t(j, 0));
  END LOOP;
END;
/
CREATE TABLE tbl_history ( d DATE, old_obj t, new_obj t)
/
CREATE OR REPLACE TRIGGER Tbl_Trg
AFTER UPDATE ON tbl
FOR EACH ROW
BEGIN
  INSERT INTO tbl_history (d, old_obj, new_obj)
    VALUES (SYSDATE, :OLD.OBJECT_VALUE, :NEW.OBJECT_VALUE);
END Tbl_Trg;
/
--------------------------------------------------------------------------------
 
UPDATE tbl SET tbl.n = tbl.n+1
/
BEGIN
  FOR j IN (SELECT d, old_obj, new_obj FROM tbl_history) LOOP
    Dbms_Output.Put_Line (
      j.d||
      ' -- old: '||j.old_obj.n||' '||j.old_obj.m||
      ' -- new: '||j.new_obj.n||' '||j.new_obj.m);
  END LOOP;
END;
/
The result of the select shows that all values of column n were increased by 1. The 
value of m remains 0. The output of the select is:

23-MAY-05 -- old: 1 0 -- new: 2 0
23-MAY-05 -- old: 2 0 -- new: 3 0
23-MAY-05 -- old: 3 0 -- new: 4 0
23-MAY-05 -- old: 4 0 -- new: 5 0
23-MAY-05 -- old: 5 0 -- new: 6 0

Triggers and Handling Remote Exceptions 
A trigger that accesses a remote site cannot do remote exception handling if the 
network link is unavailable. For example: 

CREATE OR REPLACE TRIGGER Example
  AFTER INSERT ON emp
    FOR EACH ROW



Coding the Trigger Body

9-24 Oracle Database PL/SQL Language Reference

BEGIN
  When dblink is inaccessible, compilation fails here:
  INSERT INTO emp@Remote VALUES ('x');
EXCEPTION
  WHEN OTHERS THEN
    INSERT INTO Emp_log VALUES ('x');
END;

A trigger is compiled when it is created. Thus, if a remote site is unavailable when the 
trigger must compile, then the database cannot validate the statement accessing the 
remote database, and the compilation fails. The previous example exception statement 
cannot run, because the trigger does not complete compilation. 

Because stored subprograms are stored in a compiled form, the work-around for the 
previous example is as follows: 

CREATE OR REPLACE TRIGGER Example
  AFTER INSERT ON emp
    FOR EACH ROW
BEGIN
  Insert_row_proc;
END;

CREATE OR REPLACE PROCEDURE Insert_row_proc AS
BEGIN
  INSERT INTO emp@Remote VALUES ('x');
EXCEPTION
  WHEN OTHERS THEN
  INSERT INTO Emp_log VALUES ('x');
END;

The trigger in this example compiles successfully and invokes the stored subprogram, 
which already has a validated statement for accessing the remote database; thus, when 
the remote INSERT statement fails because the link is down, the exception is caught. 

Restrictions on Creating Triggers 
Coding triggers requires some restrictions that are not required for standard PL/SQL 
blocks.

Topics:

■ Maximum Trigger Size

■ SQL Statements Allowed in Trigger Bodies

■ Trigger Restrictions on LONG and LONG RAW Data Types

■ Trigger Restrictions on Mutating Tables

■ Restrictions on Mutating Tables Relaxed

■ System Trigger Restrictions

■ Foreign Function Callouts

Maximum Trigger Size
The size of a trigger cannot be more than 32K.



Coding the Trigger Body

Using Triggers 9-25

SQL Statements Allowed in Trigger Bodies
A trigger body can contain SELECT INTO statements, SELECT statements in cursor 
definitions, and all other DML statements.

A system trigger body can contain the DDL statements CREATETABLE, ALTERTABLE, 
DROP TABLE and ALTER COMPILE. A nonsystem trigger body cannot contain DDL or 
transaction control statements.

Statements inside a trigger can reference remote schema objects. However, pay special 
attention when invoking remote subprograms from within a local trigger. If a 
timestamp or signature mismatch is found during execution of the trigger, then the 
remote subprogram is not run, and the trigger is invalidated.

Trigger Restrictions on LONG and LONG RAW Data Types
LONG and LONG RAW data types in triggers are subject to the following restrictions:

■ A SQL statement within a trigger can insert data into a column of LONG or LONG 
RAW data type.

■ If data from a LONG or LONG RAW column can be converted to a constrained data 
type (such as CHAR and VARCHAR2), then a LONG or LONG RAW column can be 
referenced in a SQL statement within a trigger. The maximum length for these 
data types is 32000 bytes.

■ Variables cannot be declared using the LONG or LONG RAW data types.

■ :NEW and :PARENT cannot be used with LONG or LONG RAW columns.

Trigger Restrictions on Mutating Tables
A mutating table is a table that is being modified by an UPDATE, DELETE, or INSERT 
statement, or a table that might be updated by the effects of a DELETE CASCADE 
constraint.

The session that issued the triggering statement cannot query or modify a mutating 
table. This restriction prevents a trigger from seeing an inconsistent set of data.

This restriction applies to all triggers that use the FOR EACH ROW clause. Views being 
modified in INSTEAD OF triggers are not considered mutating.

When a trigger encounters a mutating table, a run-time error occurs, the effects of the 
trigger body and triggering statement are rolled back, and control is returned to the 
user or application. (You can use compound triggers to avoid the mutating-table error. 
For more information, see Using Compound Triggers to Avoid Mutating-Table Error 
on page 9-18.)

Consider the following trigger:

CREATE OR REPLACE TRIGGER Emp_count
  AFTER DELETE ON emp
    FOR EACH ROW
DECLARE
  n INTEGER;
BEGIN
  SELECT COUNT(*) INTO n FROM emp;

Note: A subprogram invoked by a trigger cannot run the previous 
transaction control statements, because the subprogram runs within 
the context of the trigger body.



Coding the Trigger Body

9-26 Oracle Database PL/SQL Language Reference

  DBMS_OUTPUT.PUT_LINE('There are now ' || n || ' employees.');
END;

If the following SQL statement is entered:

DELETE FROM emp WHERE empno = 7499;

An error is returned because the table is mutating when the row is deleted:

ORA-04091: table HR.emp is mutating, trigger/function might not see it

If you delete the line "FOR EACH ROW" from the trigger, it becomes a statement trigger 
that is not subject to this restriction, and the trigger.

If you must update a mutating table, you can bypass these restrictions by using a 
temporary table, a PL/SQL table, or a package variable. For example, in place of a 
single AFTER row trigger that updates the original table, resulting in a mutating table 
error, you might use two triggers—an AFTER row trigger that updates a temporary 
table, and an AFTER statement trigger that updates the original table with the values 
from the temporary table.

Declarative constraints are checked at various times with respect to row triggers.

Because declarative referential constraints are not supported between tables on 
different nodes of a distributed database, the mutating table restrictions do not apply 
to triggers that access remote nodes. These restrictions are also not enforced among 
tables in the same database that are connected by loop-back database links. A 
loop-back database link makes a local table appear remote by defining an Oracle Net 
path back to the database that contains the link.

Restrictions on Mutating Tables Relaxed
The mutating error described in Trigger Restrictions on Mutating Tables on page 9-25 
prevents the trigger from reading or modifying the table that the parent statement is 
modifying. However, as of Oracle Database Release 8.1, a deletion from the parent 
table causes BEFORE and AFTER triggers to fire once. Therefore, you can create triggers 
(just not row triggers) to read and modify the parent and child tables.

This allows most foreign key constraint actions to be implemented through their 
obvious after-row trigger, providing the constraint is not self-referential. Update 
cascade, update set null, update set default, delete set default, inserting a missing 
parent, and maintaining a count of children can all be implemented easily. For 
example, this is an implementation of update cascade: 

CREATE TABLE p (p1 NUMBER CONSTRAINT pk_p_p1 PRIMARY KEY);
CREATE TABLE f (f1 NUMBER CONSTRAINT fk_f_f1 REFERENCES p);
CREATE TRIGGER pt AFTER UPDATE ON p FOR EACH ROW BEGIN
  UPDATE f SET f1 = :NEW.p1 WHERE f1 = :OLD.p1; 
END;
/

This implementation requires care for multiple-row updates. For example, if table p 
has three rows with the values (1), (2), (3), and table f also has three rows with the 
values (1), (2), (3), then the following statement updates p correctly but causes 
problems when the trigger updates f:

UPDATE p SET p1 = p1+1; 

See Also: Oracle Database Concepts for information about the 
interaction of triggers and constraints



Compiling Triggers

Using Triggers 9-27

The statement first updates (1) to (2) in p, and the trigger updates (1) to (2) in f, 
leaving two rows of value (2) in f. Then the statement updates (2) to (3) in p, and the 
trigger updates both rows of value (2) to (3) in f. Finally, the statement updates (3) to 
(4) in p, and the trigger updates all three rows in f from (3) to (4). The relationship of 
the data in p and f is lost.

To avoid this problem, either forbid multiple-row updates to p that change the 
primary key and reuse existing primary key values, or track updates to foreign key 
values and modify the trigger to ensure that no row is updated twice. 

That is the only problem with this technique for foreign key updates. The trigger 
cannot miss rows that were changed but not committed by another transaction, 
because the foreign key constraint guarantees that no matching foreign key rows are 
locked before the after-row trigger is invoked. 

System Trigger Restrictions
Depending on the event, different event attribute functions are available. For example, 
certain DDL operations might not be allowed on DDL events. Check Event Attribute 
Functions on page 9-46 before using an event attribute function, because its effects 
might be undefined rather than producing an error condition. 

Only committed triggers fire. For example, if you create a trigger that fires after all 
CREATE events, then the trigger itself does not fire after the creation, because the 
correct information about this trigger was not committed at the time when the trigger 
on CREATE events fired.

For example, if you execute the following SQL statement: 

CREATE OR REPLACE TRIGGER my_trigger AFTER CREATE ON DATABASE 
BEGIN null; 
END; 

Then, trigger my_trigger does not fire after the creation of my_trigger. The 
database does not fire a trigger that is not committed. 

Foreign Function Callouts
All restrictions on foreign function callouts also apply.

Who Uses the Trigger?
 The following statement, inside a trigger, returns the owner of the trigger, not the 
name of user who is updating the table:

SELECT Username FROM USER_USERS;

Compiling Triggers 
An important difference between triggers and PL/SQL anonymous blocks is their 
compilation. An anonymous block is compiled each time it is loaded into memory, and 
its compilation has three stages:

1. Syntax checking: PL/SQL syntax is checked, and a parse tree is generated.

2. Semantic checking: Type checking and further processing on the parse tree.

3. Code generation



Compiling Triggers

9-28 Oracle Database PL/SQL Language Reference

A trigger is fully compiled when the CREATE TRIGGER statement executes. The trigger 
code is stored in the data dictionary. Therefore, it is unnecessary to open a shared 
cursor in order to execute the trigger; the trigger executes directly.

If an error occurs during the compilation of a trigger, the trigger is still created. 
Therefore, if a DML statement fires the trigger, the DML statement fails (unless the 
trigger was created in the disabled state). To see trigger compilation errors, either use 
the SHOW ERRORS statement in SQL*Plus or Enterprise Manager, or SELECT the errors 
from the USER_ERRORS view.

Topics:

■ Dependencies for Triggers

■ Recompiling Triggers

Dependencies for Triggers 
Compiled triggers have dependencies. They become invalid if a depended-on object, 
such as a stored subprogram invoked from the trigger body, is modified. Triggers that 
are invalidated for dependency reasons are recompiled when next invoked.

You can examine the ALL_DEPENDENCIES view to see the dependencies for a trigger. 
For example, the following statement shows the dependencies for the triggers in the 
HR schema:

SELECT NAME, REFERENCED_OWNER, REFERENCED_NAME, REFERENCED_TYPE
    FROM ALL_DEPENDENCIES
    WHERE OWNER = 'HR' and TYPE = 'TRIGGER';

Triggers might depend on other functions or packages. If the function or package 
specified in the trigger is dropped, then the trigger is marked invalid. An attempt is 
made to validate the trigger on occurrence of the event. If the trigger cannot be 
validated successfully, then it is marked VALID WITH ERRORS, and the event fails. For 
more information about dependencies between schema objects, see Oracle Database 
Concepts.

Recompiling Triggers 
Use the ALTER TRIGGER statement to recompile a trigger manually. For example, the 
following statement recompiles the PRINT_SALARY_CHANGES trigger:

ALTER TRIGGER Print_salary_changes COMPILE;

To recompile a trigger, you must own the trigger or have the ALTER ANY TRIGGER 
system privilege.

Note:

■ There is an exception for STARTUP events: STARTUP events 
succeed even if the trigger fails. There are also exceptions for 
SHUTDOWN events and for LOGON events if you login as SYSTEM.

■ Because the DBMS_AQ package is used to enqueue a message, 
dependency between triggers and queues cannot be maintained.



Disabling Triggers

Using Triggers 9-29

Modifying Triggers
Like a stored subprogram, a trigger cannot be explicitly altered: It must be replaced 
with a new definition. (The ALTER TRIGGER statement is used only to recompile, 
enable, or disable a trigger.)

When replacing a trigger, you must include the OR REPLACE option in the CREATE 
TRIGGER statement. The OR REPLACE option is provided to allow a new version of an 
existing trigger to replace the older version, without affecting any grants made for the 
original version of the trigger.

Alternatively, the trigger can be dropped using the DROP TRIGGER statement, and you 
can rerun the CREATE TRIGGER statement. 

To drop a trigger, the trigger must be in your schema, or you must have the DROP ANY 
TRIGGER system privilege.

Debugging Triggers
You can debug a trigger using the same facilities available for stored subprograms. See 
Oracle Database Advanced Application Developer's Guide.

Enabling Triggers
To enable a disabled trigger, use the ALTER TRIGGER statement with the ENABLE 
clause. For example, to enable the disabled trigger named Reorder, enter the 
following statement:

ALTER TRIGGER Reorder ENABLE;

To enable all triggers defined for a specific table, use the ALTER TABLE statement with 
the ENABLE clause and the ALL TRIGGERS option. For example, to enable all triggers 
defined for the Inventory table, enter the following statement:

ALTER TABLE Inventory ENABLE ALL TRIGGERS;

Disabling Triggers
You might temporarily disable a trigger if:

■ An object it references is not available.

■ You must perform a large data load, and you want it to proceed quickly without 
firing triggers.

■ You are reloading data.

To disable a trigger, use the ALTER TRIGGER statement with the DISABLE option. For 
example, to disable the trigger named Reorder, enter the following statement:

ALTER TRIGGER Reorder DISABLE;

To disable all triggers defined for a specific table, use the ALTER TABLE statement with 
the DISABLE clause and the ALL TRIGGERS option. For example, to disable all triggers 
defined for the Inventory table, enter the following statement:

ALTER TABLE Inventory DISABLE ALL TRIGGERS;



Viewing Information About Triggers

9-30 Oracle Database PL/SQL Language Reference

Viewing Information About Triggers
The *_TRIGGERS static data dictionary views reveal information about triggers.

The column BASE_OBJECT_TYPE specifies whether the trigger is based on DATABASE, 
SCHEMA, table, or view. The column TABLE_NAME is null if the base object is not table 
or view.

The column ACTION_TYPE specifies whether the trigger is a call type trigger or a 
PL/SQL trigger.

The column TRIGGER_TYPE specifies the type of the trigger; for example COMPOUND, 
BEFORE EVENT, or AFTER EVENT (the last two apply only to database events).

Each of the columns BEFORE_STATEMENT, BEFORE_ROW, AFTER_ROW, AFTER_
STATEMENT, and INSTEAD_OF_ROW has the value YES or NO.

The column TRIGGERING_EVENT includes all system and DML events. 

For example, assume the following statement was used to create the Reorder trigger:

CREATE OR REPLACE TRIGGER Reorder
AFTER UPDATE OF Parts_on_hand ON Inventory
FOR EACH ROW
WHEN(NEW.Parts_on_hand < NEW.Reorder_point)
DECLARE
   x NUMBER;
BEGIN
   SELECT COUNT(*) INTO x
      FROM Pending_orders
      WHERE Part_no = :NEW.Part_no;
   IF x = 0  THEN
      INSERT INTO Pending_orders
         VALUES (:NEW.Part_no, :NEW.Reorder_quantity,
                 sysdate);
   END IF;
END;

The following two queries return information about the REORDER trigger:

SELECT Trigger_type, Triggering_event, Table_name
   FROM USER_TRIGGERS
   WHERE Trigger_name = 'REORDER';

TYPE             TRIGGERING_STATEMENT       TABLE_NAME
---------------- -------------------------- ------------
AFTER EACH ROW   UPDATE                     INVENTORY

SELECT Trigger_body
   FROM USER_TRIGGERS
   WHERE Trigger_name = 'REORDER';

TRIGGER_BODY
--------------------------------------------
DECLARE
   x NUMBER;
BEGIN
   SELECT COUNT(*) INTO x
      FROM Pending_orders

See Also: Oracle Database Reference for information about *_
TRIGGERS static data dictionary views



Examples of Trigger Applications

Using Triggers 9-31

      WHERE Part_no = :NEW.Part_no;
   IF x = 0
      THEN INSERT INTO Pending_orders
         VALUES (:NEW.Part_no, :NEW.Reorder_quantity,
            sysdate);
   END IF;
END;

Examples of Trigger Applications 
You can use triggers in a number of ways to customize information management in the 
database. For example, triggers are commonly used to:

■ Provide sophisticated auditing

■ Prevent invalid transactions

■ Enforce referential integrity (either those actions not supported by declarative 
constraints or across nodes in a distributed database)

■ Enforce complex business rules

■ Enforce complex security authorizations

■ Provide transparent event logging

■ Automatically generate derived column values

■ Enable building complex views that are updatable

■ Track database events

This section provides an example of each of these trigger applications. These examples 
are not meant to be used exactly as written: They are provided to assist you in 
designing your own triggers.

Auditing with Triggers
Triggers are commonly used to supplement the built-in auditing features of the 
database. Although triggers can be written to record information similar to that 
recorded by the AUDIT statement, use triggers only when more detailed audit 
information is required. For example, use triggers to provide value-based auditing for 
each row.

Sometimes, the AUDIT statement is considered a security audit facility, while triggers 
can provide financial audit facility.

When deciding whether to create a trigger to audit database activity, consider what the 
database's auditing features provide, compared to auditing defined by triggers, as 
shown in Table 9–2.

Table 9–2  Comparison of Built-in Auditing and Trigger-Based Auditing

Audit Feature Description

DML and DDL 
Auditing

Standard auditing options permit auditing of DML and DDL statements 
regarding all types of schema objects and structures. Comparatively, triggers 
permit auditing of DML statements entered against tables, and DDL auditing 
at SCHEMA or DATABASE level.

Centralized 
Audit Trail

All database audit information is recorded centrally and automatically using 
the auditing features of the database.



Examples of Trigger Applications

9-32 Oracle Database PL/SQL Language Reference

When using triggers to provide sophisticated auditing, AFTER triggers are normally 
used. The triggering statement is subjected to any applicable constraints. If no records 
are found, then the AFTER trigger does not fire, and audit processing is not carried out 
unnecessarily.

Choosing between AFTER row and AFTER statement triggers depends on the 
information being audited. For example, row triggers provide value-based auditing 
for each table row. Triggers can also require the user to supply a "reason code" for 
issuing the audited SQL statement, which can be useful in both row and 
statement-level auditing situations.

The following example demonstrates a trigger that audits modifications to the emp 
table for each row. It requires that a "reason code" be stored in a global package 
variable before the update. This shows how triggers can be used to provide 
value-based auditing and how to use public package variables.

Declarative 
Method

Auditing features enabled using the standard database features are easier to 
declare and maintain, and less prone to errors, when compared to auditing 
functions defined by triggers.

Auditing 
Options can be 
Audited

Any changes to existing auditing options can also be audited to guard against 
malicious database activity.

Session and 
Execution time 
Auditing

Using the database auditing features, records can be generated once every 
time an audited statement is entered (BY ACCESS) or once for every session 
that enters an audited statement (BY SESSION). Triggers cannot audit by 
session; an audit record is generated each time a trigger-audited table is 
referenced.

Auditing of 
Unsuccessful 
Data Access

Database auditing can be set to audit when unsuccessful data access occurs. 
However, unless autonomous transactions are used, any audit information 
generated by a trigger is rolled back if the triggering statement is rolled back. 
For more information about autonomous transactions, see Oracle Database 
Concepts.

Sessions can be 
Audited

Connections and disconnections, as well as session activity (physical I/Os, 
logical I/Os, deadlocks, and so on), can be recorded using standard database 
auditing.

Table 9–2 (Cont.)  Comparison of Built-in Auditing and Trigger-Based Auditing

Audit Feature Description



Examples of Trigger Applications

Using Triggers 9-33

CREATE OR REPLACE TRIGGER Audit_employee
AFTER INSERT OR DELETE OR UPDATE ON Emp99
FOR EACH ROW
BEGIN
/* AUDITPACKAGE is a package with a public package
   variable REASON. REASON can be set by the
   application by a statement such as EXECUTE
   AUDITPACKAGE.SET_REASON(reason_string).
   A package variable has state for the duration of a
   session and that each session has a separate copy of
   all package variables. */

IF Auditpackage.Reason IS NULL THEN
   Raise_application_error(-20201, 'Must specify reason'
      || ' with AUDITPACKAGE.SET_REASON(Reason_string)');
END IF;

/* If preceding condition evaluates to TRUE,
   user-specified error number & message is raised,
   trigger stops execution, & effects of triggering statement are rolled back.
   Otherwise, new row is inserted
   into predefined auditing table named AUDIT_EMPLOYEE
   containing existing & new values of the emp table
   & reason code defined by REASON variable of AUDITPACKAGE.
   "Old" values are NULL if triggering statement is INSERT
   & "new" values are NULL if triggering statement is DELETE. */

Note: You might need to set up the following data structures for the 
examples to work:

CREATE OR REPLACE PACKAGE Auditpackage AS
   Reason VARCHAR2(10);
PROCEDURE Set_reason(Reason VARCHAR2);
END;
CREATE TABLE Emp99 (
   Empno               NOT NULL   NUMBER(4),
   Ename               VARCHAR2(10),
   Job                 VARCHAR2(9),
   Mgr                 NUMBER(4),
   Hiredate            DATE,
   Sal                 NUMBER(7,2),
   Comm                NUMBER(7,2),
   Deptno              NUMBER(2),
   Bonus               NUMBER,
   Ssn                 NUMBER,
   Job_classification  NUMBER);

CREATE TABLE Audit_employee (
   Oldssn              NUMBER,
   Oldname             VARCHAR2(10),
   Oldjob              VARCHAR2(2),
   Oldsal              NUMBER,
   Newssn              NUMBER,
   Newname             VARCHAR2(10),
   Newjob              VARCHAR2(2),
   Newsal              NUMBER,
   Reason              VARCHAR2(10),
   User1               VARCHAR2(10),
   Systemdate          DATE);



Examples of Trigger Applications

9-34 Oracle Database PL/SQL Language Reference

INSERT INTO Audit_employee VALUES (
  :OLD.Ssn, :OLD.Ename, :OLD.Job_classification, :OLD.Sal,
  :NEW.Ssn, :NEW.Ename, :NEW.Job_classification, :NEW.Sal,
  auditpackage.Reason, User, Sysdate
);
END;

Optionally, you can also set the reason code back to NULL if you wanted to force the 
reason code to be set for every update. The following simple AFTER statement trigger 
sets the reason code back to NULL after the triggering statement is run:

CREATE OR REPLACE TRIGGER Audit_employee_reset
  AFTER INSERT OR DELETE OR UPDATE ON emp
BEGIN
   auditpackage.set_reason(NULL);
END;

Notice that the previous two triggers are fired by the same type of SQL statement. 
However, the AFTER row trigger fires once for each row of the table affected by the 
triggering statement, while the AFTER statement trigger fires only once after the 
triggering statement execution is completed.

This next trigger also uses triggers to do auditing. It tracks changes made to the emp 
table and stores this information in audit_table and audit_table_values.

CREATE OR REPLACE TRIGGER Audit_emp
  AFTER INSERT OR UPDATE OR DELETE ON emp
    FOR EACH ROW
  DECLARE
    Time_now DATE;
    Terminal CHAR(10);
  BEGIN
    -- Get current time, & terminal of user:
    Time_now := SYSDATE;
    Terminal := USERENV('TERMINAL');

    -- Record new employee primary key:
    IF INSERTING THEN
      INSERT INTO audit_table VALUES (
        Audit_seq.NEXTVAL, User, Time_now,

Note: You might need to set up the following data structures for the 
example to work:

CREATE TABLE audit_table (
   Seq      NUMBER,
   User_at  VARCHAR2(10),
   Time_now DATE, 
   Term     VARCHAR2(10),
   Job      VARCHAR2(10), 
   Proc     VARCHAR2(10), 
   enum     NUMBER);
CREATE SEQUENCE audit_seq;
CREATE TABLE audit_table_values (
   Seq      NUMBER, 
   Dept     NUMBER, 
   Dept1    NUMBER, 
   Dept2    NUMBER);



Examples of Trigger Applications

Using Triggers 9-35

        Terminal, 'emp', 'INSERT', :NEW.Empno
      );

      -- Record primary key of deleted row:
      ELSIF DELETING THEN
        INSERT INTO audit_table  VALUES (
          Audit_seq.NEXTVAL, User, Time_now,
          Terminal, 'emp', 'DELETE', :OLD.Empno
        );

      -- For updates, record primary key of row being updated:
      ELSE
        INSERT INTO audit_table VALUES (
          audit_seq.NEXTVAL, User, Time_now,
          Terminal, 'emp', 'UPDATE', :OLD.Empno
        );

         -- For SAL & DEPTNO, record old & new values:
         IF UPDATING ('SAL') THEN
           INSERT INTO audit_table_values VALUES (
             Audit_seq.CURRVAL, 'SAL',
             :OLD.Sal, :NEW.Sal
           );

         ELSIF UPDATING ('DEPTNO') THEN
           INSERT INTO audit_table_values VALUES (
             Audit_seq.CURRVAL, 'DEPTNO',
            :OLD.Deptno, :NEW.DEPTNO
           );
         END IF;
      END IF;
END;

Contraints and Triggers
Triggers and declarative constraints can both be used to constrain data input. 
However, triggers and constraints have significant differences.

Declarative constraints are statements about the database that are always true. A 
constraint applies to existing data in the table and any statement that manipulates the 
table.

Triggers constrain what a transaction can do. A trigger does not apply to data loaded 
before the definition of the trigger; therefore, it is not known if all data in a table 
conforms to the rules established by an associated trigger.

Although triggers can be written to enforce many of the same rules supported by 
declarative constraint features, use triggers only to enforce complex business rules that 
cannot be defined using standard constraints. The declarative constraint features 
provided with the database offer the following advantages when compared to 
constraints defined by triggers:

■ Centralized integrity checks

All points of data access must adhere to the global set of rules defined by the 
constraints corresponding to each schema object.

■ Declarative method

See Also: Oracle Database Advanced Application Developer's Guide



Examples of Trigger Applications

9-36 Oracle Database PL/SQL Language Reference

Constraints defined using the standard constraint features are much easier to write 
and are less prone to errors, when compared with comparable constraints defined 
by triggers.

While most aspects of data integrity can be defined and enforced using declarative 
constraints, triggers can be used to enforce complex business constraints not definable 
using declarative constraints. For example, triggers can be used to enforce:

■ UPDATE SET NULL, and UPDATE and DELETE SET DEFAULT referential actions.

■ Referential integrity when the parent and child tables are on different nodes of a 
distributed database.

■ Complex check constraints not definable using the expressions allowed in a CHECK 
constraint.

Referential Integrity Using Triggers
Use triggers only when performing an action for which there is no declarative support.

When using triggers to maintain referential integrity, declare the PRIMARY (or 
UNIQUE) KEY constraint in the parent table. If referential integrity is being maintained 
between a parent and child table in the same database, then you can also declare the 
foreign key in the child table, but disable it. Disabling the trigger in the child table 
prevents the corresponding PRIMARY KEY constraint from being dropped (unless the 
PRIMARY KEY constraint is explicitly dropped with the CASCADE option).

To maintain referential integrity using triggers:

■ For the child table, define a trigger that ensures that values inserted or updated in 
the foreign key correspond to values in the parent key.

■ For the parent table, define one or more triggers that ensure the desired referential 
action (RESTRICT, CASCADE, or SET NULL) for values in the foreign key when 
values in the parent key are updated or deleted. No action is required for inserts 
into the parent table (no dependent foreign keys exist).

The following topics provide examples of the triggers necessary to enforce referential 
integrity:

■ Foreign Key Trigger for Child Table

■ UPDATE and DELETE RESTRICT Trigger for Parent Table

■ UPDATE and DELETE SET NULL Triggers for Parent Table

■ DELETE Cascade Trigger for Parent Table

■ UPDATE Cascade Trigger for Parent Table

■ Trigger for Complex Check Constraints

■ Complex Security Authorizations and Triggers

■ Transparent Event Logging and Triggers

■ Derived Column Values and Triggers

■ Building Complex Updatable Views Using Triggers

■ Fine-Grained Access Control Using Triggers

The examples in the following sections use the emp and dept table relationship. 
Several of the triggers include statements that lock rows (SELECT FOR UPDATE). This 
operation is necessary to maintain concurrency as the rows are being processed.



Examples of Trigger Applications

Using Triggers 9-37

Foreign Key Trigger for Child Table
The following trigger guarantees that before an INSERT or UPDATE statement affects a 
foreign key value, the corresponding value exists in the parent key. The mutating table 
exception included in the following example allows this trigger to be used with the 
UPDATE_SET_DEFAULT and UPDATE_CASCADE triggers. This exception can be 
removed if this trigger is used alone.

CREATE OR REPLACE TRIGGER Emp_dept_check
  BEFORE INSERT OR UPDATE OF Deptno ON emp
    FOR EACH ROW WHEN (new.Deptno IS NOT NULL)

  -- Before row is inserted or DEPTNO is updated in emp table,
  -- fire this trigger to verify that new foreign key value (DEPTNO)
  -- is present in dept table.
DECLARE
  Dummy              INTEGER;  -- Use for cursor fetch
  Invalid_department EXCEPTION;
  Valid_department   EXCEPTION;
  Mutating_table     EXCEPTION;
  PRAGMA EXCEPTION_INIT (Mutating_table, -4091);

  -- Cursor used to verify parent key value exists.
  -- If present, lock parent key's row so it cannot be deleted
  -- by another transaction until this transaction is
  -- committed or rolled back.
  CURSOR Dummy_cursor (Dn NUMBER) IS
    SELECT Deptno FROM dept
      WHERE Deptno = Dn
        FOR UPDATE OF Deptno;
BEGIN
  OPEN Dummy_cursor (:NEW.Deptno);
  FETCH Dummy_cursor INTO Dummy;

  -- Verify parent key.
  -- If not found, raise user-specified error number & message.
  -- If found, close cursor before allowing triggering statement to complete:
  IF Dummy_cursor%NOTFOUND THEN
    RAISE Invalid_department;
  ELSE
    RAISE valid_department;
  END IF;
  CLOSE Dummy_cursor;
EXCEPTION
  WHEN Invalid_department THEN
    CLOSE Dummy_cursor;
    Raise_application_error(-20000, 'Invalid Department'
      || ' Number' || TO_CHAR(:NEW.deptno));
  WHEN Valid_department THEN
    CLOSE Dummy_cursor;
  WHEN Mutating_table THEN
    NULL;
END;

UPDATE and DELETE RESTRICT Trigger for Parent Table
The following trigger is defined on the dept table to enforce the UPDATE and DELETE 
RESTRICT referential action on the primary key of the dept table:

CREATE OR REPLACE TRIGGER Dept_restrict
  BEFORE DELETE OR UPDATE OF Deptno ON dept



Examples of Trigger Applications

9-38 Oracle Database PL/SQL Language Reference

    FOR EACH ROW

-- Before row is deleted from dept or primary key (DEPTNO) of dept is updated,
-- check for dependent foreign key values in emp;
-- if any are found, roll back.

DECLARE
  Dummy                 INTEGER;  -- Use for cursor fetch
  Employees_present     EXCEPTION;
  employees_not_present EXCEPTION;

  -- Cursor used to check for dependent foreign key values.
  CURSOR Dummy_cursor (Dn NUMBER) IS
    SELECT Deptno FROM emp WHERE Deptno = Dn;

BEGIN
  OPEN Dummy_cursor (:OLD.Deptno);
  FETCH Dummy_cursor INTO Dummy;

  -- If dependent foreign key is found, raise user-specified
  -- error number and message. If not found, close cursor
  -- before allowing triggering statement to complete.

  IF Dummy_cursor%FOUND THEN
    RAISE Employees_present;     -- Dependent rows exist
  ELSE
    RAISE Employees_not_present; -- No dependent rows exist
  END IF;
  CLOSE Dummy_cursor;

EXCEPTION
  WHEN Employees_present THEN
    CLOSE Dummy_cursor;
    Raise_application_error(-20001, 'Employees Present in'
      || ' Department ' || TO_CHAR(:OLD.DEPTNO));
  WHEN Employees_not_present THEN
    CLOSE Dummy_cursor;
END;

UPDATE and DELETE SET NULL Triggers for Parent Table
The following trigger is defined on the dept table to enforce the UPDATE and DELETE 
SET NULL referential action on the primary key of the dept table:

CREATE OR REPLACE TRIGGER Dept_set_null
  AFTER DELETE OR UPDATE OF Deptno ON dept
    FOR EACH ROW

-- Before row is deleted from dept or primary key (DEPTNO) of dept is updated,
-- set all corresponding dependent foreign key values in emp to NULL:

BEGIN
  IF UPDATING AND :OLD.Deptno != :NEW.Deptno OR DELETING THEN
    UPDATE emp SET emp.Deptno = NULL
      WHERE emp.Deptno = :OLD.Deptno;

Caution: This trigger does not work with self-referential tables 
(tables with both the primary/unique key and the foreign key). Also, 
this trigger does not allow triggers to cycle (such as, A fires B fires A).



Examples of Trigger Applications

Using Triggers 9-39

   END IF;
END;

DELETE Cascade Trigger for Parent Table
The following trigger on the dept table enforces the DELETE CASCADE referential 
action on the primary key of the dept table:

CREATE OR REPLACE TRIGGER Dept_del_cascade
  AFTER DELETE ON dept
    FOR EACH ROW

-- Before row is deleted from dept,
-- delete all rows from emp table whose DEPTNO is same as
-- DEPTNO being deleted from dept table:

BEGIN
  DELETE FROM emp
    WHERE emp.Deptno = :OLD.Deptno;
END;

UPDATE Cascade Trigger for Parent Table
The following trigger ensures that if a department number is updated in the dept 
table, then this change is propagated to dependent foreign keys in the emp table:

-- Generate sequence number to be used as flag
-- for determining if update occurred on column:
CREATE SEQUENCE Update_sequence
  INCREMENT BY 1 MAXVALUE 5000 CYCLE;

CREATE OR REPLACE PACKAGE Integritypackage AS
  Updateseq NUMBER;
END Integritypackage;

CREATE OR REPLACE PACKAGE BODY Integritypackage AS
END Integritypackage;

-- Create flag col:
ALTER TABLE emp ADD Update_id NUMBER;

CREATE OR REPLACE TRIGGER Dept_cascade1 BEFORE UPDATE OF Deptno ON dept
DECLARE
-- Before updating dept table (this is a statement trigger),
-- generate new sequence number
-- & assign it to public variable UPDATESEQ of
-- user-defined package named INTEGRITYPACKAGE:
BEGIN
  Integritypackage.Updateseq := Update_sequence.NEXTVAL;
END;

CREATE OR REPLACE TRIGGER Dept_cascade2
  AFTER DELETE OR UPDATE OF Deptno ON dept
    FOR EACH ROW

-- For each department number in dept that is updated,

Note: Typically, the code for DELETE CASCADE is combined with the 
code for UPDATE SET NULL or UPDATE SET DEFAULT to account for 
both updates and deletes.



Examples of Trigger Applications

9-40 Oracle Database PL/SQL Language Reference

-- cascade update to dependent foreign keys in emp table.
-- Cascade update only if child row was not already updated by this trigger:
BEGIN
  IF UPDATING THEN
    UPDATE emp
      SET Deptno = :NEW.Deptno,
        Update_id = Integritypackage.Updateseq   --from 1st
          WHERE emp.Deptno = :OLD.Deptno
            AND Update_id IS NULL;
            /* Only NULL if not updated by 3rd trigger
            fired by same triggering statement */
   END IF;
   IF DELETING THEN
     -- Before row is deleted from dept,
     -- delete all rows from emp table whose DEPTNO is same as
     -- DEPTNO being deleted from dept table:
     DELETE FROM emp
       WHERE emp.Deptno = :OLD.Deptno;
   END IF;
END;

CREATE OR REPLACE TRIGGER Dept_cascade3 AFTER UPDATE OF Deptno ON dept
BEGIN UPDATE emp
  SET Update_id = NULL
    WHERE Update_id = Integritypackage.Updateseq;
END;

Trigger for Complex Check Constraints
Triggers can enforce integrity rules other than referential integrity. For example, this 
trigger performs a complex check before allowing the triggering statement to run. 

CREATE OR REPLACE TRIGGER Salary_check
  BEFORE INSERT OR UPDATE OF Sal, Job ON Emp99
    FOR EACH ROW
DECLARE
  Minsal               NUMBER;
  Maxsal               NUMBER;
  Salary_out_of_range  EXCEPTION;

BEGIN
/* Retrieve minimum & maximum salary for employee's new job classification

Note: Because this trigger updates the emp table, the Emp_dept_
check trigger, if enabled, also fires. The resulting mutating table error 
is trapped by the Emp_dept_check trigger. Carefully test any 
triggers that require error trapping to succeed to ensure that they 
always work properly in your environment.

Note: You might need to set up the following data structures for the 
example to work:

CREATE OR REPLACE TABLE Salgrade (
  Grade               NUMBER,
  Losal               NUMBER,
  Hisal               NUMBER,
  Job_classification  NUMBER);



Examples of Trigger Applications

Using Triggers 9-41

  from SALGRADE table into MINSAL and MAXSAL: */

  SELECT Minsal, Maxsal INTO Minsal, Maxsal
    FROM Salgrade
      WHERE Job_classification = :NEW.Job;

/* If employee's new salary is less than or greater than
   job classification's limits, raise exception.
   Exception message is returned and pending INSERT or UPDATE statement
   that fired the trigger is rolled back:*/

  IF (:NEW.Sal < Minsal OR :NEW.Sal > Maxsal) THEN
    RAISE Salary_out_of_range;
  END IF;
EXCEPTION
  WHEN Salary_out_of_range THEN
    Raise_application_error (-20300,
      'Salary '||TO_CHAR(:NEW.Sal)||' out of range for '
      ||'job classification '||:NEW.Job
      ||' for employee '||:NEW.Ename);
  WHEN NO_DATA_FOUND THEN
    Raise_application_error(-20322,
      'Invalid Job Classification '
      ||:NEW.Job_classification);
END;

Complex Security Authorizations and Triggers
Triggers are commonly used to enforce complex security authorizations for table data. 
Only use triggers to enforce complex security authorizations that cannot be defined 
using the database security features provided with the database. For example, a trigger 
can prohibit updates to salary data of the emp table during weekends, holidays, and 
nonworking hours.

When using a trigger to enforce a complex security authorization, it is best to use a 
BEFORE statement trigger. Using a BEFORE statement trigger has these benefits:

■ The security check is done before the triggering statement is allowed to run, so 
that no wasted work is done by an unauthorized statement.

■ The security check is performed only once for the triggering statement, not for 
each row affected by the triggering statement.

This example shows a trigger used to enforce security.

CREATE OR REPLACE TRIGGER Emp_permit_changes
  BEFORE INSERT OR DELETE OR UPDATE ON Emp99
DECLARE
  Dummy             INTEGER;
  Not_on_weekends   EXCEPTION;
  Not_on_holidays   EXCEPTION;
  Non_working_hours EXCEPTION;
BEGIN
   /* Check for weekends: */
   IF (TO_CHAR(Sysdate, 'DY') = 'SAT' OR

Note: You might need to set up the following data structures for the 
example to work:

CREATE TABLE Company_holidays (Day DATE);



Examples of Trigger Applications

9-42 Oracle Database PL/SQL Language Reference

     TO_CHAR(Sysdate, 'DY') = 'SUN') THEN
       RAISE Not_on_weekends;
   END IF;

   /* Check for company holidays: */
   SELECT COUNT(*) INTO Dummy FROM Company_holidays
     WHERE TRUNC(Day) = TRUNC(Sysdate); -- Discard time parts of dates
   IF dummy > 0 THEN
     RAISE Not_on_holidays;
   END IF;

  /* Check for work hours (8am to 6pm): */
  IF (TO_CHAR(Sysdate, 'HH24') < 8 OR
    TO_CHAR(Sysdate, 'HH24') > 18) THEN
      RAISE Non_working_hours;
  END IF;
EXCEPTION
  WHEN Not_on_weekends THEN
    Raise_application_error(-20324,'Might not change '
      ||'employee table during the weekend');
  WHEN Not_on_holidays THEN
    Raise_application_error(-20325,'Might not change '
      ||'employee table during a holiday');
  WHEN Non_working_hours THEN
    Raise_application_error(-20326,'Might not change '
     ||'emp table during nonworking hours');
END;

Transparent Event Logging and Triggers
Triggers are very useful when you want to transparently perform a related change in 
the database following certain events.

The REORDER trigger example shows a trigger that reorders parts as necessary when 
certain conditions are met. (In other words, a triggering statement is entered, and the 
PARTS_ON_HAND value is less than the REORDER_POINT value.)

Derived Column Values and Triggers
Triggers can derive column values automatically, based upon a value provided by an 
INSERT or UPDATE statement. This type of trigger is useful to force values in specific 
columns that depend on the values of other columns in the same row. BEFORE row 
triggers are necessary to complete this type of operation for the following reasons: 

■ The dependent values must be derived before the INSERT or UPDATE occurs, so 
that the triggering statement can use the derived values.

■ The trigger must fire for each row affected by the triggering INSERT or UPDATE 
statement.

The following example illustrates how a trigger can be used to derive new column 
values for a table whenever a row is inserted or updated.

See Also: Oracle Database Security Guide for details on database 
security features



Examples of Trigger Applications

Using Triggers 9-43

CREATE OR REPLACE TRIGGER Derived 
BEFORE INSERT OR UPDATE OF Ename ON Emp99

/* Before updating the ENAME field, derive the values for
   the UPPERNAME and SOUNDEXNAME fields. Restrict users
   from updating these fields directly: */
FOR EACH ROW
BEGIN
   :NEW.Uppername := UPPER(:NEW.Ename);
   :NEW.Soundexname := SOUNDEX(:NEW.Ename);
END;

Building Complex Updatable Views Using Triggers
Views are an excellent mechanism to provide logical windows over table data. 
However, when the view query gets complex, the system implicitly cannot translate 
the DML on the view into those on the underlying tables. INSTEAD OF triggers help 
solve this problem. These triggers can be defined over views, and they fire instead of 
the actual DML.

Consider a library system where books are arranged under their respective titles. The 
library consists of a collection of book type objects. The following example explains the 
schema. 

CREATE OR REPLACE TYPE Book_t AS OBJECT
(
   Booknum   NUMBER,
   Title     VARCHAR2(20),
   Author    VARCHAR2(20),
   Available CHAR(1)
);
CREATE OR REPLACE TYPE Book_list_t AS TABLE OF Book_t;

Assume that the following tables exist in the relational schema:

Table Book_table (Booknum, Section, Title, Author, Available)

Library consists of library_table(section).

Note: You might need to set up the following data structures for the 
example to work:

ALTER TABLE Emp99 ADD(
   Uppername   VARCHAR2(20),
   Soundexname VARCHAR2(20));

Booknum Section Title Author Available

121001 Classic Iliad Homer Y

121002 Novel Gone with the Wind Mitchell M N

Section

Geography

Classic



Examples of Trigger Applications

9-44 Oracle Database PL/SQL Language Reference

You can define a complex view over these tables to create a logical view of the library 
with sections and a collection of books in each section.

CREATE OR REPLACE VIEW Library_view AS
SELECT i.Section, CAST (MULTISET (
   SELECT b.Booknum, b.Title, b.Author, b.Available
   FROM Book_table b
   WHERE b.Section = i.Section) AS Book_list_t) BOOKLIST
FROM Library_table i;

Make this view updatable by defining an INSTEAD OF trigger over the view.

CREATE OR REPLACE TRIGGER Library_trigger INSTEAD OF INSERT ON Library_view FOR 
EACH ROW
   Bookvar BOOK_T;
   i       INTEGER;
BEGIN
   INSERT INTO Library_table VALUES (:NEW.Section);
   FOR i IN 1..:NEW.Booklist.COUNT LOOP
      Bookvar := Booklist(i);
      INSERT INTO book_table
         VALUES ( Bookvar.booknum, :NEW.Section, Bookvar.Title, Bookvar.Author, 
bookvar.Available);
   END LOOP;
END;
/

The library_view is an updatable view, and any INSERTs on the view are handled 
by the trigger that fires automatically. For example:

INSERT INTO Library_view VALUES ('History', book_list_t(book_t(121330, 
'Alexander', 'Mirth', 'Y');

Similarly, you can also define triggers on the nested table booklist to handle 
modification of the nested table element.

Fine-Grained Access Control Using Triggers
You can use LOGON triggers to execute the package associated with an application 
context. An application context captures session-related information about the user 
who is logging in to the database. From there, your application can control how much 
access this user has, based on his or her session information.

Note: If you have very specific logon requirements, such as 
preventing users from logging in from outside the firewall or after 
work hours, consider using Oracle Database Vault instead of LOGON 
triggers. With Oracle Database Vault, you can create custom rules to 
strictly control user access.

See Also:

■ Oracle Database Security Guide for information about creating a 
LOGON trigger to run a database session application context 
package

■ Oracle Database Vault Administrator's Guide for information about 
Oracle Database Vault



Responding to Database Events Through Triggers

Using Triggers 9-45

Responding to Database Events Through Triggers

Database event publication lets applications subscribe to database events, just like they 
subscribe to messages from other applications. The database events publication 
framework includes the following features:

■ Infrastructure for publish/subscribe, by making the database an active publisher 
of events. 

■ Integration of data cartridges in the server. The database events publication can be 
used to notify cartridges of state changes in the server. 

■ Integration of fine-grained access control in the server.

By creating a trigger, you can specify a subprogram that runs when an event occurs. 
DML events are supported on tables, and database events are supported on DATABASE 
and SCHEMA. You can turn notification on and off by enabling and disabling the trigger 
using the ALTER TRIGGER statement.

This feature is integrated with the Advanced Queueing engine. Publish/subscribe 
applications use the DBMS_AQ.ENQUEUE procedure, and other applications such as 
cartridges use callouts. 

Topics:

■ How Events Are Published Through Triggers

■ Publication Context

■ Error Handling

■ Execution Model

■ Event Attribute Functions

■ Database Events

■ Client Events

How Events Are Published Through Triggers
When the database detects an event, the trigger mechanism executes the action 
specified in the trigger. The action can include publishing the event to a queue so that 
subscribers receive notifications. To publish events, use the DBMS_AQ package.

Note: This topic applies only to simple triggers.

See Also:

■ ALTER TRIGGER Statement on page 14-11

■ Oracle Streams Advanced Queuing User's Guide for details on how to 
subscribe to published events 

Note: The database can detect only system-defined events. You 
cannot define your own events.



Responding to Database Events Through Triggers

9-46 Oracle Database PL/SQL Language Reference

When it detects an event, the database fires all triggers that are enabled on that event, 
except the following:

■ Any trigger that is the target of the triggering event.

For example, a trigger for all DROP events does not fire when it is dropped itself.

■ Any trigger that was modified, but not committed, within the same transaction as 
the triggering event.

For example, recursive DDL within a system trigger might modify a trigger, which 
prevents the modified trigger from being fired by events within the same 
transaction.

Publication Context
When an event is published, certain run-time context and attributes, as specified in the 
parameter list, are passed to the callout subprogram. A set of functions called event 
attribute functions are provided.

For each supported database event, you can identify and predefine event-specific 
attributes for the event. You can choose the parameter list to be any of these attributes, 
along with other simple expressions. For callouts, these are passed as IN arguments.

Error Handling
Return status from publication callout functions for all events are ignored. For 
example, with SHUTDOWN events, the database cannot do anything with the return 
status.

Execution Model
Traditionally, triggers execute as the definer of the trigger. The trigger action of an 
event is executed as the definer of the action (as the definer of the package or function 
in callouts, or as owner of the trigger in queues). Because the owner of the trigger must 
have EXECUTE privileges on the underlying queues, packages, or subprograms, this 
action is consistent. 

Event Attribute Functions
When the database fires a trigger, you can retrieve certain attributes about the event 
that fired the trigger. You can retrieve each attribute with a function call. Table 9–3 
describes the system-defined event attributes.

See Also: Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_AQ package

See Also: Event Attribute Functions on page 9-46 for information 
about event-specific attributes



Responding to Database Events Through Triggers

Using Triggers 9-47

Note:

■ The trigger dictionary object maintains metadata about events 
that will be published and their corresponding attributes.

■ In earlier releases, these functions were accessed through the SYS 
package. Oracle recommends you use these public synonyms 
whose names begin with ora_.

■ ora_name_list_t is defined in package DBMS_STANDARD as 

TYPE ora_name_list_t IS TABLE OF VARCHAR2(64);

Table 9–3  System-Defined Event Attributes

Attribute Type Description Example

ora_client_ip_address VARCHAR2 Returns IP address of 
the client in a LOGON 
event when the 
underlying protocol is 
TCP/IP

DECLARE
  v_addr VARCHAR2(11);
BEGIN
  IF (ora_sysevent = 'LOGON') THEN
    v_addr := ora_client_ip_address;
  END IF;
END;

ora_database_name VARCHAR2(50) Database name. DECLARE
  v_db_name VARCHAR2(50);
BEGIN
  v_db_name := ora_database_name;
END;

ora_des_encrypted_password VARCHAR2 The DES-encrypted 
password of the user 
being created or 
altered.

IF (ora_dict_obj_type = 'USER') THEN  
  INSERT INTO event_table
    VALUES (ora_des_encrypted_password);
END IF;

ora_dict_obj_name VARCHAR(30) Name of the dictionary 
object on which the 
DDL operation 
occurred.

INSERT INTO event_table 
  VALUES ('Changed object is ' || 
           ora_dict_obj_name);

ora_dict_obj_name_list
(name_list OUT ora_name_list_
t)

PLS_INTEGER Return the list of object 
names of objects being 
modified in the event.

DECLARE
name_list   DBMS_STANDARD.ora_name_list_t;
number_modified  PLS_INTEGER;
BEGIN
IF (ora_sysevent='ASSOCIATE STATISTICS')
  THEN number_modified :=
       ora_dict_obj_name_list(name_list);
END IF;
END;

ora_dict_obj_owner VARCHAR(30) Owner of the 
dictionary object on 
which the DDL 
operation occurred.

INSERT INTO event_table 
  VALUES ('object owner is' || 
           ora_dict_obj_owner);

ora_dict_obj_owner_list
(owner_list OUT ora_name_
list_t)

PLS_INTEGER Returns the list of 
object owners of objects 
being modified in the 
event.

DECLARE
owner_list
   DBMS_STANDARD.ora_name_list_t;
number_modified   PLS_INTEGER;
BEGIN
IF (ora_sysevent='ASSOCIATE STATISTICS')
  THEN number_modified :=
       ora_dict_obj_name_list(owner_list);
END IF;
END;



Responding to Database Events Through Triggers

9-48 Oracle Database PL/SQL Language Reference

ora_dict_obj_type VARCHAR(20) Type of the dictionary 
object on which the 
DDL operation 
occurred.

INSERT INTO event_table 
  VALUES ('This object is a ' || 
           ora_dict_obj_type);

ora_grantee
(user_list OUT ora_name_list_
t)

PLS_INTEGER Returns the grantees of 
a grant event in the 
OUT parameter; 
returns the number of 
grantees in the return 
value.

DECLARE
user_list   DBMS_STANDARD.ora_name_list_t;
number_of_grantees   PLS_INTEGER;
BEGIN
IF (ora_sysevent = 'GRANT') THEN
number_of_grantees := 
 ora_grantee(user_list);
END IF;
END; 

ora_instance_num NUMBER Instance number. IF (ora_instance_num = 1) THEN
  INSERT INTO event_table VALUES ('1');
END IF;

ora_is_alter_column
(column_name IN VARCHAR2)

BOOLEAN Returns true if the 
specified column is 
altered.

IF (ora_sysevent = 'ALTER' AND
    ora_dict_obj_type = 'TABLE') THEN 
 alter_column := ora_is_alter_column('C');
END IF;

ora_is_creating_nested_table BOOLEAN Returns true if the 
current event is 
creating a nested table

IF (ora_sysevent = 'CREATE' and
    ora_dict_obj_type = 'TABLE' and
    ora_is_creating_nested_table) THEN 
  INSERT INTO event_table
    VALUES ('A nested table is created');
END IF;

ora_is_drop_column
(column_name IN VARCHAR2)

BOOLEAN Returns true if the 
specified column is 
dropped.

IF (ora_sysevent = 'ALTER' AND
    ora_dict_obj_type = 'TABLE') THEN  
 drop_column := ora_is_drop_column('C');
END IF;

ora_is_servererror BOOLEAN Returns TRUE if given 
error is on error stack, 
FALSE otherwise.

IF ora_is_servererror(error_number) THEN
 INSERT INTO event_table
   VALUES ('Server error!!');
END IF;

ora_login_user VARCHAR2(30) Login user name. SELECT ora_login_user 
FROM DUAL;

ora_partition_pos PLS_INTEGER In an INSTEAD OF 
trigger for CREATE 
TABLE, the position 
within the SQL text 
where you can insert a 
PARTITION clause.

-- Retrieve ora_sql_txt into
-- sql_text variable first.
v_n := ora_partition_pos;
v_new_stmt := SUBSTR(sql_text,1,v_n - 1)
         || ' ' || my_partition_clause
         || ' ' || SUBSTR(sql_text, v_n));

ora_privilege_list
(privilege_list
 OUT ora_name_list_t)

PLS_INTEGER Returns the list of 
privileges being 
granted by the grantee 
or the list of privileges 
revoked from the 
revokees in the OUT 
parameter; returns the 
number of privileges in 
the return value.

DECLARE
privelege_list
        DBMS_STANDARD.ora_name_list_t;
number_of_privileges   PLS_INTEGER;
BEGIN
IF (ora_sysevent = 'GRANT' OR
    ora_sysevent = 'REVOKE') THEN
  number_of_privileges :=
    ora_privilege_list(privilege_list);
END IF;
END;

Table 9–3 (Cont.)  System-Defined Event Attributes

Attribute Type Description Example



Responding to Database Events Through Triggers

Using Triggers 9-49

ora_revokee
(user_list OUT ora_name_list_
t)

PLS_INTEGER Returns the revokees of 
a revoke event in the 
OUT parameter; returns 
the number of revokees 
in the return value.

DECLARE
user_list   DBMS_STANDARD.ora_name_list_t;
number_of_users   PLS_INTEGER;
BEGIN
IF (ora_sysevent = 'REVOKE') THEN
number_of_users := ora_revokee(user_list);
END IF;
END;

ora_server_error NUMBER Given a position (1 for 
top of stack), it returns 
the error number at 
that position on error 
stack

INSERT INTO event_table 
  VALUES ('top stack error ' || 
           ora_server_error(1));

ora_server_error_depth PLS_INTEGER Returns the total 
number of error 
messages on the error 
stack. 

n := ora_server_error_depth;
-- This value is used with other functions 
-- such as ora_server_error

ora_server_error_msg
(position in pls_integer)

VARCHAR2 Given a position (1 for 
top of stack), it returns 
the error message at 
that position on error 
stack

INSERT INTO event_table
  VALUES ('top stack error message' ||
           ora_server_error_msg(1));

ora_server_error_num_params
(position in pls_integer)

PLS_INTEGER Given a position (1 for 
top of stack), it returns 
the number of strings 
that were substituted 
into the error message 
using a format like %s.

n := ora_server_error_num_params(1);

ora_server_error_param
(position in pls_integer,
 param in pls_integer)

VARCHAR2 Given a position (1 for 
top of stack) and a 
parameter number, 
returns the matching 
substitution value (%s, 
%d, and so on) in the 
error message.

-- For example, the second %s in a 
-- message: "Expected %s, found %s"
param := ora_server_error_param(1,2);

ora_sql_txt
(sql_text out ora_name_list_
t)

PLS_INTEGER Returns the SQL text of 
the triggering 
statement in the OUT 
parameter. If the 
statement is long, it is 
broken into multiple 
PL/SQL table 
elements. The function 
return value shows the 
number of elements are 
in the PL/SQL table.

--...
-- Create table event_table
create table event_table (col
 VARCHAR2(2030));
--...
DECLARE
sql_text   DBMS_STANDARD.ora_name_list_t;
n   PLS_INTEGER;
v_stmt VARCHAR2(2000);
BEGIN
n := ora_sql_txt(sql_text);
 
FOR i IN 1..n LOOP
v_stmt := v_stmt || sql_text(i);
END LOOP;
 
INSERT INTO event_table VALUES ('text of
 triggering statement: ' || v_stmt);
END;

Table 9–3 (Cont.)  System-Defined Event Attributes

Attribute Type Description Example



Responding to Database Events Through Triggers

9-50 Oracle Database PL/SQL Language Reference

Database Events
Database events are related to entire instances or schemas, not individual tables or 
rows. Triggers associated with startup and shutdown events must be defined on the 
database instance. Triggers associated with on-error and suspend events can be 
defined on either the database instance or a particular schema.

ora_sysevent VARCHAR2(20) Database event firing 
the trigger: Event name 
is same as that in the 
syntax.

INSERT INTO event_table
  VALUES (ora_sysevent);

ora_with_grant_option BOOLEAN Returns true if the 
privileges are granted 
with grant option.

IF (ora_sysevent = 'GRANT' and
    ora_with_grant_option = TRUE) THEN
  INSERT INTO event_table 
    VALUES ('with grant option');
END IF;

space_error_info
(error_number OUT NUMBER,
 error_type OUT VARCHAR2,
 object_owner OUT VARCHAR2,
 table_space_name OUT 
  VARCHAR2,
 object_name OUT VARCHAR2,
 sub_object_name OUT 
VARCHAR2)

BOOLEAN Returns true if the error 
is related to an 
out-of-space condition, 
and fills in the OUT 
parameters with 
information about the 
object that caused the 
error.

IF (space_error_info(eno,typ,owner,ts,obj, 
                     subobj) = TRUE) THEN
  DBMS_OUTPUT.PUT_LINE('The object '|| obj 
               || ' owned by ' || owner ||
               ' has run out of space.');
END IF;

Table 9–4  Database Events 

Event When Trigger Fires Conditions Restrictions Transaction Attribute Functions

STARTUP When the database is opened. None 
allowed

No database 
operations allowed 
in the trigger.

Return status 
ignored.

Starts a separate 
transaction and 
commits it after 
firing the triggers.

ora_sysevent
ora_login_user
ora_instance_num
ora_database_name

SHUTDOWN Just before the server starts 
the shutdown of an instance.

This lets the cartridge 
shutdown completely. For 
abnormal instance shutdown, 
this triiger might not fire.

None 
allowed

No database 
operations allowed 
in the trigger.

Return status 
ignored.

Starts a separate 
transaction and 
commits it after 
firing the triggers.

ora_sysevent
ora_login_user
ora_instance_num
ora_database_name

DB_ROLE_CHANGE When the database is opened 
for the first time after a role 
change.

None 
allowed

Return status 
ignored.

Starts a separate 
transaction and 
commits it after 
firing the triggers.

ora_sysevent
ora_login_user
ora_instance_num
ora_database_name

SERVERERROR When the error eno occurs. If 
no condition is given, then 
this trigger fires whenever an 
error occurs.

The trigger does not fire on 
ORA-1034, ORA-1403, 
ORA-1422, ORA-1423, and 
ORA-4030 because they are 
not true errors or are too 
serious to continue 
processing. It also fails to fire 
on ORA-18 and ORA-20 
because a process is not 
available to connect to the 
database to record the error.

ERRNO = eno Depends on the 
error.

Return status 
ignored.

Starts a separate 
transaction and 
commits it after 
firing the triggers.

ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_server_error
ora_is_servererror
space_error_info

Table 9–3 (Cont.)  System-Defined Event Attributes

Attribute Type Description Example



Responding to Database Events Through Triggers

Using Triggers 9-51

Client Events
Client events are the events related to user logon/logoff, DML, and DDL operations.

The LOGON and LOGOFF events allow simple conditions on UID and USER. All other 
events allow simple conditions on the type and name of the object, as well as functions 
like UID and USER.

The LOGON event starts a separate transaction and commits it after firing the triggers. 
All other events fire the triggers in the existing user transaction.

The LOGON and LOGOFF events can operate on any objects. For all other events, the 
corresponding trigger cannot perform any DDL operations, such as DROP and ALTER, 
on the object that caused the event to be generated.

The DDL allowed inside these triggers is altering, creating, or dropping a table, 
creating a trigger, and compile operations.

If an event trigger becomes the target of a DDL operation (such as CREATE TRIGGER), 
it cannot fire later during the same transaction

Table 9–5  Client Events 

Event When Trigger Fires Attribute Functions

BEFORE ALTER

AFTER ALTER

When a catalog object is altered. ora_sysevent 
ora_login_user
ora_instance_num
ora_database_name
ora_dict_obj_type 
ora_dict_obj_name
ora_dict_obj_owner
ora_des_encrypted_password
 (for ALTER USER events)
ora_is_alter_column
 (for ALTER TABLE events)
ora_is_drop_column
 (for ALTER TABLE events)

BEFORE DROP

AFTER DROP

When a catalog object is dropped. ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_dict_obj_type
ora_dict_obj_name
ora_dict_obj_owner

BEFORE ANALYZE

AFTER ANALYZE

When an analyze statement is issued ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_dict_obj_name
ora_dict_obj_type
ora_dict_obj_owner

BEFORE ASSOCIATE STATISTICS

AFTER ASSOCIATE STATISTICS

When an associate statistics statement is issued ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_dict_obj_name
ora_dict_obj_type
ora_dict_obj_owner
ora_dict_obj_name_list
ora_dict_obj_owner_list



Responding to Database Events Through Triggers

9-52 Oracle Database PL/SQL Language Reference

BEFORE AUDIT
AFTER AUDIT

BEFORE NOAUDIT
AFTER NOAUDIT

When an audit or noaudit statement is issued ora_sysevent
ora_login_user
ora_instance_num
ora_database_name

BEFORE COMMENT

AFTER COMMENT

When an object is commented ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_dict_obj_name
ora_dict_obj_type
ora_dict_obj_owner

BEFORE CREATE 

AFTER CREATE

When a catalog object is created. ora_sysevent 
ora_login_user
ora_instance_num
ora_database_name
ora_dict_obj_type 
ora_dict_obj_name
ora_dict_obj_owner
ora_is_creating_nested_table
 (for CREATE TABLE events)

BEFORE DDL

AFTER DDL

When most SQL DDL statements are issued. Not 
fired for ALTER DATABASE, CREATE CONTROLFILE, 
CREATE DATABASE, and DDL issued through the 
PL/SQL subprogram interface, such as creating an 
advanced queue.

ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_dict_obj_name
ora_dict_obj_type
ora_dict_obj_owner

BEFORE DISASSOCIATE STATISTICS

AFTER DISASSOCIATE STATISTICS

When a disassociate statistics statement is issued ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_dict_obj_name
ora_dict_obj_type
ora_dict_obj_owner
ora_dict_obj_name_list
ora_dict_obj_owner_list

BEFORE GRANT

AFTER GRANT

When a grant statement is issued ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_dict_obj_name
ora_dict_obj_type
ora_dict_obj_owner
ora_grantee
ora_with_grant_option
ora_privileges

BEFORE LOGOFF At the start of a user logoff ora_sysevent
ora_login_user
ora_instance_num
ora_database_name

AFTER LOGON After a successful logon of a user. ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_client_ip_address

Table 9–5 (Cont.)  Client Events 

Event When Trigger Fires Attribute Functions



Responding to Database Events Through Triggers

Using Triggers 9-53

BEFORE RENAME

AFTER RENAME

When a rename statement is issued. ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_dict_obj_name
ora_dict_obj_owner
ora_dict_obj_type

BEFORE REVOKE

AFTER REVOKE

When a revoke statement is issued ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_dict_obj_name
ora_dict_obj_type
ora_dict_obj_owner
ora_revokee
ora_privileges

AFTER SUSPEND After a SQL statement is suspended because of an 
out-of-space condition. The trigger must correct the 
condition so the statement can be resumed.

ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_server_error
ora_is_servererror
space_error_info

BEFORE TRUNCATE

AFTER TRUNCATE

When an object is truncated ora_sysevent
ora_login_user
ora_instance_num
ora_database_name
ora_dict_obj_name
ora_dict_obj_type
ora_dict_obj_owner

Table 9–5 (Cont.)  Client Events 

Event When Trigger Fires Attribute Functions



Responding to Database Events Through Triggers

9-54 Oracle Database PL/SQL Language Reference



10

Using PL/SQL Packages 10-1

10 Using PL/SQL Packages

This chapter explains how to bundle related PL/SQL code and data into a package. A 
package is compiled and stored in the database, where many applications can share its 
contents.

Topics:

■ What is a PL/SQL Package?

■ What Goes in a PL/SQL Package?

■ Advantages of PL/SQL Packages

■ Understanding the PL/SQL Package Specification

■ Referencing PL/SQL Package Contents

■ Understanding the PL/SQL Package Body

■ Examples of PL/SQL Package Features

■ Private and Public Items in PL/SQL Packages

■ How STANDARD Package Defines the PL/SQL Environment

■ Overview of Product-Specific PL/SQL Packages

■ Guidelines for Writing PL/SQL Packages

■ Separating Cursor Specifications and Bodies with PL/SQL Packages

What is a PL/SQL Package?
A package is a schema object that groups logically related PL/SQL types, variables, 
and subprograms. Packages usually have two parts, a specification ("spec") and a 
body; sometimes the body is unnecessary.

The specification is the interface to the package. It declares the types, variables, 
constants, exceptions, cursors, and subprograms that can be referenced from outside 
the package. The body defines the queries for the cursors and the code for the 
subprograms.

You can think of the spec as an interface and of the body as a black box. You can 
debug, enhance, or replace a package body without changing the package spec.

To create a package spec, use the CREATE PACKAGE Statement on page 14-36. To 
create a package body, use the CREATE PACKAGE BODY Statement on page 14-39.

The spec holds public declarations, which are visible to stored subprograms and other 
code outside the package. You must declare subprograms at the end of the spec after 



What Goes in a PL/SQL Package?

10-2 Oracle Database PL/SQL Language Reference

all other items (except pragmas that name a specific function; such pragmas must 
follow the function spec).

The body holds implementation details and private declarations, which are hidden 
from code outside the package. Following the declarative part of the package body is 
the optional initialization part, which holds statements that initialize package variables 
and do any other one-time setup steps.

The AUTHID clause determines whether all the packaged subprograms execute with 
the privileges of their definer (the default) or invoker, and whether their unqualified 
references to schema objects are resolved in the schema of the definer or invoker. For 
more information, see Using Invoker's Rights or Definer's Rights (AUTHID Clause) on 
page 8-18.

A call specification lets you map a package subprogram to a Java method or external C 
function. The call specification maps the Java or C name, parameter types, and return 
type to their SQL counterparts.

What Goes in a PL/SQL Package?
A PL/SQL package contains the following:

■ Get and Set methods for the package variables, if you want to avoid letting other 
subprograms read and write them directly.

■ Cursor declarations with the text of SQL queries. Reusing exactly the same query 
text in multiple locations is faster than retyping the same query each time with 
slight differences. It is also easier to maintain if you must change a query that is 
used in many places.

■ Declarations for exceptions. Typically, you must be able to reference these from 
different subprograms, so that you can handle exceptions within invoked 
subprograms.

■ Declarations for subprograms that invoke each other. You need not worry about 
compilation order for packaged subprograms, making them more convenient than 
standalone stored subprograms when they invoke back and forth to each other.

■ Declarations for overloaded subprograms. You can create multiple variations of a 
subprogram, using the same names but different sets of parameters.

■ Variables that you want to remain available between subprogram calls in the same 
session. You can treat variables in a package like global variables.

■ Type declarations for PL/SQL collection types. To pass a collection as a parameter 
between stored subprograms, you must declare the type in a package so that both 
the invoking andinvoked subprogram can refer to it.

For more information, see CREATE PACKAGE Statement on page 14-36. For an 
examples of a PL/SQL packages, see Example 1–19 on page 1-20 and Example 10–3 on 
page 10-6. Only the declarations in the package spec are visible and accessible to 

See Also:

■ Oracle Database Java Developer's Guide to learn how to write Java 
call specifications

■ Oracle Database Advanced Application Developer's Guide to learn 
how to write C call specifications

■ Oracle Database PL/SQL Packages and Types Reference for 
information about PL/SQL packages provided by Oracle



Understanding the PL/SQL Package Specification

Using PL/SQL Packages 10-3

applications. Implementation details in the package body are hidden and inaccessible. 
You can change the body (implementation) without having to recompile invoking 
programs.

Advantages of PL/SQL Packages
Packages have a long history in software engineering, offering important features for 
reliable, maintainable, reusable code, often in team development efforts for large 
systems.

Modularity
Packages let you encapsulate logically related types, items, and subprograms in a 
named PL/SQL module. Each package is easy to understand, and the interfaces 
between packages are simple, clear, and well defined. This aids application 
development. 

Easier Application Design
When designing an application, all you need initially is the interface information in the 
package specs. You can code and compile a spec without its body. Then, stored 
subprograms that reference the package can be compiled as well. You need not define 
the package bodies fully until you are ready to complete the application. 

Information Hiding
With packages, you can specify which types, items, and subprograms are public 
(visible and accessible) or private (hidden and inaccessible). For example, if a package 
contains four subprograms, three might be public and one private. The package hides 
the implementation of the private subprogram so that only the package (not your 
application) is affected if the implementation changes. This simplifies maintenance 
and enhancement. Also, by hiding implementation details from users, you protect the 
integrity of the package.

Added Functionality
Packaged public variables and cursors persist for the duration of a session. They can 
be shared by all subprograms that execute in the environment. They let you maintain 
data across transactions without storing it in the database.

Better Performance
When you invoke a packaged subprogram for the first time, the whole package is 
loaded into memory. Later calls to related subprograms in the package require no disk 
I/O.

Packages stop cascading dependencies and avoid unnecessary recompiling. For 
example, if you change the body of a packaged function, the database does not 
recompile other subprograms that invoke the function; these subprograms only 
depend on the parameters and return value that are declared in the spec, so they are 
only recompiled if the spec changes.

Understanding the PL/SQL Package Specification
The package specification contains public declarations. The declared items are 
accessible from anywhere in the package and to any other subprograms in the same 
schema. Figure 10–1 illustrates the scoping.



Referencing PL/SQL Package Contents

10-4 Oracle Database PL/SQL Language Reference

Figure 10–1 Package Scope

The spec lists the package resources available to applications. All the information your 
application must use the resources is in the spec. For example, the following 
declaration shows that the function named factorial takes one argument of type 
INTEGER and returns a value of type INTEGER:

FUNCTION factorial (n INTEGER) RETURN INTEGER; -- returns n!

That is all the information needed to invoke the function. You need not consider its 
underlying implementation (whether it is iterative or recursive for example).

If a spec declares only types, constants, variables, exceptions, and call specifications, 
the package body is unnecessary. Only subprograms and cursors have an underlying 
implementation. In Example 10–1, the package needs no body because it declares 
types, exceptions, and variables, but no subprograms or cursors. Such packages let 
you define global variables, usable by stored subprograms and triggers, that persist 
throughout a session. 

Example 10–1 A Simple Package Specification Without a Body

CREATE PACKAGE trans_data AS  -- bodiless package
   TYPE TimeRec IS RECORD (
      minutes SMALLINT,
      hours   SMALLINT);
   TYPE TransRec IS RECORD (
      category VARCHAR2(10),
      account  INT,
      amount   REAL,
      time_of  TimeRec);
   minimum_balance    CONSTANT REAL := 10.00;
   number_processed   INT;
   insufficient_funds EXCEPTION;
END trans_data;
/

Referencing PL/SQL Package Contents
To reference the types, items, subprograms, and call specifications declared within a 
package spec, use dot notation:

package_name.type_name
package_name.item_name
package_name.subprogram_name
package_name.call_spec_name

schema

package spec 

package spec 

other objects

package body

package body

procedure
function
procedure

function
function
procedure



Understanding the PL/SQL Package Body

Using PL/SQL Packages 10-5

You can reference package contents from database triggers, stored subprograms, 3GL 
application programs, and various Oracle tools. For example, you can invoke package 
subprograms as shown in Example 1–20 on page 1-22 or Example 10–3 on page 10-6.

The following example invokes the hire_employee procedure from an anonymous 
block in a Pro*C program. The actual parameters emp_id, emp_lname, and emp_
fname are host variables.

EXEC SQL EXECUTE
  BEGIN
    emp_actions.hire_employee(:emp_id,:emp_lname,:emp_fname, ...);

Restrictions
You cannot reference remote packaged variables, either directly or indirectly. For 
example, you cannot invoke the a subprogram through a database link if the 
subprogram refers to a packaged variable.

Inside a package, you cannot reference host variables.

Understanding the PL/SQL Package Body
The package body contains the implementation of every cursor and subprogram 
declared in the package spec. Subprograms defined in a package body are accessible 
outside the package only if their specs also appear in the package spec. If a 
subprogram spec is not included in the package spec, that subprogram can only be 
invoked by other subprograms in the same package. A package body must be in the 
same schema as the package spec. 

To match subprogram specs and bodies, PL/SQL does a token-by-token comparison of 
their headers. Except for white space, the headers must match word for word. 
Otherwise, PL/SQL raises an exception, as Example 10–2 shows.

Example 10–2 Matching Package Specifications and Bodies

CREATE PACKAGE emp_bonus AS
   PROCEDURE calc_bonus (date_hired employees.hire_date%TYPE);
END emp_bonus;
/
CREATE PACKAGE BODY emp_bonus AS
-- the following parameter declaration raises an exception 
-- because 'DATE' does not match employees.hire_date%TYPE
-- PROCEDURE calc_bonus (date_hired DATE) IS
-- the following is correct because there is an exact match
   PROCEDURE calc_bonus
     (date_hired employees.hire_date%TYPE) IS
   BEGIN
     DBMS_OUTPUT.PUT_LINE
       ('Employees hired on ' || date_hired || ' get bonus.');
   END;
END emp_bonus;
/

The package body can also contain private declarations, which define types and items 
necessary for the internal workings of the package. The scope of these declarations is 
local to the package body. Therefore, the declared types and items are inaccessible 
except from within the package body. Unlike a package spec, the declarative part of a 
package body can contain subprogram bodies.



Examples of PL/SQL Package Features

10-6 Oracle Database PL/SQL Language Reference

Following the declarative part of a package body is the optional initialization part, 
which typically holds statements that initialize some of the variables previously 
declared in the package. 

The initialization part of a package plays a minor role because, unlike subprograms, a 
package cannot be invoked or passed parameters. As a result, the initialization part of 
a package is run only once, the first time you reference the package.

Remember, if a package specification declares only types, constants, variables, 
exceptions, and call specifications, the package body is unnecessary. However, the 
body can still be used to initialize items declared in the package spec.

Examples of PL/SQL Package Features
Consider the following package, named emp_admin. The package specification 
declares the following types, items, and subprograms:

■ Type EmpRecTyp

■ Cursor desc_salary

■ Exception invalid_salary

■ Functions hire_employee and nth_highest_salary

■ Procedures fire_employee and raise_salary

After writing the package, you can develop applications that reference its types, 
invoke its subprograms, use its cursor, and raise its exception. When you create the 
package, it is stored in the database for use by any application that has execute 
privilege on the package.

Example 10–3 Creating the emp_admin Package

-- create the audit table to track changes
CREATE TABLE emp_audit(date_of_action DATE, user_id VARCHAR2(20), 
                       package_name VARCHAR2(30));

CREATE OR REPLACE PACKAGE emp_admin AS
-- Declare externally visible types, cursor, exception
   TYPE EmpRecTyp IS RECORD (emp_id NUMBER, sal NUMBER);
   CURSOR desc_salary RETURN EmpRecTyp;
   invalid_salary EXCEPTION;
-- Declare externally callable subprograms
   FUNCTION hire_employee (last_name VARCHAR2,
                           first_name VARCHAR2,
                           email VARCHAR2,
                           phone_number VARCHAR2,
                           job_id VARCHAR2,
                           salary NUMBER,
                           commission_pct NUMBER,
                           manager_id NUMBER,
                           department_id NUMBER)
     RETURN NUMBER;
   PROCEDURE fire_employee
     (emp_id NUMBER); -- overloaded subprogram
   PROCEDURE fire_employee
     (emp_email VARCHAR2); -- overloaded subprogram
   PROCEDURE raise_salary (emp_id NUMBER, amount NUMBER);
   FUNCTION nth_highest_salary (n NUMBER) RETURN EmpRecTyp;
END emp_admin;
/



Examples of PL/SQL Package Features

Using PL/SQL Packages 10-7

CREATE OR REPLACE PACKAGE BODY emp_admin AS
   number_hired NUMBER;  -- visible only in this package
-- Fully define cursor specified in package
   CURSOR desc_salary RETURN EmpRecTyp IS
      SELECT employee_id, salary
      FROM employees
      ORDER BY salary DESC;
-- Fully define subprograms specified in package
   FUNCTION hire_employee (last_name VARCHAR2,
                           first_name VARCHAR2,
                           email VARCHAR2,
                           phone_number VARCHAR2,
                           job_id VARCHAR2,
                           salary NUMBER,
                           commission_pct NUMBER,
                           manager_id NUMBER,
                           department_id NUMBER)
     RETURN NUMBER IS new_emp_id NUMBER;
   BEGIN
      new_emp_id := employees_seq.NEXTVAL;
      INSERT INTO employees VALUES (new_emp_id,
                                    last_name,
                                    first_name,
                                    email,
                                    phone_number,
                                    SYSDATE,
                                    job_id,
                                    salary,
                                    commission_pct,
                                    manager_id,
                                    department_id);
      number_hired := number_hired + 1;
      DBMS_OUTPUT.PUT_LINE('The number of employees hired is ' 
                           || TO_CHAR(number_hired) );   
      RETURN new_emp_id;
   END hire_employee;
   PROCEDURE fire_employee (emp_id NUMBER) IS
   BEGIN
      DELETE FROM employees WHERE employee_id = emp_id;
   END fire_employee;
   PROCEDURE fire_employee (emp_email VARCHAR2) IS
   BEGIN
      DELETE FROM employees WHERE email = emp_email;
   END fire_employee;
  -- Define local function, available only inside package
   FUNCTION sal_ok (jobid VARCHAR2, sal NUMBER) RETURN BOOLEAN IS
      min_sal NUMBER;
      max_sal NUMBER;
   BEGIN
      SELECT MIN(salary), MAX(salary)
        INTO min_sal, max_sal
        FROM employees
        WHERE job_id = jobid;
      RETURN (sal >= min_sal) AND (sal <= max_sal);
   END sal_ok;
   PROCEDURE raise_salary (emp_id NUMBER, amount NUMBER) IS
      sal NUMBER(8,2);
      jobid VARCHAR2(10);
   BEGIN
      SELECT job_id, salary INTO jobid, sal



Examples of PL/SQL Package Features

10-8 Oracle Database PL/SQL Language Reference

        FROM employees
        WHERE employee_id = emp_id;
      IF sal_ok(jobid, sal + amount) THEN
         UPDATE employees SET salary =
           salary + amount WHERE employee_id = emp_id;
      ELSE
         RAISE invalid_salary;
      END IF;
   EXCEPTION  -- exception-handling part starts here
     WHEN invalid_salary THEN
       DBMS_OUTPUT.PUT_LINE
         ('The salary is out of the specified range.');
   END raise_salary;
   FUNCTION nth_highest_salary (n NUMBER) RETURN EmpRecTyp IS
      emp_rec EmpRecTyp;
   BEGIN
      OPEN desc_salary;
      FOR i IN 1..n LOOP
         FETCH desc_salary INTO emp_rec;
      END LOOP;
      CLOSE desc_salary;
      RETURN emp_rec;
   END nth_highest_salary;
BEGIN  -- initialization part starts here
   INSERT INTO emp_audit VALUES (SYSDATE, USER, 'EMP_ADMIN');
   number_hired := 0;
END emp_admin;
/
-- invoking the package procedures
DECLARE
  new_emp_id NUMBER(6);
BEGIN
  new_emp_id := emp_admin.hire_employee ('Belden',
                                         'Enrique',
                                         'EBELDEN',
                                         '555.111.2222',
                                         'ST_CLERK',
                                         2500,
                                         .1,
                                         101,
                                         110);
  DBMS_OUTPUT.PUT_LINE
    ('The new employee id is ' || TO_CHAR(new_emp_id));
  EMP_ADMIN.raise_salary(new_emp_id, 100);
  DBMS_OUTPUT.PUT_LINE('The 10th highest salary is '|| 
    TO_CHAR(emp_admin.nth_highest_salary(10).sal) || ',
            belonging to employee: ' ||
            TO_CHAR(emp_admin.nth_highest_salary(10).emp_id));
  emp_admin.fire_employee(new_emp_id);
-- you can also delete the newly added employee as follows:
--  emp_admin.fire_employee('EBELDEN');
END;
/

Remember, the initialization part of a package is run just once, the first time you 
reference the package. In the last example, only one row is inserted into the database 
table emp_audit, and the variable number_hired is initialized only once. 

Every time the procedure hire_employee is invoked, the variable number_hired is 
updated. However, the count kept by number_hired is session specific. That is, the 



How STANDARD Package Defines the PL/SQL Environment

Using PL/SQL Packages 10-9

count reflects the number of new employees processed by one user, not the number 
processed by all users. 

PL/SQL allows two or more packaged subprograms to have the same name. This 
option is useful when you want a subprogram to accept similar sets of parameters that 
have different data types. For example, the emp_admin package in Example 10–3 
defines two procedures named fire_employee. The first procedure accepts a 
number, while the second procedure accepts string. Each procedure handles the data 
appropriately. For the rules that apply to overloaded subprograms, see Overloading 
PL/SQL Subprogram Names on page 8-12.

Private and Public Items in PL/SQL Packages
In the package emp_admin, the package body declares a variable named number_
hired, which is initialized to zero. Items declared in the body are restricted to use 
within the package. PL/SQL code outside the package cannot reference the variable 
number_hired. Such items are called private.

Items declared in the spec of emp_admin, such as the exception invalid_salary, 
are visible outside the package. Any PL/SQL code can reference the exception 
invalid_salary. Such items are called public. 

To maintain items throughout a session or across transactions, place them in the 
declarative part of the package body. For example, the value of number_hired is kept 
between calls to hire_employee within the same session. The value is lost when the 
session ends. 

To make the items public, place them in the package specification. For example, emp_
rec declared in the spec of the package is available for general use.

How STANDARD Package Defines the PL/SQL Environment
A package named STANDARD defines the PL/SQL environment. The package spec 
globally declares types, exceptions, and subprograms, which are available 
automatically to PL/SQL programs. For example, package STANDARD declares 
function ABS, which returns the absolute value of its argument, as follows:

FUNCTION ABS (n NUMBER) RETURN NUMBER;

The contents of package STANDARD are directly visible to applications. You need not 
qualify references to its contents by prefixing the package name. For example, you 
might invoke ABS from a database trigger, stored subprogram, Oracle tool, or 3GL 
application, as follows:

abs_diff := ABS(x - y);

If you declare your own version of ABS, your local declaration overrides the global 
declaration. You can still invoke the built-in function by specifying its full name:

abs_diff := STANDARD.ABS(x - y);

Most built-in functions are overloaded. For example, package STANDARD contains the 
following declarations:

FUNCTION TO_CHAR (right DATE) RETURN VARCHAR2;
FUNCTION TO_CHAR (left NUMBER) RETURN VARCHAR2;
FUNCTION TO_CHAR (left DATE, right VARCHAR2) RETURN VARCHAR2;
FUNCTION TO_CHAR (left NUMBER, right VARCHAR2) RETURN VARCHAR2;



Overview of Product-Specific PL/SQL Packages

10-10 Oracle Database PL/SQL Language Reference

PL/SQL resolves a call to TO_CHAR by matching the number and data types of the 
formal and actual parameters.

Overview of Product-Specific PL/SQL Packages
Various Oracle tools are supplied with product-specific packages that define 
application programming interfaces (APIs) that you can invoke from PL/SQL, SQL, 
Java, and other programming environments. This section briefly describes the 
following widely used product-specific packages:

■ DBMS_ALERT Package

■ DBMS_OUTPUT Package

■ DBMS_PIPE Package

■ DBMS_CONNECTION_POOL Package

■ HTF and HTP Packages

■ UTL_FILE Package

■ UTL_HTTP Package

■ UTL_SMTP Package

For more information about these and other product-specific packages, see Oracle 
Database PL/SQL Packages and Types Reference.

DBMS_ALERT Package
DBMS_ALERT package lets you use database triggers to alert an application when 
specific database values change. The alerts are transaction based and asynchronous 
(that is, they operate independently of any timing mechanism). For example, a 
company might use this package to update the value of its investment portfolio as new 
stock and bond quotes arrive. 

DBMS_OUTPUT Package
DBMS_OUTPUT package enables you to display output from PL/SQL blocks, 
subprograms, packages, and triggers. The package is especially useful for displaying 
PL/SQL debugging information. The procedure PUT_LINE outputs information to a 
buffer that can be read by another trigger, subprogram, or package. You display the 
information by invoking the procedure GET_LINE or by setting SERVEROUTPUT ON in 
SQL*Plus. Example 10–4 shows how to display output from a PL/SQL block.

Example 10–4 Using PUT_LINE in the DBMS_OUTPUT Package

REM set server output to ON to display output from DBMS_OUTPUT
SET SERVEROUTPUT ON
BEGIN
  DBMS_OUTPUT.PUT_LINE
    ('These are the tables that ' || USER || ' owns:');
  FOR item IN (SELECT table_name FROM user_tables)
    LOOP
      DBMS_OUTPUT.PUT_LINE(item.table_name);
    END LOOP;
END;
/



Overview of Product-Specific PL/SQL Packages

Using PL/SQL Packages 10-11

DBMS_PIPE Package
DBMS_PIPE package allows different sessions to communicate over named pipes. (A 
pipe is an area of memory used by one process to pass information to another.) You 
can use the procedures PACK_MESSAGE and SEND_MESSAGE to pack a message into a 
pipe, then send it to another session in the same instance or to a waiting application 
such as a Linux or UNIX program.

At the other end of the pipe, you can use the procedures RECEIVE_MESSAGE and 
UNPACK_MESSAGE to receive and unpack (read) the message. Named pipes are useful 
in many ways. For example, you can write a C program to collect data, then send it 
through pipes to stored subprograms in the database. 

DBMS_CONNECTION_POOL Package
DBMS_CONNECTION_POOL package is meant for managing the Database Resident 
Connection Pool, which is shared by multiple middle-tier processes. The database 
administrator uses procedures in DBMS_CONNECTION_POOL to start and stop the 
database resident connection pool and to configure pool parameters such as size and 
time limit.

HTF and HTP Packages
HTF and HTP packages enable your PL/SQL programs to generate HTML tags.

UTL_FILE Package
UTL_FILE pagkage lets PL/SQL programs read and write operating system text files. 
It provides a restricted version of standard operating system stream file I/O, including 
open, put, get, and close operations. 

When you want to read or write a text file, you invoke the function FOPEN, which 
returns a file handle for use in subsequent subprogram calls. For example, the 
procedure PUT_LINE writes a text string and line terminator to an open file, and the 
procedure GET_LINE reads a line of text from an open file into an output buffer.

UTL_HTTP Package
UTL_HTTP package enables your PL/SQL programs to make hypertext transfer 
protocol (HTTP) callouts. It can retrieve data from the Internet or invoke Oracle Web 
Server cartridges. The package has multiple entry points, each of which accepts a URL 
(uniform resource locator) string, contacts the specified site, and returns the requested 
data, which is usually in hypertext markup language (HTML) format.

UTL_SMTP Package
UTL_SMTP package enables your PL/SQL programs to send electronic mails (e-mails) 
over Simple Mail Transfer Protocol (SMTP). The package provides interfaces to the 
SMTP commands for an e-mail client to dispatch e-mails to a SMTP server.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for a detailed 
description of the DBMS_CONNECTION_POOL package

■ Oracle Database Administrator's Guide for information about 
managing the Database Resident Connection Pool



Guidelines for Writing PL/SQL Packages

10-12 Oracle Database PL/SQL Language Reference

Guidelines for Writing PL/SQL Packages
When writing packages, keep them general so they can be reused in future 
applications. Become familiar with the packages that Oracle supplies, and avoid 
writing packages that duplicate features already provided by Oracle.

Design and define package specs before the package bodies. Place in a spec only those 
things that must be visible to invoking programs. That way, other developers cannot 
build unsafe dependencies on your implementation details.

To reduce the need for recompiling when code is changed, place as few items as 
possible in a package spec. Changes to a package body do not require recompiling 
invoking subprograms. Changes to a package spec require the database to recompile 
every stored subprogram that references the package.

Separating Cursor Specifications and Bodies with PL/SQL Packages
You can separate a cursor specification ("spec") from its body for placement in a 
package. That way, you can change the cursor body without having to change the 
cursor spec. For information about the cursor syntax, see Explicit Cursor on 
page 13-47.

In Example 10–5, you use the %ROWTYPE attribute to provide a record type that 
represents a row in the database table employees.

Example 10–5 Separating Cursor Specifications with Packages

CREATE PACKAGE emp_stuff AS
  -- Declare cursor spec
  CURSOR c1 RETURN employees%ROWTYPE;
END emp_stuff;
/
CREATE PACKAGE BODY emp_stuff AS
  CURSOR c1 RETURN employees%ROWTYPE IS
    -- Define cursor body
    SELECT * FROM employees WHERE salary > 2500;
END emp_stuff;
/

The cursor spec has no SELECT statement because the RETURN clause specifies the 
data type of the return value. However, the cursor body must have a SELECT 
statement and the same RETURN clause as the cursor spec. Also, the number and data 
types of items in the SELECT list and the RETURN clause must match. 

Packaged cursors increase flexibility. For example, you can change the cursor body in 
the last example, without having to change the cursor spec.

From a PL/SQL block or subprogram, you use dot notation to reference a packaged 
cursor, as the following example shows:

DECLARE
   emp_rec employees%ROWTYPE;
BEGIN
   OPEN emp_stuff.c1;
   LOOP
      FETCH emp_stuff.c1 INTO emp_rec;
-- do processing here ...
      EXIT WHEN emp_stuff.c1%NOTFOUND;
   END LOOP;
   CLOSE emp_stuff.c1;



Separating Cursor Specifications and Bodies with PL/SQL Packages

Using PL/SQL Packages 10-13

END;
/

The scope of a packaged cursor is not limited to a PL/SQL block. When you open a 
packaged cursor, it remains open until you close it or you disconnect from the session.



Separating Cursor Specifications and Bodies with PL/SQL Packages

10-14 Oracle Database PL/SQL Language Reference



11

Handling PL/SQL Errors 11-1

11 Handling PL/SQL Errors

PL/SQL run-time errors can arise from design faults, coding mistakes, hardware 
failures, and many other sources. You cannot anticipate all possible errors, but you can 
code exception handlers that allow your program to continue to operate in the 
presence of errors.

Topics:

■ Overview of PL/SQL Run-Time Error Handling

■ Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions

■ Advantages of PL/SQL Exceptions

■ Predefined PL/SQL Exceptions

■ Defining Your Own PL/SQL Exceptions

■ How PL/SQL Exceptions Are Raised

■ How PL/SQL Exceptions Propagate

■ Reraising a PL/SQL Exception

■ Handling Raised PL/SQL Exceptions

■ Overview of PL/SQL Compile-Time Warnings

Overview of PL/SQL Run-Time Error Handling
In PL/SQL, an error condition is called an exception. An exception can be either 
internally defined (by the run-time system) or user-defined. Examples of internally 
defined exceptions are ORA-22056 (value string is divided by zero) and ORA-27102 
(out of memory). Some common internal exceptions have predefined names, such as 
ZERO_DIVIDE and STORAGE_ERROR. The other internal exceptions can be given 
names.

You can define your own exceptions in the declarative part of any PL/SQL block, 
subprogram, or package. For example, you might define an exception named 
insufficient_funds to flag overdrawn bank accounts. User-defined exceptions 
must be given names.

When an error occurs, an exception is raised. That is, normal execution stops and 
control transfers to the exception-handling part of your PL/SQL block or subprogram. 
Internal exceptions are raised implicitly (automatically) by the run-time system. 
User-defined exceptions must be raised explicitly by RAISE statements or invocations 
of the procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR.



Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions

11-2 Oracle Database PL/SQL Language Reference

To handle raised exceptions, you write separate routines called exception handlers. 
After an exception handler runs, the current block stops executing and the enclosing 
block resumes with the next statement. If there is no enclosing block, control returns to 
the host environment. For information about managing errors when using BULK 
COLLECT, see Handling FORALL Exceptions (%BULK_EXCEPTIONS Attribute) on 
page 12-16.

Example 11–1 calculates a price-to-earnings ratio for a company. If the company has 
zero earnings, the division operation raises the predefined exception ZERO_DIVIDE, 
the execution of the block is interrupted, and control is transferred to the exception 
handlers. The optional OTHERS handler catches all exceptions that the block does not 
name specifically. 

Example 11–1 Run-Time Error Handling

DECLARE
   stock_price NUMBER := 9.73;
   net_earnings NUMBER := 0;
   pe_ratio NUMBER;
BEGIN
-- Calculation might cause division-by-zero error.
   pe_ratio := stock_price / net_earnings;
   DBMS_OUTPUT.PUT_LINE('Price/earnings ratio = ' || pe_ratio);
EXCEPTION  -- exception handlers begin
-- Only one of the WHEN blocks is executed.
   WHEN ZERO_DIVIDE THEN  -- handles 'division by zero' error
      DBMS_OUTPUT.PUT_LINE('Company must have had zero earnings.');
      pe_ratio := NULL;
   WHEN OTHERS THEN  -- handles all other errors
      DBMS_OUTPUT.PUT_LINE('Some other kind of error occurred.');
      pe_ratio := NULL;
END;  -- exception handlers and block end here
/

The last example illustrates exception handling. With better error checking, you can 
avoided the exception entirely, by substituting a null for the answer if the denominator 
was zero, as shown in the following example.

DECLARE
   stock_price NUMBER := 9.73;
   net_earnings NUMBER := 0;
   pe_ratio NUMBER;
BEGIN
   pe_ratio :=
      CASE net_earnings
         WHEN 0 THEN NULL
         ELSE stock_price / net_earnings
      end;
END;
/

Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions
Because reliability is crucial for database programs, use both error checking and 
exception handling to ensure your program can handle all possibilities:

■ Add exception handlers whenever errors can occur.

Errors are especially likely during arithmetic calculations, string manipulation, 
and database operations. Errors can also occur at other times, for example if a 



Advantages of PL/SQL Exceptions

Handling PL/SQL Errors 11-3

hardware failure with disk storage or memory causes a problem that has nothing 
to do with your code; but your code still must take corrective action.

■ Add error-checking code whenever bad input data can cause an error.

Expect that at some time, your code will be passed incorrect or null parameters, 
that your queries will return no rows or more rows than you expect.

Test your code with different combinations of bad data to see what potential errors 
arise.

■ Make your programs robust enough to work even if the database is not in the state 
you expect.

For example, perhaps a table you query will have columns added or deleted, or 
their types changed. You can avoid such problems by declaring individual 
variables with %TYPE qualifiers, and declaring records to hold query results with 
%ROWTYPE qualifiers.

■ Handle named exceptions whenever possible, instead of using WHEN OTHERS in 
exception handlers.

Learn the names and causes of the predefined exceptions. If your database 
operations might cause particular ORA-n errors, associate names with these errors 
so you can write handlers for them. (You will learn how to do that later in this 
chapter.)

■ Write out debugging information in your exception handlers.

You might store such information in a separate table. If so, do it by invoking a 
subprogram declared with the PRAGMA AUTONOMOUS_TRANSACTION, so that you 
can commit your debugging information, even if you roll back the work that the 
main subprogram was doing.

■ Carefully consider whether each exception handler should commit the transaction, 
roll it back, or let it continue.

No matter how severe the error is, you want to leave the database in a consistent 
state and avoid storing any bad data.

Advantages of PL/SQL Exceptions
Using exceptions for error handling has several advantages. With exceptions, you can 
reliably handle potential errors from many statements with a single exception handler, 
as in Example 11–2.

Example 11–2 Managing Multiple Errors with a Single Exception Handler

DECLARE
   emp_column       VARCHAR2(30) := 'last_name';
   table_name       VARCHAR2(30) := 'emp';
   temp_var         VARCHAR2(30);
BEGIN
  temp_var := emp_column;
  SELECT COLUMN_NAME INTO temp_var FROM USER_TAB_COLS 
    WHERE TABLE_NAME = 'EMPLOYEES'
    AND COLUMN_NAME = UPPER(emp_column);
-- processing here
  temp_var := table_name;
  SELECT OBJECT_NAME INTO temp_var FROM USER_OBJECTS
    WHERE OBJECT_NAME = UPPER(table_name)
    AND OBJECT_TYPE = 'TABLE';



Predefined PL/SQL Exceptions

11-4 Oracle Database PL/SQL Language Reference

-- processing here
EXCEPTION
  -- Catches all 'no data found' errors
   WHEN NO_DATA_FOUND THEN
     DBMS_OUTPUT.PUT_LINE
       ('No Data found for SELECT on ' || temp_var);
END;
/

Instead of checking for an error at every point where it might occur, add an exception 
handler to your PL/SQL block. If the exception is ever raised in that block (including 
inside a sub-block), it will be handled.

Sometimes the error is not immediately obvious, and cannot be detected until later 
when you perform calculations using bad data. Again, a single exception handler can 
trap all division-by-zero errors, bad array subscripts, and so on.

If you must check for errors at a specific spot, you can enclose a single statement or a 
group of statements inside its own BEGIN-END block with its own exception handler. 
You can make the checking as general or as precise as you like.

Isolating error-handling routines makes the rest of the program easier to read and 
understand.

Predefined PL/SQL Exceptions
An internal exception is raised automatically if your PL/SQL program violates a 
database rule or exceeds a system-dependent limit. PL/SQL predefines some common 
ORA-n errors as exceptions. For example, PL/SQL raises the predefined exception NO_
DATA_FOUND if a SELECT INTO statement returns no rows. 

You can use the pragma EXCEPTION_INIT to associate exception names with other 
Oracle Database error codes that you can anticipate. To handle unexpected Oracle 
Database errors, you can use the OTHERS handler. Within this handler, you can invoke 
the functions SQLCODE and SQLERRM to return the Oracle Database error code and 
message text. Once you know the error code, you can use it with pragma EXCEPTION_
INIT and write a handler specifically for that error.

PL/SQL declares predefined exceptions globally in package STANDARD. You need not 
declare them yourself. You can write handlers for predefined exceptions using the 
names in Table 11–1.

Table 11–1 Predefined PL/SQL Exceptions

Exception Name ORA Error SQLCODE Raised When ...

ACCESS_INTO_NULL 06530 -6530 A program attempts to assign values to the attributes of 
an uninitialized object

CASE_NOT_FOUND 06592 -6592 None of the choices in the WHEN clauses of a CASE 
statement is selected, and there is no ELSE clause.

COLLECTION_IS_NULL 06531 -6531 A program attempts to apply collection methods other 
than EXISTS to an uninitialized nested table or varray, 
or the program attempts to assign values to the 
elements of an uninitialized nested table or varray.

CURSOR_ALREADY_OPEN 06511 -6511 A program attempts to open an already open cursor. A 
cursor must be closed before it can be reopened. A 
cursor FOR loop automatically opens the cursor to 
which it refers, so your program cannot open that 
cursor inside the loop.



Predefined PL/SQL Exceptions

Handling PL/SQL Errors 11-5

DUP_VAL_ON_INDEX 00001 -1 A program attempts to store duplicate values in a 
column that is constrained by a unique index.

INVALID_CURSOR 01001 -1001 A program attempts a cursor operation that is not 
allowed, such as closing an unopened cursor. 

INVALID_NUMBER 01722 -1722 n a SQL statement, the conversion of a character string 
into a number fails because the string does not 
represent a valid number. (In procedural statements, 
VALUE_ERROR is raised.) This exception is also raised 
when the LIMIT-clause expression in a bulk FETCH 
statement does not evaluate to a positive number.

LOGIN_DENIED 01017 -1017 A program attempts to log on to the database with an 
invalid username or password. 

NO_DATA_FOUND 01403 +100 A SELECT INTO statement returns no rows, or your 
program references a deleted element in a nested table 
or an uninitialized element in an index-by table.

Because this exception is used internally by some SQL 
functions to signal completion, you must not rely on 
this exception being propagated if you raise it within a 
function that is invoked as part of a query.

NOT_LOGGED_ON 01012 -1012 A program issues a database call without being 
connected to the database. 

PROGRAM_ERROR 06501 -6501 PL/SQL has an internal problem. 

ROWTYPE_MISMATCH 06504 -6504 The host cursor variable and PL/SQL cursor variable 
involved in an assignment have incompatible return 
types. When an open host cursor variable is passed to a 
stored subprogram, the return types of the actual and 
formal parameters must be compatible.

SELF_IS_NULL 30625 -30625 A program attempts to invoke a MEMBER method, but 
the instance of the object type was not initialized. The 
built-in parameter SELF points to the object, and is 
always the first parameter passed to a MEMBER method.

STORAGE_ERROR 06500 -6500 PL/SQL ran out of memory or memory was corrupted.

SUBSCRIPT_BEYOND_COUNT 06533 -6533 A program references a nested table or varray element 
using an index number larger than the number of 
elements in the collection.

SUBSCRIPT_OUTSIDE_LIMIT 06532 -6532 A program references a nested table or varray element 
using an index number (-1 for example) that is outside 
the legal range.

SYS_INVALID_ROWID 01410 -1410 The conversion of a character string into a universal 
rowid fails because the character string does not 
represent a valid rowid. 

TIMEOUT_ON_RESOURCE 00051 -51 A time out occurs while the database is waiting for a 
resource.

Table 11–1 (Cont.) Predefined PL/SQL Exceptions

Exception Name ORA Error SQLCODE Raised When ...



Defining Your Own PL/SQL Exceptions

11-6 Oracle Database PL/SQL Language Reference

Defining Your Own PL/SQL Exceptions
PL/SQL lets you define exceptions of your own. Unlike a predefined exception, a 
user-defined exception must be declared and then raised explicitly, using either a 
RAISE statement or the procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR. 
The latter lets you associate an error message with the user-defined exception.

Topics:

■ Declaring PL/SQL Exceptions

■ Scope Rules for PL/SQL Exceptions

■ Associating a PL/SQL Exception with a Number (EXCEPTION_INIT Pragma)

■ Defining Your Own Error Messages (RAISE_APPLICATION_ERROR Procedure)

■ Redeclaring Predefined Exceptions

Declaring PL/SQL Exceptions
Exceptions can be declared only in the declarative part of a PL/SQL block, 
subprogram, or package. You declare an exception by introducing its name, followed 
by the keyword EXCEPTION. In the following example, you declare an exception 
named past_due: 

DECLARE
   past_due EXCEPTION;

Exception and variable declarations are similar. But remember, an exception is an error 
condition, not a data item. Unlike variables, exceptions cannot appear in assignment 
statements or SQL statements. However, the same scope rules apply to variables and 
exceptions.

Scope Rules for PL/SQL Exceptions
You cannot declare an exception twice in the same block. You can, however, declare the 
same exception in two different blocks. 

Exceptions declared in a block are considered local to that block and global to all its 
sub-blocks. Because a block can reference only local or global exceptions, enclosing 
blocks cannot reference exceptions declared in a sub-block.

If you redeclare a global exception in a sub-block, the local declaration prevails. The 
sub-block cannot reference the global exception, unless the exception is declared in a 

TOO_MANY_ROWS 01422 -1422 A SELECT INTO statement returns more than one row.

VALUE_ERROR 06502 -6502 An arithmetic, conversion, truncation, or 
size-constraint error occurs. For example, when your 
program selects a column value into a character 
variable, if the value is longer than the declared length 
of the variable, PL/SQL stops the assignment and 
raises VALUE_ERROR. In procedural statements, 
VALUE_ERROR is raised if the conversion of a character 
string into a number fails. (In SQL statements, 
INVALID_NUMBER is raised.)

ZERO_DIVIDE 01476 -1476 A program attempts to divide a number by zero.

Table 11–1 (Cont.) Predefined PL/SQL Exceptions

Exception Name ORA Error SQLCODE Raised When ...



Defining Your Own PL/SQL Exceptions

Handling PL/SQL Errors 11-7

labeled block and you qualify its name with the block label block_
label.exception_name.

Example 11–3 illustrates the scope rules.

Example 11–3 Scope of PL/SQL Exceptions

DECLARE
   past_due EXCEPTION;
   acct_num NUMBER;
BEGIN
   DECLARE  ---------- sub-block begins
      past_due EXCEPTION;  -- this declaration prevails
      acct_num NUMBER;
     due_date DATE := SYSDATE - 1;
     todays_date DATE := SYSDATE;
   BEGIN
      IF due_date < todays_date THEN
         RAISE past_due;  -- this is not handled
      END IF;
   END;  ------------- sub-block ends
EXCEPTION
  -- Does not handle raised exception
  WHEN past_due THEN
    DBMS_OUTPUT.PUT_LINE
      ('Handling PAST_DUE exception.');
  WHEN OTHERS THEN
    DBMS_OUTPUT.PUT_LINE
      ('Could not recognize PAST_DUE_EXCEPTION in this scope.');
END;
/

The enclosing block does not handle the raised exception because the declaration of 
past_due in the sub-block prevails. Though they share the same name, the two 
past_due exceptions are different, just as the two acct_num variables share the same 
name but are different variables. Thus, the RAISE statement and the WHEN clause refer 
to different exceptions. To have the enclosing block handle the raised exception, you 
must remove its declaration from the sub-block or define an OTHERS handler.

Associating a PL/SQL Exception with a Number (EXCEPTION_INIT Pragma)
To handle error conditions (typically ORA-n messages) that have no predefined name, 
you must use the OTHERS handler or the pragma EXCEPTION_INIT. A pragma is a 
compiler directive that is processed at compile time, not at run time.

In PL/SQL, the pragma EXCEPTION_INIT tells the compiler to associate an exception 
name with an Oracle Database error number. That lets you refer to any internal 
exception by name and to write a specific handler for it. When you see an error stack, 
or sequence of error messages, the one on top is the one that you can trap and handle.

You code the pragma EXCEPTION_INIT in the declarative part of a PL/SQL block, 
subprogram, or package using the following syntax:

PRAGMA EXCEPTION_INIT(exception_name, -Oracle_error_number);

where exception_name is the name of a previously declared exception and the 
number is a negative value corresponding to an ORA-n error. The pragma must 
appear somewhere after the exception declaration in the same declarative section, as 
shown in Example 11–4.



Defining Your Own PL/SQL Exceptions

11-8 Oracle Database PL/SQL Language Reference

Example 11–4 Using PRAGMA EXCEPTION_INIT

DECLARE
   deadlock_detected EXCEPTION;
   PRAGMA EXCEPTION_INIT(deadlock_detected, -60);
BEGIN
   NULL; -- Some operation that causes an ORA-00060 error
EXCEPTION
   WHEN deadlock_detected THEN
      NULL; -- handle the error
END;
/

Defining Your Own Error Messages (RAISE_APPLICATION_ERROR Procedure)
The RAISE_APPLICATION_ERROR procedure lets you issue user-defined ORA-n error 
messages from stored subprograms. That way, you can report errors to your 
application and avoid returning unhandled exceptions.

To invoke RAISE_APPLICATION_ERROR, use the following syntax:

raise_application_error(
      error_number, message[, {TRUE | FALSE}]);

where error_number is a negative integer in the range -20000..-20999 and message 
is a character string up to 2048 bytes long. If the optional third parameter is TRUE, the 
error is placed on the stack of previous errors. If the parameter is FALSE (the default), 
the error replaces all previous errors. RAISE_APPLICATION_ERROR is part of package 
DBMS_STANDARD, and as with package STANDARD, you need not qualify references to 
it. 

An application can invoke raise_application_error only from an executing 
stored subprogram (or method). When invoked, raise_application_error ends 
the subprogram and returns a user-defined error number and message to the 
application. The error number and message can be trapped like any Oracle Database 
error. 

In Example 11–5, you invoke RAISE_APPLICATION_ERROR if an error condition of 
your choosing happens (in this case, if the current schema owns less than 1000 tables).

Example 11–5 Raising an Application Error with RAISE_APPLICATION_ERROR

DECLARE
   num_tables NUMBER;
BEGIN
   SELECT COUNT(*) INTO num_tables FROM USER_TABLES;
   IF num_tables < 1000 THEN
      /* Issue your own error code (ORA-20101)
         with your own error message. You need not
          qualify RAISE_APPLICATION_ERROR with
          DBMS_STANDARD */
      RAISE_APPLICATION_ERROR
        (-20101, 'Expecting at least 1000 tables');
   ELSE
      -- Do rest of processing (for nonerror case)
      NULL;
   END IF;
END;
/



How PL/SQL Exceptions Are Raised

Handling PL/SQL Errors 11-9

The invoking application gets a PL/SQL exception, which it can process using the 
error-reporting functions SQLCODE and SQLERRM in an OTHERS handler. Also, it can 
use the pragma EXCEPTION_INIT to map specific error numbers returned by RAISE_
APPLICATION_ERROR to exceptions of its own, as the following Pro*C example 
shows:

EXEC SQL EXECUTE
  /* Execute embedded PL/SQL block using host
     variables v_emp_id and v_amount, which were
     assigned values in the host environment. */
DECLARE
  null_salary EXCEPTION;
  /* Map error number returned by RAISE_APPLICATION_ERROR
     to user-defined exception. */
  PRAGMA EXCEPTION_INIT(null_salary, -20101);
  BEGIN
    raise_salary(:v_emp_id, :v_amount);
  EXCEPTION
    WHEN null_salary THEN
      INSERT INTO emp_audit VALUES (:v_emp_id, ...);
  END;
END-EXEC;

This technique allows the invoking application to handle error conditions in specific 
exception handlers.

Redeclaring Predefined Exceptions
Remember, PL/SQL declares predefined exceptions globally in package STANDARD, so 
you need not declare them yourself. Redeclaring predefined exceptions is error prone 
because your local declaration overrides the global declaration. For example, if you 
declare an exception named invalid_number and then PL/SQL raises the 
predefined exception INVALID_NUMBER internally, a handler written for INVALID_
NUMBER will not catch the internal exception. In such cases, you must use dot notation 
to specify the predefined exception, as follows:

EXCEPTION
  WHEN invalid_number OR STANDARD.INVALID_NUMBER THEN
    -- handle the error
END;

How PL/SQL Exceptions Are Raised
Internal exceptions are raised implicitly by the run-time system, as are user-defined 
exceptions that you have associated with an Oracle Database error number using 
EXCEPTION_INIT. Other user-defined exceptions must be raised explicitly, with 
either RAISE statements or invocations of the procedure DBMS_STANDARD.RAISE_
APPLICATION_ERROR.

Raise an exception in a PL/SQL block or subprogram only when an error makes it 
undesirable or impossible to finish processing. You can explicitly raise a given 
exception anywhere within the scope of that exception. In Example 11–6, you alert 
your PL/SQL block to a user-defined exception named out_of_stock.

Example 11–6 Using RAISE to Raise a User-Defined Exception

DECLARE
   out_of_stock   EXCEPTION;
   number_on_hand NUMBER := 0;



How PL/SQL Exceptions Propagate

11-10 Oracle Database PL/SQL Language Reference

BEGIN
   IF number_on_hand < 1 THEN
      RAISE out_of_stock; -- raise an exception that you defined
   END IF;
EXCEPTION
   WHEN out_of_stock THEN
      -- handle the error
      DBMS_OUTPUT.PUT_LINE('Encountered out-of-stock error.');
END;
/

You can also raise a predefined exception explicitly. That way, an exception handler 
written for the predefined exception can process other errors, as Example 11–7 shows.

Example 11–7 Using RAISE to Raise a Predefined Exception

DECLARE
   acct_type INTEGER := 7;
BEGIN
   IF acct_type NOT IN (1, 2, 3) THEN
      RAISE INVALID_NUMBER;  -- raise predefined exception
   END IF;
EXCEPTION
   WHEN INVALID_NUMBER THEN
      DBMS_OUTPUT.PUT_LINE
        ('HANDLING INVALID INPUT BY ROLLING BACK.');
      ROLLBACK;
END;
/

How PL/SQL Exceptions Propagate
When an exception is raised, if PL/SQL cannot find a handler for it in the current 
block or subprogram, the exception propagates. That is, the exception reproduces itself 
in successive enclosing blocks until a handler is found or there are no more blocks to 
search. If no handler is found, PL/SQL returns an unhandled exception error to the 
host environment. 

Exceptions cannot propagate across remote subprogram calls done through database 
links. A PL/SQL block cannot catch an exception raised by a remote subprogram. For 
a workaround, see Defining Your Own Error Messages (RAISE_APPLICATION_
ERROR Procedure) on page 11-8. 

Figure 11–1, Figure 11–2, and Figure 11–3 illustrate the basic propagation rules.



How PL/SQL Exceptions Propagate

Handling PL/SQL Errors 11-11

Figure 11–1 Propagation Rules: Example 1

Figure 11–2 Propagation Rules: Example 2

BEGIN
    IF X = 1 THEN
         RAISE A;
    ELSIF X = 2 THEN
         RAISE B;
    ELSE
         RAISE C;
     END IF;
    ...

EXCEPTION
    WHEN A THEN
        ...
END;

BEGIN

EXCEPTION
    WHEN B THEN
        ...
END;

Exception A is handled
locally, then execution resumes
in the enclosing block 

BEGIN
    IF X = 1 THEN
         RAISE A;
    ELSIF X = 2 THEN
         RAISE B;
    ELSE
         RAISE C;
     END IF;
    ...

EXCEPTION
    WHEN A THEN
        ...
END;

BEGIN

EXCEPTION
    WHEN B THEN
        ...
END;

Exception B is handled,
then control passes to the
host environment 

Exception B propagates to 
the first enclosing block with
an appropriate handler 



Reraising a PL/SQL Exception

11-12 Oracle Database PL/SQL Language Reference

Figure 11–3 Propagation Rules: Example 3

An exception can propagate beyond its scope, that is, beyond the block in which it was 
declared, as shown in Example 11–8.

Example 11–8 Scope of an Exception

BEGIN
   DECLARE  ---------- sub-block begins
     past_due EXCEPTION;
     due_date DATE := trunc(SYSDATE) - 1;
     todays_date DATE := trunc(SYSDATE);
   BEGIN
     IF due_date < todays_date THEN
        RAISE past_due;
     END IF;
   END;  ------------- sub-block ends
EXCEPTION
   WHEN OTHERS THEN
      ROLLBACK;
END;
/

Because the block that declares the exception past_due has no handler for it, the 
exception propagates to the enclosing block. But the enclosing block cannot reference 
the name PAST_DUE, because the scope where it was declared no longer exists. Once 
the exception name is lost, only an OTHERS handler can catch the exception. If there is 
no handler for a user-defined exception, the invoking application gets ORA-06510.

Reraising a PL/SQL Exception
Sometimes, you want to reraise an exception, that is, handle it locally, then pass it to an 
enclosing block. For example, you might want to roll back a transaction in the current 
block, then log the error in an enclosing block.

To reraise an exception, use a RAISE statement without an exception name, which is 
allowed only in an exception handler, as in Example 11–9.

BEGIN
    IF X = 1 THEN
         RAISE A;
    ELSIF X = 2 THEN
         RAISE B;
    ELSE
         RAISE C;
     END IF;
    ...

EXCEPTION
    WHEN A THEN
        ...
END;

BEGIN

EXCEPTION
    WHEN B THEN
        ...
END;

Exception C has no
handler, so an unhandled
exception is returned to the
host environment 



Handling Raised PL/SQL Exceptions

Handling PL/SQL Errors 11-13

Example 11–9 Reraising a PL/SQL Exception

DECLARE
  salary_too_high  EXCEPTION;
  current_salary NUMBER := 20000;
  max_salary NUMBER := 10000;
  erroneous_salary NUMBER;
BEGIN
  BEGIN  ---------- sub-block begins
    IF current_salary > max_salary THEN
      RAISE salary_too_high;  -- raise the exception
    END IF;
  EXCEPTION
    WHEN salary_too_high THEN
      -- first step in handling the error
      DBMS_OUTPUT.PUT_LINE('Salary ' || erroneous_salary ||
      ' is out of range.');
      DBMS_OUTPUT.PUT_LINE
        ('Maximum salary is ' || max_salary || '.');
      RAISE;  -- reraise the current exception
  END;  ------------ sub-block ends
EXCEPTION
  WHEN salary_too_high THEN
    -- handle the error more thoroughly
    erroneous_salary := current_salary;
    current_salary := max_salary;
    DBMS_OUTPUT.PUT_LINE('Revising salary from ' || erroneous_salary ||
       ' to ' || current_salary || '.');
END;
/

Handling Raised PL/SQL Exceptions
When an exception is raised, normal execution of your PL/SQL block or subprogram 
stops and control transfers to its exception-handling part, which is formatted as 
follows:

EXCEPTION
  WHEN exception1 THEN -- handler for exception1
    sequence_of_statements1
  WHEN exception2 THEN -- another handler for exception2
    sequence_of_statements2
  ...
  WHEN OTHERS THEN -- optional handler for all other errors
    sequence_of_statements3
END;

To catch raised exceptions, you write exception handlers. Each handler consists of a 
WHEN clause, which specifies an exception, followed by a sequence of statements to be 
executed when that exception is raised. These statements complete execution of the 
block or subprogram; control does not return to where the exception was raised. In 
other words, you cannot resume processing where you left off. 

The optional OTHERS exception handler, which is always the last handler in a block or 
subprogram, acts as the handler for all exceptions not named specifically. Thus, a block 
or subprogram can have only one OTHERS handler. Use of the OTHERS handler 
guarantees that no exception will go unhandled.



Handling Raised PL/SQL Exceptions

11-14 Oracle Database PL/SQL Language Reference

If you want two or more exceptions to execute the same sequence of statements, list 
the exception names in the WHEN clause, separating them by the keyword OR, as 
follows: 

EXCEPTION
  WHEN over_limit OR under_limit OR VALUE_ERROR THEN
    -- handle the error

If any of the exceptions in the list is raised, the associated sequence of statements is 
executed. The keyword OTHERS cannot appear in the list of exception names; it must 
appear by itself. You can have any number of exception handlers, and each handler 
can associate a list of exceptions with a sequence of statements. However, an exception 
name can appear only once in the exception-handling part of a PL/SQL block or 
subprogram. 

The usual scoping rules for PL/SQL variables apply, so you can reference local and 
global variables in an exception handler. However, when an exception is raised inside 
a cursor FOR loop, the cursor is closed implicitly before the handler is invoked. 
Therefore, the values of explicit cursor attributes are not available in the handler.

Topics:

■ Exceptions Raised in Declarations

■ Handling Exceptions Raised in Exception Handlers

■ Branching To or from an Exception Handler

■ Retrieving the Error Code and Error Message

■ Catching Unhandled Exceptions

■ Guidelines for Handling PL/SQL Errors

Exceptions Raised in Declarations
Exceptions can be raised in declarations by faulty initialization expressions. For 
example, the declaration in Example 11–10 raises an exception because the constant 
credit_limit cannot store numbers larger than 999. 

Example 11–10 Raising an Exception in a Declaration

DECLARE
  -- Raises an error:
  credit_limit CONSTANT NUMBER(3) := 5000;
BEGIN
  NULL;
EXCEPTION
  WHEN OTHERS THEN
    -- Cannot catch exception. This handler is never invoked.
    DBMS_OUTPUT.PUT_LINE
      ('Can''t handle an exception in a declaration.');
END;
/

Handlers in the current block cannot catch the raised exception because an exception 
raised in a declaration propagates immediately to the enclosing block.

Handling Exceptions Raised in Exception Handlers
When an exception occurs within an exception handler, that same handler cannot 
catch the exception. An exception raised inside a handler propagates immediately to 



Handling Raised PL/SQL Exceptions

Handling PL/SQL Errors 11-15

the enclosing block, which is searched to find a handler for this new exception. From 
there on, the exception propagates normally. For example:

EXCEPTION
  WHEN INVALID_NUMBER THEN
    INSERT INTO ... -- might raise DUP_VAL_ON_INDEX
  WHEN DUP_VAL_ON_INDEX THEN -- cannot catch exception
END;

Branching To or from an Exception Handler
A GOTO statement can branch from an exception handler into an enclosing block.

A GOTO statement cannot branch into an exception handler, or from an exception 
handler into the current block.

Retrieving the Error Code and Error Message
In an exception handler, you can retrieve the error code with the built-in function 
SQLCODE. To retrieve the associated error message, you can use either the packaged 
function DBMS_UTILTY.FORMAT_ERROR_STACK or the built-in function SQLERRM.

SQLERRM returns a maximum of 512 bytes, which is the maximum length of an Oracle 
Database error message (including the error code, nested messages, and message 
inserts, such as table and column names). DBMS_UTILTY.FORMAT_ERROR_STACK 
returns the full error stack, up to 2000 bytes. Therefore, DBMS_UTILTY.FORMAT_
ERROR_STACK is recommended over SQLERRM, except when using the FORALL 
statement with its SAVE EXCEPTIONS clause. With SAVE EXCEPTIONS, use SQLERRM, 
as in Example 12–9 on page 12-16.

A SQL statement cannot invoke SQLCODE or SQLERRM. To use their values in a SQL 
statement, assign them to local variables first, as in Example 11–11.

Example 11–11 Displaying SQLCODE and SQLERRM

SQL> CREATE TABLE errors (
  2    code      NUMBER,
  3    message   VARCHAR2(64),
  4    happened  TIMESTAMP);
 
Table created.
 
SQL> 
SQL> DECLARE
  2    name    EMPLOYEES.LAST_NAME%TYPE;
  3    v_code  NUMBER;

See Also:

■ SQLCODE Function on page 13-116 for syntax and semantics of 
this function

■ SQLERRM Function on page 13-117 for syntax and semantics of 
this function

■ Handling FORALL Exceptions (%BULK_EXCEPTIONS Attribute) 
on page 12-16 for information about using the FORALL statement 
with its SAVE EXCEPTIONS clause

■ Oracle Database PL/SQL Packages and Types Reference for 
information about DBMS_UTILTY.FORMAT_ERROR_STACK



Handling Raised PL/SQL Exceptions

11-16 Oracle Database PL/SQL Language Reference

  4    v_errm  VARCHAR2(64);
  5  BEGIN
  6    SELECT last_name INTO name
  7      FROM EMPLOYEES
  8        WHERE EMPLOYEE_ID = -1;
  9    EXCEPTION
 10      WHEN OTHERS THEN
 11        v_code := SQLCODE;
 12        v_errm := SUBSTR(SQLERRM, 1, 64);
 13        DBMS_OUTPUT.PUT_LINE
 14          ('Error code ' || v_code || ': ' || v_errm);
 15  
 16        /* Invoke another procedure,
 17           declared with PRAGMA AUTONOMOUS_TRANSACTION,
 18           to insert information about errors. */
 19  
 20           INSERT INTO errors
 21             VALUES (v_code, v_errm, SYSTIMESTAMP);
 22  END;
 23  /
Error code 100: ORA-01403: no data found
 
PL/SQL procedure successfully completed.
 
SQL> 

Catching Unhandled Exceptions
Remember, if it cannot find a handler for a raised exception, PL/SQL returns an 
unhandled exception error to the host environment, which determines the outcome. 
For example, in the Oracle Precompilers environment, any database changes made by 
a failed SQL statement or PL/SQL block are rolled back. 

Unhandled exceptions can also affect subprograms. If you exit a subprogram 
successfully, PL/SQL assigns values to OUT parameters. However, if you exit with an 
unhandled exception, PL/SQL does not assign values to OUT parameters (unless they 
are NOCOPY parameters). Also, if a stored subprogram fails with an unhandled 
exception, PL/SQL does not roll back database work done by the subprogram.

You can avoid unhandled exceptions by coding an OTHERS handler at the topmost 
level of every PL/SQL program.

Guidelines for Handling PL/SQL Errors
Topics:

■ Continuing Execution After an Exception Is Raised

■ Retrying a Transaction

■ Using Locator Variables to Identify Exception Locations

Continuing Execution After an Exception Is Raised
An exception handler lets you recover from an otherwise irrecoverable error before 
exiting a block. But when the handler completes, the block is terminated. You cannot 
return to the current block from an exception handler. In the following example, if the 
SELECT INTO statement raises ZERO_DIVIDE, you cannot resume with the INSERT 
statement: 

CREATE TABLE employees_temp AS 



Handling Raised PL/SQL Exceptions

Handling PL/SQL Errors 11-17

  SELECT employee_id, salary,
    commission_pct FROM employees;

DECLARE
  sal_calc NUMBER(8,2);
BEGIN
  INSERT INTO employees_temp VALUES (301, 2500, 0);
  SELECT salary / commission_pct INTO sal_calc
    FROM employees_temp
    WHERE employee_id = 301;
  INSERT INTO employees_temp VALUES (302, sal_calc/100, .1);
EXCEPTION
  WHEN ZERO_DIVIDE THEN
    NULL;
END;
/

You can still handle an exception for a statement, then continue with the next 
statement. Place the statement in its own sub-block with its own exception handlers. If 
an error occurs in the sub-block, a local handler can catch the exception. When the 
sub-block ends, the enclosing block continues to execute at the point where the 
sub-block ends, as shown in Example 11–12.

Example 11–12 Continuing After an Exception

DECLARE
  sal_calc NUMBER(8,2);
BEGIN
  INSERT INTO employees_temp VALUES (303, 2500, 0);
  BEGIN -- sub-block begins
    SELECT salary / commission_pct INTO sal_calc
      FROM employees_temp
      WHERE employee_id = 301;
    EXCEPTION
      WHEN ZERO_DIVIDE THEN
        sal_calc := 2500;
  END; -- sub-block ends
  INSERT INTO employees_temp VALUES (304, sal_calc/100, .1);
EXCEPTION
  WHEN ZERO_DIVIDE THEN
    NULL;
END;
/

In Example 11–12, if the SELECT INTO statement raises a ZERO_DIVIDE exception, the 
local handler catches it and sets sal_calc to 2500. Execution of the handler is 
complete, so the sub-block terminates, and execution continues with the INSERT 
statement.

You can also perform a sequence of DML operations where some might fail, and 
process the exceptions only after the entire operation is complete, as described in 
Handling FORALL Exceptions (%BULK_EXCEPTIONS Attribute) on page 12-16.

Retrying a Transaction
After an exception is raised, rather than abandon your transaction, you might want to 
retry it. The technique is:

See Also: Example 5–38, "Collection Exceptions" on page 5-28



Handling Raised PL/SQL Exceptions

11-18 Oracle Database PL/SQL Language Reference

1. Encase the transaction in a sub-block.

2. Place the sub-block inside a loop that repeats the transaction. 

3. Before starting the transaction, mark a savepoint. If the transaction succeeds, 
commit, then exit from the loop. If the transaction fails, control transfers to the 
exception handler, where you roll back to the savepoint undoing any changes, 
then try to fix the problem.

In Example 11–13, the INSERT statement might raise an exception because of a 
duplicate value in a unique column. In that case, change the value that must be unique 
and continue with the next loop iteration. If the INSERT succeeds, exit from the loop 
immediately. With this technique, use a FOR or WHILE loop to limit the number of 
attempts.

Example 11–13 Retrying a Transaction After an Exception

CREATE TABLE results (res_name VARCHAR(20), res_answer VARCHAR2(3));
CREATE UNIQUE INDEX res_name_ix ON results (res_name);
INSERT INTO results VALUES ('SMYTHE', 'YES');
INSERT INTO results VALUES ('JONES', 'NO');

DECLARE
   name     VARCHAR2(20) := 'SMYTHE';
   answer   VARCHAR2(3) := 'NO';
   suffix   NUMBER := 1;
BEGIN
   FOR i IN 1..5 LOOP  -- try 5 times
      BEGIN  -- sub-block begins
         SAVEPOINT start_transaction;  -- mark a savepoint
         /* Remove rows from a table of survey results. */
         DELETE FROM results WHERE res_answer = 'NO';
         /* Add a survey respondent's name and answers. */
         INSERT INTO results VALUES (name, answer);
 -- raises DUP_VAL_ON_INDEX
 -- if two respondents have the same name
         COMMIT;
         EXIT;
      EXCEPTION
         WHEN DUP_VAL_ON_INDEX THEN
            ROLLBACK TO start_transaction;  -- undo changes
            suffix := suffix + 1;           -- try to fix problem
            name := name || TO_CHAR(suffix);
      END;  -- sub-block ends
   END LOOP;
END;
/

Using Locator Variables to Identify Exception Locations
Using one exception handler for a sequence of statements, such as INSERT, DELETE, 
or UPDATE statements, can mask the statement that caused an error. If you must know 
which statement failed, you can use a locator variable, as in Example 11–14.

Example 11–14 Using a Locator Variable to Identify the Location of an Exception

CREATE OR REPLACE PROCEDURE loc_var AS
   stmt_no NUMBER;
   name    VARCHAR2(100);
BEGIN
   stmt_no := 1;  -- designates 1st SELECT statement



Overview of PL/SQL Compile-Time Warnings

Handling PL/SQL Errors 11-19

   SELECT table_name INTO name
     FROM user_tables
     WHERE table_name LIKE 'ABC%';
   stmt_no := 2;  -- designates 2nd SELECT statement
   SELECT table_name INTO name
     FROM user_tables
     WHERE table_name LIKE 'XYZ%';
EXCEPTION
   WHEN NO_DATA_FOUND THEN
      DBMS_OUTPUT.PUT_LINE
        ('Table name not found in query ' || stmt_no);
END;
/
CALL loc_var();

Overview of PL/SQL Compile-Time Warnings
To make your programs more robust and avoid problems at run time, you can turn on 
checking for certain warning conditions. These conditions are not serious enough to 
produce an error and keep you from compiling a subprogram. They might point out 
something in the subprogram that produces an undefined result or might create a 
performance problem.

To work with PL/SQL warning messages, you use the PLSQL_WARNINGS compilation 
parameter, the DBMS_WARNING package, and the static data dictionary views *_
PLSQL_OBJECT_SETTINGS.

Topics:

■ PL/SQL Warning Categories

■ Controlling PL/SQL Warning Messages

■ Using DBMS_WARNING Package

PL/SQL Warning Categories
PL/SQL warning messages are divided into the categories listed and described in 
Table 11–2. You can suppress or display groups of similar warnings during 
compilation. To refer to all warning messages, use the keyword All.

You can also treat particular messages as errors instead of warnings. For example, if 
you know that the warning message PLW-05003 represents a serious problem in your 
code, including 'ERROR:05003' in the PLSQL_WARNINGS setting makes that 
condition trigger an error message (PLS_05003) instead of a warning message. An 
error message causes the compilation to fail.

Table 11–2 PL/SQL Warning Categories

Category Description Example

SEVERE Condition might cause unexpected 
action or wrong results.

Aliasing problems with 
parameters

PERFORMANCE Condition might cause performance 
problems.

Passing a VARCHAR2 value to a 
NUMBER column in an INSERT 
statement

INFORMATIONAL Condition does not affect performance 
or correctness, but you might want to 
change it to make the code more 
maintainable.

Code that can never be executed



Overview of PL/SQL Compile-Time Warnings

11-20 Oracle Database PL/SQL Language Reference

Controlling PL/SQL Warning Messages
To let the database issue warning messages during PL/SQL compilation, you set the 
compilation parameter PLSQL_WARNINGS. You can enable and disable entire 
categories of warnings (ALL, SEVERE, INFORMATIONAL, PERFORMANCE), enable and 
disable specific message numbers, and make the database treat certain warnings as 
compilation errors so that those conditions must be corrected. For more information 
about PL/SQL compilation parameters, see PL/SQL Units and Compilation 
Parameters on page 1-25.

Example 11–15 Controlling the Display of PL/SQL Warnings

-- Focus on one aspect:
ALTER SESSION
  SET PLSQL_WARNINGS='ENABLE:PERFORMANCE';
-- Recompile with extra checking:
ALTER PROCEDURE loc_var
  COMPILE PLSQL_WARNINGS='ENABLE:PERFORMANCE'
  REUSE SETTINGS;
-- Turn off warnings:
ALTER SESSION
  SET PLSQL_WARNINGS='DISABLE:ALL';
-- Display 'severe' warnings but not 'performance' warnings,
-- display PLW-06002 warnings to produce errors that halt compilation:
ALTER SESSION SET PLSQL_WARNINGS='ENABLE:SEVERE',
  'DISABLE:PERFORMANCE', 'ERROR:06002';
-- For debugging during development
ALTER SESSION SET PLSQL_WARNINGS='ENABLE:ALL';

Warning messages can be issued during compilation of PL/SQL subprograms; 
anonymous blocks do not produce any warnings.

To see any warnings generated during compilation, use the SQL*Plus SHOW ERRORS 
statement or query the static data dictionary view USER_ERRORS. PL/SQL warning 
messages use the prefix PLW.

For general information about PL/SQL compilation parameters, see PL/SQL Units 
and Compilation Parameters on page 1-25.

Using DBMS_WARNING Package
If you are writing PL/SQL subprograms in a development environment that compiles 
them, you can control PL/SQL warning messages by invoking subprograms in the 
DBMS_WARNING package. You can also use this package when compiling a complex 
application, made up of several nested SQL*Plus scripts, where different warning 
settings apply to different subprograms. You can save the current state of the PLSQL_
WARNINGS parameter with one call to the package, change the parameter to compile a 
particular set of subprograms, then restore the original parameter value.

The procedure in Example 11–16 has unnecessary code that can be removed. It could 
represent a mistake, or it could be intentionally hidden by a debug flag, so you might 
or might not want a warning message for it.

Example 11–16 Using the DBMS_WARNING Package to Display Warnings

-- When warnings disabled,
-- the following procedure compiles with no warnings
CREATE OR REPLACE PROCEDURE unreachable_code AS
  x CONSTANT BOOLEAN := TRUE;
BEGIN



Overview of PL/SQL Compile-Time Warnings

Handling PL/SQL Errors 11-21

  IF x THEN
    DBMS_OUTPUT.PUT_LINE('TRUE');
  ELSE
    DBMS_OUTPUT.PUT_LINE('FALSE');
  END IF;
END unreachable_code;
/
-- enable all warning messages for this session
CALL DBMS_WARNING.set_warning_setting_string
  ('ENABLE:ALL' ,'SESSION');
-- Check the current warning setting
SELECT DBMS_WARNING.get_warning_setting_string() FROM DUAL;

-- Recompile procedure
-- and warning about unreachable code displays
ALTER PROCEDURE unreachable_code COMPILE;
SHOW ERRORS;

For more information, see DBMS_WARNING package in Oracle Database PL/SQL Packages 
and Types Reference and PLW- messages in Oracle Database Error Messages



Overview of PL/SQL Compile-Time Warnings

11-22 Oracle Database PL/SQL Language Reference



12

Tuning PL/SQL Applications for Performance 12-1

12 Tuning PL/SQL Applications for
Performance

This chapter explains how to write efficient new PL/SQL code and speed up existing 
PL/SQL code.

Topics:

■ How PL/SQL Optimizes Your Programs

■ When to Tune PL/SQL Code

■ Guidelines for Avoiding PL/SQL Performance Problems

■ Collecting Data About User-Defined Identifiers

■ Profiling and Tracing PL/SQL Programs

■ Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

■ Writing Computation-Intensive PL/SQL Programs

■ Tuning Dynamic SQL with EXECUTE IMMEDIATE Statement and Cursor 
Variables

■ Tuning PL/SQL Subprogram Calls with NOCOPY Hint

■ Compiling PL/SQL Units for Native Execution

■ Performing Multiple Transformations with Pipelined Table Functions

How PL/SQL Optimizes Your Programs
Prior to Oracle Database Release 10g, the PL/SQL compiler translated your source 
code to system code without applying many changes to improve performance. Now, 
PL/SQL uses an optimizing compiler that can rearrange code for better performance.

The optimizer is enabled by default. In rare cases, if the overhead of the optimizer 
makes compilation of very large applications take too long, you can lower the 
optimization by setting the compilation parameter PLSQL_OPTIMIZE_LEVEL=1 
instead of its default value 2. In even rarer cases, you might see a change in exception 
action, either an exception that is not raised at all, or one that is raised earlier than 
expected. Setting PLSQL_OPTIMIZE_LEVEL=1 prevents the code from being 
rearranged.

One optimization that the compiler can perform is subprogram inlining. Subprogram 
inlining replaces a subprogram call (to a subprogram in the same program unit) with a 
copy of the called subprogram.



When to Tune PL/SQL Code

12-2 Oracle Database PL/SQL Language Reference

To allow subprogram inlining, either accept the default value of the PLSQL_
OPTIMIZE_LEVEL compilation parameter (which is 2) or set it to 3. With PLSQL_
OPTIMIZE_LEVEL=2, you must specify each subprogram to be inlined. With PLSQL_
OPTIMIZE_LEVEL=3, the PL/SQL compiler seeks opportunities to inline 
subprograms beyond those that you specify.

If a particular subprogram is inlined, performance almost always improves. However, 
because the compiler inlines subprograms early in the optimization process, it is 
possible for subprogram inlining to preclude later, more powerful optimizations.

If subprogram inlining slows the performance of a particular PL/SQL program, use 
the PL/SQL hierarchical profiler to identify subprograms for which you want to turn 
off inlining. To turn off inlining for a subprogram, use the INLINE pragma, described 
in INLINE Pragma on page 13-73.

When to Tune PL/SQL Code
The information in this chapter is especially valuable if you are responsible for:

■ Programs that do a lot of mathematical calculations. You will want to investigate 
the data types PLS_INTEGER, BINARY_FLOAT, and BINARY_DOUBLE.

■ Functions that are called from PL/SQL queries, where the functions might be 
executed millions of times. You will want to look at all performance features to 
make the function as efficient as possible, and perhaps a function-based index to 
precompute the results for each row and save on query time.

■ Programs that spend a lot of time processing INSERT, UPDATE, or DELETE 
statements, or looping through query results. You will want to investigate the 
FORALL statement for issuing DML, and the BULK COLLECT INTO and 
RETURNING BULK COLLECT INTO clauses for queries.

■ Older code that does not take advantage of recent PL/SQL language features. 
With the many performance improvements in Oracle Database 10g, any code from 
earlier releases is a candidate for tuning.

■ Any program that spends a lot of time doing PL/SQL processing, as opposed to 
issuing DDL statements like CREATE TABLE that are just passed directly to SQL. 
You will want to investigate native compilation. Because many built-in database 
features use PL/SQL, you can apply this tuning feature to an entire database to 
improve performance in many areas, not just your own code.

Before starting any tuning effort, benchmark the current system and measure how 
long particular subprograms take. PL/SQL in Oracle Database 10g includes many 
automatic optimizations, so you might see performance improvements without doing 
any tuning.

See Also:

■ Oracle Database Advanced Application Developer's Guide for 
information about the PL/SQL hierarchical profiler

■ Oracle Database Reference for information about the PLSQL_
OPTIMIZE_LEVEL compilation parameter

■ Oracle Database Reference for information about the static 
dictionary view ALL_PLSQL_OBJECT_SETTINGS



Guidelines for Avoiding PL/SQL Performance Problems

Tuning PL/SQL Applications for Performance 12-3

Guidelines for Avoiding PL/SQL Performance Problems
When a PL/SQL-based application performs poorly, it is often due to badly written 
SQL statements, poor programming practices, inattention to PL/SQL basics, or misuse 
of shared memory.

Topics:

■ Avoiding CPU Overhead in PL/SQL Code

■ Avoiding Memory Overhead in PL/SQL Code

Avoiding CPU Overhead in PL/SQL Code
Topics:

■ Make SQL Statements as Efficient as Possible

■ Make Function Calls as Efficient as Possible

■ Make Loops as Efficient as Possible

■ Use Built-In String Functions

■ Put Least Expensive Conditional Tests First

■ Minimize Data Type Conversions

■ Use PLS_INTEGER or SIMPLE_INTEGER for Integer Arithmetic

■ Use BINARY_FLOAT, BINARY_DOUBLE, SIMPLE_FLOAT, and SIMPLE_
DOUBLE for Floating-Point Arithmetic

Make SQL Statements as Efficient as Possible
PL/SQL programs look relatively simple because most of the work is done by SQL 
statements. Slow SQL statements are the main reason for slow execution.

If SQL statements are slowing down your program:

■ Make sure you have appropriate indexes. There are different kinds of indexes for 
different situations. Your index strategy might be different depending on the sizes 
of various tables in a query, the distribution of data in each query, and the columns 
used in the WHERE clauses.

■ Make sure you have up-to-date statistics on all the tables, using the subprograms 
in the DBMS_STATS package.

■ Analyze the execution plans and performance of the SQL statements, using:

■ EXPLAIN PLAN statement

■ SQL Trace facility with TKPROF utility

■ Rewrite the SQL statements if necessary. For example, query hints can avoid 
problems such as unnecessary full-table scans.

For more information about these methods, see Oracle Database Performance Tuning 
Guide.

Some PL/SQL features also help improve the performance of SQL statements:

■ If you are running SQL statements inside a PL/SQL loop, look at the FORALL 
statement as a way to replace loops of INSERT, UPDATE, and DELETE statements.



Guidelines for Avoiding PL/SQL Performance Problems

12-4 Oracle Database PL/SQL Language Reference

■ If you are looping through the result set of a query, look at the BULK COLLECT 
clause of the SELECT INTO statement as a way to bring the entire result set into 
memory in a single operation.

Make Function Calls as Efficient as Possible
Badly written subprograms (for example, a slow sort or search function) can harm 
performance. Avoid unnecessary calls to subprograms, and optimize their code:

■ If a function is called within a SQL query, you can cache the function value for 
each row by creating a function-based index on the table in the query. The CREATE 
INDEX statement might take a while, but queries can be much faster.

■ If a column is passed to a function within an SQL query, the query cannot use 
regular indexes on that column, and the function might be called for every row in 
a (potentially very large) table. Consider nesting the query so that the inner query 
filters the results to a small number of rows, and the outer query calls the function 
only a few times as shown in Example 12–1.

Example 12–1 Nesting a Query to Improve Performance

BEGIN
-- Inefficient, calls function for every row
   FOR item IN (SELECT DISTINCT(SQRT(department_id)) col_alias FROM employees)
   LOOP
      DBMS_OUTPUT.PUT_LINE(item.col_alias);
   END LOOP;
-- Efficient, only calls function once for each distinct value.
   FOR item IN
   ( SELECT SQRT(department_id) col_alias FROM
     ( SELECT DISTINCT department_id FROM employees)
   )
   LOOP
      DBMS_OUTPUT.PUT_LINE(item.col_alias);
   END LOOP;
END;
/

If you use OUT or IN OUT parameters, PL/SQL adds some performance overhead to 
ensure correct action in case of exceptions (assigning a value to the OUT parameter, 
then exiting the subprogram because of an unhandled exception, so that the OUT 
parameter keeps its original value).

If your program does not depend on OUT parameters keeping their values in such 
situations, you can add the NOCOPY keyword to the parameter declarations, so the 
parameters are declared OUT NOCOPY or IN OUT NOCOPY.

This technique can give significant speedup if you are passing back large amounts of 
data in OUT parameters, such as collections, big VARCHAR2 values, or LOBs.

This technique also applies to member methods of object types. If these methods 
modify attributes of the object type, all the attributes are copied when the method 
ends. To avoid this overhead, you can explicitly declare the first parameter of the 
member method as SELF IN OUT NOCOPY, instead of relying on PL/SQL's implicit 
declaration SELF IN OUT. For information about design considerations for object 
methods, see Oracle Database Object-Relational Developer's Guide.



Guidelines for Avoiding PL/SQL Performance Problems

Tuning PL/SQL Applications for Performance 12-5

Make Loops as Efficient as Possible
Because PL/SQL applications are often built around loops, it is important to optimize 
both the loop itself and the code inside the loop:

■ To issue a series of DML statements, replace loop constructs with FORALL 
statements.

■ To loop through a result set and store the values, use the BULK COLLECT clause on 
the query to bring the query results into memory in one operation.

■ If you must loop through a result set more than once, or issue other queries as you 
loop through a result set, you can probably enhance the original query to give you 
exactly the results you want. Some query operators to explore include UNION, 
INTERSECT, MINUS, and CONNECT BY.

■ You can also nest one query inside another (known as a subselect) to do the 
filtering and sorting in multiple stages. For example, instead of calling a PL/SQL 
function in the inner WHERE clause (which might call the function once for each 
row of the table), you can filter the result set to a small set of rows in the inner 
query, and call the function in the outer query.

Use Built-In String Functions
PL/SQL provides many highly optimized string functions such as REPLACE, 
TRANSLATE, SUBSTR, INSTR, RPAD, and LTRIM. The built-in functions use low-level 
code that is more efficient than regular PL/SQL.

If you use PL/SQL string functions to search for regular expressions, consider using 
the built-in regular expression functions, such as REGEXP_SUBSTR.

■ You can search for regular expressions using the SQL operator REGEXP_LIKE. See 
Example 6–10 on page 6-11.

■ You can test or manipulate strings using the built-in functions REGEXP_INSTR, 
REGEXP_REPLACE, and REGEXP_SUBSTR.

Regular expression features use characters like '.', '*', '^', and '$' that you might be 
familiar with from Linux, UNIX, or PERL programming. For multilanguage 
programming, there are also extensions such as '[:lower:]' to match a lowercase letter, 
instead of '[a-z]' which does not match lowercase accented letters.

Put Least Expensive Conditional Tests First
PL/SQL stops evaluating a logical expression as soon as the result can be determined. 
This functionality is known as short-circuit evaluation. See Short-Circuit Evaluation on 
page 2-34.

When evaluating multiple conditions separated by AND or OR, put the least expensive 
ones first. For example, check the values of PL/SQL variables before testing function 
return values, because PL/SQL might be able to skip calling the functions.

Minimize Data Type Conversions
At run time, PL/SQL converts between different data types automatically. For 
example, assigning a PLS_INTEGER variable to a NUMBER variable results in a 
conversion because their internal representations are different.

Whenever possible, choose data types carefully to minimize implicit conversions. Use 
literals of the appropriate types, such as character literals in character expressions and 
decimal numbers in number expressions.



Guidelines for Avoiding PL/SQL Performance Problems

12-6 Oracle Database PL/SQL Language Reference

Minimizing conversions might mean changing the types of your variables, or even 
working backward and designing your tables with different data types. Or, you might 
convert data once, such as from an INTEGER column to a PLS_INTEGER variable, and 
use the PL/SQL type consistently after that. The conversion from INTEGER to PLS_
INTEGER data type might improve performance, because of the use of more efficient 
hardware arithmetic. See Use PLS_INTEGER or SIMPLE_INTEGER for Integer 
Arithmetic on page 12-6.

Use PLS_INTEGER or SIMPLE_INTEGER for Integer Arithmetic
When declaring a local integer variable:

■ If the value of the variable might be NULL, or if the variable needs overflow 
checking, use the data type PLS_INTEGER.

■ If the value of the variable will never be NULL, and the variable does not need 
overflow checking, use the data type SIMPLE_INTEGER.

PLS_INTEGER values use less storage space than INTEGER or NUMBER values, and 
PLS_INTEGER operations use hardware arithmetic. For more information, see PLS_
INTEGER and BINARY_INTEGER Data Types on page 3-2.

SIMPLE_INTEGER is a predefined subtype of PLS_INTEGER. It has the same range as 
PLS_INTEGER and has a NOT NULL constraint. It differs significantly from PLS_
INTEGER in its overflow semantics—for details, see Overflow Semantics on page 3-3.

The data type NUMBER and its subtypes are represented in a special internal format, 
designed for portability and arbitrary scale and precision, not performance. Even the 
subtype INTEGER is treated as a floating-point number with nothing after the decimal 
point. Operations on NUMBER or INTEGER variables require calls to library routines.

Avoid constrained subtypes such as INTEGER, NATURAL, NATURALN, POSITIVE, 
POSITIVEN, and SIGNTYPE in performance-critical code. Variables of these types 
require extra checking at run time, each time they are used in a calculation.

Use BINARY_FLOAT, BINARY_DOUBLE, SIMPLE_FLOAT, and SIMPLE_DOUBLE for 
Floating-Point Arithmetic
The data type NUMBER and its subtypes are represented in a special internal format, 
designed for portability and arbitrary scale and precision, not performance. 
Operations on NUMBER or INTEGER variables require calls to library routines.

The BINARY_FLOAT and BINARY_DOUBLE types can use native hardware arithmetic 
instructions, and are more efficient for number-crunching applications such as 
scientific processing. They also require less space in the database.

If the value of the variable will never be NULL, use the subtype SIMPLE_FLOAT or 
BINARY_FLOAT instead of the base type SIMPLE_DOUBLE or BINARY_DOUBLE. Each 
subtype has the same range as its base type and has a NOT NULL constraint.  Without 
the overhead of checking for nullness, SIMPLE_FLOAT and SIMPLE_DOUBLE provide 
significantly better performance than BINARY_FLOAT and BINARY_DOUBLE when 
PLSQL_CODE_TYPE='NATIVE', because arithmetic operations on SIMPLE_FLOAT 
and SIMPLE_DOUBLE values are done directly in the hardware. When PLSQL_CODE_
TYPE='INTERPRETED', the performance improvement is smaller.

These types do not always represent fractional values precisely, and handle rounding 
differently than the NUMBER types. These types are less suitable for financial code 
where accuracy is critical.



Collecting Data About User-Defined Identifiers

Tuning PL/SQL Applications for Performance 12-7

Avoiding Memory Overhead in PL/SQL Code
Topics:

■ Declare VARCHAR2 Variables of 4000 or More Characters

■ Group Related Subprograms into Packages

■ Pin Packages in the Shared Memory Pool

■ Apply Advice of Compiler Warnings

Declare VARCHAR2 Variables of 4000 or More Characters
You might need to allocate large VARCHAR2 variables when you are not sure how big 
an expression result will be. You can conserve memory by declaring VARCHAR2 
variables with large sizes, such as 32000, rather than estimating just a little on the high 
side, such as by specifying 256 or 1000. PL/SQL has an optimization that makes it easy 
to avoid overflow problems and still conserve memory. Specify a size of more than 
4000 characters for the VARCHAR2 variable; PL/SQL waits until you assign the 
variable, then only allocates as much storage as needed.

Group Related Subprograms into Packages
When you call a packaged subprogram for the first time, the whole package is loaded 
into the shared memory pool. Subsequent calls to related subprograms in the package 
require no disk I/O, and your code executes faster. If the package ages out of memory, 
and you reference it again, it is reloaded.

You can improve performance by sizing the shared memory pool correctly. Make it 
large enough to hold all frequently used packages, but not so large that memory is 
wasted.

Pin Packages in the Shared Memory Pool
You can pin frequently accessed packages in the shared memory pool, using the 
supplied package DBMS_SHARED_POOL. When a package is pinned, it does not age 
out; it remains in memory no matter how full the pool gets or how frequently you 
access the package.

For more information about the DBMS_SHARED_POOL package, see Oracle Database 
PL/SQL Packages and Types Reference.

Apply Advice of Compiler Warnings
The PL/SQL compiler issues warnings about things that do not make a program 
incorrect, but might lead to poor performance. If you receive such a warning, and the 
performance of this code is important, follow the suggestions in the warning and 
make the code more efficient.

Collecting Data About User-Defined Identifiers
PL/Scope extracts, organizes, and stores data about user-defined identifiers from 
PL/SQL source code. You can retrieve source code identifier data with the static data 
dictionary views *_IDENTIFIERS. For more information, see Oracle Database 
Advanced Application Developer's Guide.



Profiling and Tracing PL/SQL Programs

12-8 Oracle Database PL/SQL Language Reference

Profiling and Tracing PL/SQL Programs
To help you isolate performance problems in large PL/SQL programs, PL/SQL 
provides the following tools, implemented as PL/SQL packages:

Topics:

■ Using the Profiler API: Package DBMS_PROFILER

■ Using the Trace API: Package DBMS_TRACE

For a detailed description of PL/SQL hierarchical profiler, see Oracle Database Advanced 
Application Developer's Guide.

Using the Profiler API: Package DBMS_PROFILER
The Profiler API ("Profiler") is implemented as PL/SQL package DBMS_PROFILER, 
whose services compute the time that your PL/SQL program spends at each line and 
in each subprogram and save these statistics in database tables, which you can query.

To use Profiler:

1. Start the profiling session.

2. Run your PL/SQL program long enough to get adequate code coverage.

3. Flush the collected data to the database.

Tool Package Description

Profiler API DBMS_PROFILER Computes the time that your PL/SQL program 
spends at each line and in each subprogram.

You must have CREATE privileges on the units to be 
profiled.

Saves run-time statistics in database tables, which 
you can query.

Trace API DBMS_TRACE Traces the order in which subprograms execute.

You can specify the subprograms to trace and the 
tracing level.

Saves run-time statistics in database tables, which 
you can query.

PL/SQL 
hierarchical 
profiler

DBMS_HPROF Reports the dynamic execution program profile of 
your PL/SQL program, organized by subprogram 
calls. Accounts for  SQL and PL/SQL execution 
times separately.

Requires no special source or compile-time 
preparation.

Generates reports in HTML. Provides the option of 
storing results in relational format in database 
tables for custom report generation (such as 
third-party tools offer).

Note: You can use Profiler only on units for which you have 
CREATE privilege. You do not need the CREATE privilege to use the 
PL/SQL hierarchical profiler (see Oracle Database Advanced Application 
Developer's Guide).



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

Tuning PL/SQL Applications for Performance 12-9

4. Stop the profiling session.

After you have collected data with Profiler, you can:

1. Query the database tables that contain the performance data.

2. Identify the subprograms and packages that use the most execution time.

3. Determine why your program spent more time accessing certain data structures 
and executing certain code segments.

Inspect possible performance bottlenecks such as SQL statements, loops, and 
recursive functions.

4. Use the results of your analysis to replace inappropriate data structures and 
rework slow algorithms.

For example, due to an exponential growth in data, you might need to replace a 
linear search with a binary search.

For detailed information about the DBMS_PROFILER subprograms, see Oracle Database 
PL/SQL Packages and Types Reference.

Using the Trace API: Package DBMS_TRACE
The Trace API ("Trace") is implemented as PL/SQL package DBMS_TRACE, whose 
services trace execution by subprogram or exception and save these statistics in 
database tables, which you can query.

To use Trace:

1. (Optional) Limit tracing to specific subprograms and choose a tracing level.

Tracing all subprograms and exceptions in a large program can produce huge 
amounts of data that are difficult to manage.

2. Start the tracing session.

3. Run your PL/SQL program.

4. Stop the tracing session.

After you have collected data with Trace, you can query the database tables that 
contain the performance data and analyze it in the same way that you analyze the 
performance data from Profiler (see Using the Profiler API: Package DBMS_PROFILER 
on page 12-8).

For detailed information about the DBMS_TRACE subprograms, see Oracle Database 
PL/SQL Packages and Types Reference.

Reducing Loop Overhead for DML Statements and Queries with Bulk SQL
PL/SQL sends SQL statements such as DML and queries to the SQL engine for 
execution, and SQL returns the results to PL/SQL. You can minimize the performance 
overhead of this communication between PL/SQL and SQL by using the PL/SQL 
features that are known collectively as bulk SQL.

The FORALL statement sends INSERT, UPDATE, or DELETE statements in batches, 
rather than one at a time. The BULK COLLECT clause brings back batches of results 
from SQL. If the DML statement affects four or more database rows, bulk SQL can 
improve performance considerably.

Assigning values to PL/SQL variables in SQL statements is called binding. PL/SQL 
binding operations fall into these categories:



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

12-10 Oracle Database PL/SQL Language Reference

Bulk SQL uses PL/SQL collections to pass large amounts of data back and forth in 
single operations. This process is called bulk binding. If the collection has n elements, 
bulk binding uses a single operation to perform the equivalent of n SELECT INTO, 
INSERT, UPDATE, or DELETE statements. A query that uses bulk binding can return 
any number of rows, without requiring a FETCH statement for each one.

To speed up INSERT, UPDATE, and DELETE statements, enclose the SQL statement 
within a PL/SQL FORALL statement instead of a LOOP statement.

To speed up SELECT INTO statements, include the BULK COLLECT clause.

Topics:

■ Running One DML Statement Multiple Times (FORALL Statement)

■ Retrieving Query Results into Collections (BULK COLLECT Clause)

Running One DML Statement Multiple Times (FORALL Statement)
The keyword FORALL lets you run multiple DML statements very efficiently. It can 
only repeat a single DML statement, unlike a general-purpose FOR loop. For full 
syntax and restrictions, see FORALL Statement on page 13-63.

The SQL statement can reference more than one collection, but FORALL only improves 
performance where the index value is used as a subscript.

Usually, the bounds specify a range of consecutive index numbers. If the index 
numbers are not consecutive, such as after you delete collection elements, you can use 
the INDICES OF or VALUES OF clause to iterate over just those index values that really 
exist.

The INDICES OF clause iterates over all of the index values in the specified collection, 
or only those between a lower and upper bound.

The VALUES OF clause refers to a collection that is indexed by PLS_INTEGER and 
whose elements are of type PLS_INTEGER. The FORALL statement iterates over the 
index values specified by the elements of this collection.

The FORALL statement in Example 12–2 sends all three DELETE statements to the SQL 
engine at once.

Example 12–2 Issuing DELETE Statements in a Loop

CREATE TABLE employees_temp AS SELECT * FROM employees;
DECLARE
   TYPE NumList IS VARRAY(20) OF NUMBER;
   depts NumList := NumList(10, 30, 70);  -- department numbers

Binding Category When This Binding Occurs

In-bind When an INSERT or UPDATE statement stores a PL/SQL variable or host 
variable in the database

Out-bind When the RETURNING clause of an INSERT, UPDATE, or DELETE 
statement assigns a database value to a PL/SQL variable or host variable

Define When a SELECT or FETCH statement assigns a database value to a 
PL/SQL variable or host variable

Note: Parallel DML is disabled with bulk binds.



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

Tuning PL/SQL Applications for Performance 12-11

BEGIN
   FORALL i IN depts.FIRST..depts.LAST
      DELETE FROM employees_temp WHERE department_id = depts(i);
   COMMIT;
END;
/

Example 12–3 loads some data into PL/SQL collections. Then it inserts the collection 
elements into a database table twice: first using a FOR loop, then using a FORALL 
statement. The FORALL version is much faster.

Example 12–3 Issuing INSERT Statements in a Loop

CREATE TABLE parts1 (pnum INTEGER, pname VARCHAR2(15));
CREATE TABLE parts2 (pnum INTEGER, pname VARCHAR2(15));
DECLARE
  TYPE NumTab IS TABLE OF parts1.pnum%TYPE INDEX BY PLS_INTEGER;
  TYPE NameTab IS TABLE OF parts1.pname%TYPE INDEX BY PLS_INTEGER;
  pnums  NumTab;
  pnames NameTab;
  iterations CONSTANT PLS_INTEGER := 500;
  t1 INTEGER;
  t2 INTEGER;
  t3 INTEGER;
BEGIN
  FOR j IN 1..iterations LOOP  -- load index-by tables
     pnums(j) := j;
     pnames(j) := 'Part No. ' || TO_CHAR(j);
  END LOOP;
  t1 := DBMS_UTILITY.get_time;
  FOR i IN 1..iterations LOOP  -- use FOR loop
     INSERT INTO parts1 VALUES (pnums(i), pnames(i));
  END LOOP;
  t2 := DBMS_UTILITY.get_time;
  FORALL i IN 1..iterations  -- use FORALL statement
     INSERT INTO parts2 VALUES (pnums(i), pnames(i));
  t3 := DBMS_UTILITY.get_time;
  DBMS_OUTPUT.PUT_LINE('Execution Time (secs)');
  DBMS_OUTPUT.PUT_LINE('---------------------');
  DBMS_OUTPUT.PUT_LINE('FOR loop: ' || TO_CHAR((t2 - t1)/100));
  DBMS_OUTPUT.PUT_LINE('FORALL:   ' || TO_CHAR((t3 - t2)/100));
  COMMIT;
END;
/

Executing this block shows that the loop using FORALL is much faster.

The bounds of the FORALL loop can apply to part of a collection, not necessarily all the 
elements, as shown in Example 12–4.

Example 12–4 Using FORALL with Part of a Collection

CREATE TABLE employees_temp AS SELECT * FROM employees;
DECLARE
   TYPE NumList IS VARRAY(10) OF NUMBER;
   depts NumList := NumList(5,10,20,30,50,55,57,60,70,75);
BEGIN
   FORALL j IN 4..7  -- use only part of varray
      DELETE FROM employees_temp WHERE department_id = depts(j);
   COMMIT;
END;



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

12-12 Oracle Database PL/SQL Language Reference

/

You might need to delete some elements from a collection before using the collection 
in a FORALL statement. The INDICES OF clause processes sparse collections by 
iterating through only the remaining elements.

You might also want to leave the original collection alone, but process only some 
elements, process the elements in a different order, or process some elements more 
than once. Instead of copying the entire elements into new collections, which might 
use up substantial amounts of memory, the VALUES OF clause lets you set up simple 
collections whose elements serve as pointers to elements in the original collection.

Example 12–5 creates a collection holding some arbitrary data, a set of table names. 
Deleting some of the elements makes it a sparse collection that does not work in a 
default FORALL statement. The program uses a FORALL statement with the INDICES 
OF clause to insert the data into a table. It then sets up two more collections, pointing 
to certain elements from the original collection. The program stores each set of names 
in a different database table using FORALL statements with the VALUES OF clause.

Example 12–5 Using FORALL with Nonconsecutive Index Values

-- Create empty tables to hold order details
CREATE TABLE valid_orders (cust_name VARCHAR2(32),
                           amount NUMBER(10,2));
CREATE TABLE big_orders AS SELECT * FROM valid_orders
   WHERE 1 = 0;
CREATE TABLE rejected_orders AS SELECT * FROM valid_orders
  WHERE 1 = 0;
DECLARE
-- Collections for set of customer names & order amounts:
   SUBTYPE cust_name IS valid_orders.cust_name%TYPE;
   TYPE cust_typ IS TABLe OF cust_name;
   cust_tab cust_typ;
   SUBTYPE order_amount IS valid_orders.amount%TYPE;
   TYPE amount_typ IS TABLE OF NUMBER;
   amount_tab amount_typ;
-- Collections to point into CUST_TAB collection.
   TYPE index_pointer_t IS TABLE OF PLS_INTEGER;
   big_order_tab index_pointer_t := index_pointer_t();
   rejected_order_tab index_pointer_t := index_pointer_t();
   PROCEDURE setup_data IS BEGIN
 -- Set up sample order data,
 -- including some invalid orders and some 'big' orders.
    cust_tab := cust_typ('Company1','Company2',
      'Company3','Company4','Company5');
    amount_tab := amount_typ(5000.01, 0,
      150.25, 4000.00, NULL);
  END;
BEGIN
   setup_data();
   DBMS_OUTPUT.PUT_LINE
     ('--- Original order data ---');
   FOR i IN 1..cust_tab.LAST LOOP
     DBMS_OUTPUT.PUT_LINE
     ('Customer #' || i || ', ' || cust_tab(i) || ': $' ||
       amount_tab(i));
   END LOOP;
-- Delete invalid orders (where amount is null or 0).
   FOR i IN 1..cust_tab.LAST LOOP
     IF amount_tab(i) is null or amount_tab(i) = 0 THEN



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

Tuning PL/SQL Applications for Performance 12-13

        cust_tab.delete(i);
        amount_tab.delete(i);
     END IF;
   END LOOP;
   DBMS_OUTPUT.PUT_LINE
     ('--- Data with invalid orders deleted ---');
   FOR i IN 1..cust_tab.LAST LOOP
     IF cust_tab.EXISTS(i) THEN
       DBMS_OUTPUT.PUT_LINE('Customer #' || i || ', ' ||
          cust_tab(i) || ': $' || amount_tab(i));
      END IF;
   END LOOP;
-- Because subscripts of collections are not consecutive,
-- use FORALL...INDICES OF to iterate through actual subscripts,
-- rather than 1..COUNT
   FORALL i IN INDICES OF cust_tab
     INSERT INTO valid_orders(cust_name, amount) 
        VALUES(cust_tab(i), amount_tab(i));
-- Now process the order data differently
-- Extract 2 subsets and store each subset in a different table
   -- Initialize the CUST_TAB and AMOUNT_TAB collections again.
   setup_data();
   FOR i IN cust_tab.FIRST .. cust_tab.LAST LOOP
     IF amount_tab(i) IS NULL OR amount_tab(i) = 0 THEN
       -- Add a new element to this collection
       rejected_order_tab.EXTEND;
-- Record the subscript from the original collection
       rejected_order_tab(rejected_order_tab.LAST) := i; 
     END IF;
     IF amount_tab(i) > 2000 THEN
        -- Add a new element to this collection
        big_order_tab.EXTEND;
-- Record the subscript from the original collection
        big_order_tab(big_order_tab.LAST) := i;
     END IF;
   END LOOP;
-- Now it's easy to run one DML statement
-- on one subset of elements,
-- and another DML statement on a different subset.
   FORALL i IN VALUES OF rejected_order_tab
     INSERT INTO rejected_orders
       VALUES (cust_tab(i), amount_tab(i));
   FORALL i IN VALUES OF big_order_tab
     INSERT INTO big_orders
       VALUES (cust_tab(i), amount_tab(i));
   COMMIT;
END;
/
-- Verify that the correct order details were stored
SELECT cust_name "Customer",
  amount "Valid order amount" FROM valid_orders;
SELECT cust_name "Customer",
  amount "Big order amount" FROM big_orders;
SELECT cust_name "Customer",
 amount "Rejected order amount" FROM rejected_orders;

Topics:

■ How FORALL Affects Rollbacks

■ Counting Rows Affected by FORALL (%BULK_ROWCOUNT Attribute)



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

12-14 Oracle Database PL/SQL Language Reference

■ Handling FORALL Exceptions (%BULK_EXCEPTIONS Attribute)

How FORALL Affects Rollbacks
In a FORALL statement, if any execution of the SQL statement raises an unhandled 
exception, all database changes made during previous executions are rolled back. 
However, if a raised exception is caught and handled, changes are rolled back to an 
implicit savepoint marked before each execution of the SQL statement. Changes made 
during previous executions are not rolled back. For example, suppose you create a 
database table that stores department numbers and job titles, as shown in 
Example 12–6. Then, you change the job titles so that they are longer. The second 
UPDATE fails because the new value is too long for the column. Because you handle 
the exception, the first UPDATE is not rolled back and you can commit that change.

Example 12–6 Using Rollbacks with FORALL

CREATE TABLE emp_temp (deptno NUMBER(2), job VARCHAR2(18));
DECLARE
   TYPE NumList IS TABLE OF NUMBER;
   depts NumList := NumList(10, 20, 30);
BEGIN
  INSERT INTO emp_temp VALUES(10, 'Clerk');
-- Lengthening this job title causes an exception
  INSERT INTO emp_temp VALUES(20, 'Bookkeeper');
  INSERT INTO emp_temp VALUES(30, 'Analyst');
  COMMIT;
  FORALL j IN depts.FIRST..depts.LAST -- Run 3 UPDATE statements.
    UPDATE emp_temp SET job = job || ' (Senior)'
      WHERE deptno = depts(j);
-- raises a "value too large" exception
EXCEPTION
  WHEN OTHERS THEN
    DBMS_OUTPUT.PUT_LINE
      ('Problem in the FORALL statement.');
    COMMIT; -- Commit results of successful updates.
END;
/

Counting Rows Affected by FORALL (%BULK_ROWCOUNT Attribute)
The cursor attributes SQL%FOUND, SQL%ISOPEN, SQL%NOTFOUND, and 
SQL%ROWCOUNT, return useful information about the most recently executed DML 
statement. For additional description of cursor attributes, see SQL Cursors (Implicit) 
on page 6-7.

The SQL cursor has one composite attribute, %BULK_ROWCOUNT, for use with the 
FORALL statement. This attribute works like an associative array: SQL%BULK_
ROWCOUNT(i) stores the number of rows processed by the ith execution of an 
INSERT, UPDATE or DELETE statement, as in Example 12–7.

Example 12–7 Using %BULK_ROWCOUNT with the FORALL Statement

CREATE TABLE emp_temp AS SELECT * FROM employees;
DECLARE
   TYPE NumList IS TABLE OF NUMBER;
   depts NumList := NumList(30, 50, 60);
BEGIN
   FORALL j IN depts.FIRST..depts.LAST
      DELETE FROM emp_temp WHERE department_id = depts(j);
-- How many rows were affected by each DELETE statement?



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

Tuning PL/SQL Applications for Performance 12-15

   FOR i IN depts.FIRST..depts.LAST
   LOOP
      DBMS_OUTPUT.PUT_LINE('Iteration #' || i || ' deleted ' ||
         SQL%BULK_ROWCOUNT(i) || ' rows.');
   END LOOP;
END;
/

The FORALL statement and %BULK_ROWCOUNT attribute use the same subscripts. For 
example, if FORALL uses the range 5..10, so does %BULK_ROWCOUNT. If the FORALL 
statement uses the INDICES OF clause to process a sparse collection, %BULK_
ROWCOUNT has corresponding sparse subscripts. If the FORALL statement uses the 
VALUES OF clause to process a subset of elements, %BULK_ROWCOUNT has subscripts 
corresponding to the values of the elements in the index collection. If the index 
collection contains duplicate elements, so that some DML statements are issued 
multiple times using the same subscript, then the corresponding elements of %BULK_
ROWCOUNT represent the sum of all rows affected by the DML statement using that 
subscript.

%BULK_ROWCOUNT is usually equal to 1 for inserts, because a typical insert operation 
affects only a single row. For the INSERT SELECT construct, %BULK_ROWCOUNT might 
be greater than 1. For example, the FORALL statement in Example 12–8 inserts an 
arbitrary number of rows for each iteration. After each iteration, %BULK_ROWCOUNT 
returns the number of items inserted.

Example 12–8 Counting Rows Affected by FORALL with %BULK_ROWCOUNT

CREATE TABLE emp_by_dept AS SELECT employee_id, department_id
   FROM employees WHERE 1 = 0;
DECLARE
  TYPE dept_tab IS TABLE OF departments.department_id%TYPE;
  deptnums dept_tab;
BEGIN
  SELECT department_id BULK COLLECT INTO deptnums FROM departments;
  FORALL i IN 1..deptnums.COUNT
     INSERT INTO emp_by_dept
        SELECT employee_id, department_id FROM employees
           WHERE department_id = deptnums(i);
  FOR i IN 1..deptnums.COUNT LOOP
-- Count how many rows were inserted for each department; that is,
-- how many employees are in each department.
   DBMS_OUTPUT.PUT_LINE('Dept '||deptnums(i)||': inserted '||
                          SQL%BULK_ROWCOUNT(i)||' records');
  END LOOP;
  DBMS_OUTPUT.PUT_LINE('Total records inserted: ' || SQL%ROWCOUNT);
END;
/

You can also use the scalar attributes %FOUND, %NOTFOUND, and %ROWCOUNT after 
running a FORALL statement. For example, %ROWCOUNT returns the total number of 
rows processed by all executions of the SQL statement.

%FOUND and %NOTFOUND refer only to the last execution of the SQL statement. You can 
use %BULK_ROWCOUNT to deduce their values for individual executions. For example, 
when %BULK_ROWCOUNT(i) is zero, %FOUND and %NOTFOUND are FALSE and TRUE, 
respectively. 



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

12-16 Oracle Database PL/SQL Language Reference

Handling FORALL Exceptions (%BULK_EXCEPTIONS Attribute)
PL/SQL provides a mechanism to handle exceptions raised during the execution of a 
FORALL statement. This mechanism enables a bulk-bind operation to save information 
about exceptions and continue processing.

To have a bulk bind complete despite errors, add the keywords SAVE EXCEPTIONS to 
your FORALL statement after the bounds, before the DML statement. Provide an 
exception handler to track the exceptions that occurred during the bulk operation.

Example 12–9 shows how you can perform a number of DML operations, without 
stopping if some operations encounter errors. In the example, EXCEPTION_INIT is 
used to associate the DML_ERRORS exception with the predefined error ORA-24381. 
ORA-24381 is raised if any exceptions are caught and saved after a bulk operation.

All exceptions raised during the execution are saved in the cursor attribute %BULK_
EXCEPTIONS, which stores a collection of records. Each record has two fields:

■ %BULK_EXCEPTIONS(i).ERROR_INDEX holds the iteration of the FORALL 
statement during which the exception was raised. 

■ %BULK_EXCEPTIONS(i).ERROR_CODE holds the corresponding Oracle Database 
error code. 

The values stored by %BULK_EXCEPTIONS always refer to the most recently executed 
FORALL statement. The number of exceptions is saved in %BULK_
EXCEPTIONS.COUNT. Its subscripts range from 1 to COUNT.

The individual error messages, or any substitution arguments, are not saved, but the 
error message text can looked up using ERROR_CODE with SQLERRM as shown in 
Example 12–9.

You might need to work backward to determine which collection element was used in 
the iteration that caused an exception. For example, if you use the INDICES OF clause 
to process a sparse collection, you must step through the elements one by one to find 
the one corresponding to %BULK_EXCEPTIONS(i).ERROR_INDEX. If you use the 
VALUES OF clause to process a subset of elements, you must find the element in the 
index collection whose subscript matches %BULK_EXCEPTIONS(i).ERROR_INDEX, 
and then use that element's value as the subscript to find the erroneous element in the 
original collection.

If you omit the keywords SAVE EXCEPTIONS, execution of the FORALL statement 
stops when an exception is raised. In that case, SQL%BULK_EXCEPTIONS.COUNT 
returns 1, and SQL%BULK_EXCEPTIONS contains just one record. If no exception is 
raised during execution, SQL%BULK_EXCEPTIONS.COUNT returns 0. 

Example 12–9 Bulk Operation that Continues Despite Exceptions

-- Temporary table for this example:
CREATE TABLE emp_temp AS SELECT * FROM employees;

DECLARE
  TYPE empid_tab IS TABLE OF employees.employee_id%TYPE;
  emp_sr empid_tab;

  -- Exception handler for ORA-24381:
  errors     NUMBER;
  dml_errors EXCEPTION;
  PRAGMA EXCEPTION_INIT(dml_errors, -24381);
BEGIN
  SELECT employee_id
      BULK COLLECT INTO emp_sr FROM emp_temp



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

Tuning PL/SQL Applications for Performance 12-17

        WHERE hire_date < '30-DEC-94';

  -- Add '_SR' to job_id of most senior employees:
  FORALL i IN emp_sr.FIRST..emp_sr.LAST SAVE EXCEPTIONS
    UPDATE emp_temp SET job_id = job_id || '_SR' 
      WHERE emp_sr(i) = emp_temp.employee_id;
  -- If errors occurred during FORALL SAVE EXCEPTIONS,
  -- a single exception is raised when the statement completes.

EXCEPTION
  -- Figure out what failed and why
  WHEN dml_errors THEN
   errors := SQL%BULK_EXCEPTIONS.COUNT;
   DBMS_OUTPUT.PUT_LINE
     ('Number of statements that failed: ' || errors);
   FOR i IN 1..errors LOOP
      DBMS_OUTPUT.PUT_LINE('Error #' || i || ' occurred during '||
         'iteration #' || SQL%BULK_EXCEPTIONS(i).ERROR_INDEX);
      DBMS_OUTPUT.PUT_LINE('Error message is ' ||
        SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE));
   END LOOP;
END;
/
DROP TABLE emp_temp;

The output from the example is similar to:

Number of statements that failed: 2
Error #1 occurred during iteration #7
Error message is ORA-12899: value too large for column
Error #2 occurred during iteration #13
Error message is ORA-12899: value too large for column

In Example 12–9, PL/SQL raises predefined exceptions because updated values were 
too large to insert into the job_id column. After the FORALL statement, SQL%BULK_
EXCEPTIONS.COUNT returned 2, and the contents of SQL%BULK_EXCEPTIONS were 
(7,12899) and (13,12899). 

To get the Oracle Database error message (which includes the code), the value of 
SQL%BULK_EXCEPTIONS(i).ERROR_CODE was negated and then passed to the 
error-reporting function SQLERRM, which expects a negative number. 

Retrieving Query Results into Collections (BULK COLLECT Clause)
Using the BULK COLLECT clause with a query is a very efficient way to retrieve the 
result set. Instead of looping through each row, you store the results in one or more 
collections, in a single operation. You can use the BULK COLLECT clause in the SELECT 
INTO and FETCH INTO statements, and in the RETURNING INTO clause.

With the BULK COLLECT clause, all the variables in the INTO list must be collections. 
The table columns can hold scalar or composite values, including object types.

Example 12–10 loads two entire database columns into nested tables.

Example 12–10 Retrieving Query Results with BULK COLLECT

DECLARE
   TYPE NumTab IS TABLE OF employees.employee_id%TYPE;
   TYPE NameTab IS TABLE OF employees.last_name%TYPE;
   enums NumTab;   -- No need to initialize collections
   names NameTab;  -- Values will be filled by SELECT INTO



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

12-18 Oracle Database PL/SQL Language Reference

   PROCEDURE print_results IS
   BEGIN
     IF enums.COUNT = 0 THEN 
       DBMS_OUTPUT.PUT_LINE('No results!');
     ELSE
       DBMS_OUTPUT.PUT_LINE('Results:');
       FOR i IN enums.FIRST .. enums.LAST
       LOOP
         DBMS_OUTPUT.PUT_LINE
           ('  Employee #' || enums(i) || ': '
         names(i));
       END LOOP;
     END IF;
   END;
BEGIN
  -- Retrieve data for employees with Ids greater than 1000
  SELECT employee_id, last_name
    BULK COLLECT INTO enums, names FROM employees
    WHERE employee_id > 1000;
  -- Data was brought into memory by BULK COLLECT
  -- No need to FETCH each row from result set
  print_results();
  -- Retrieve approximately 20% of all rows
  SELECT employee_id, last_name
    BULK COLLECT INTO enums, names FROM employees SAMPLE (20);
  print_results();
END;
/

The collections are initialized automatically. Nested tables and associative arrays are 
extended to hold as many elements as needed. If you use varrays, all the return values 
must fit in the varray's declared size. Elements are inserted starting at index 1, 
overwriting any existing elements.

Because the processing of the BULK COLLECT INTO clause is similar to a FETCH loop, it 
does not raise a NO_DATA_FOUND exception if no rows match the query. You must 
check whether the resulting nested table or varray is null, or if the resulting associative 
array has no elements, as shown in Example 12–11.

To prevent the resulting collections from expanding without limit, you can use the 
LIMIT clause to or pseudocolumn ROWNUM to limit the number of rows processed. You 
can also use the SAMPLE clause to retrieve a random sample of rows.

Example 12–11 Using the Pseudocolumn ROWNUM to Limit Query Results

DECLARE
   TYPE SalList IS TABLE OF employees.salary%TYPE;
   sals SalList;
BEGIN
  -- Limit number of rows to 50
 SELECT salary BULK COLLECT INTO sals
   FROM employees
   WHERE ROWNUM <= 50;
  -- Retrieve ~10% rows from table
  SELECT salary BULK COLLECT INTO sals FROM employees SAMPLE (10);
END;
/

You can process very large result sets by fetching a specified number of rows at a time 
from a cursor, as shown in the following sections.



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

Tuning PL/SQL Applications for Performance 12-19

Topics:

■ Examples of Bulk Fetching from a Cursor

■ Limiting Rows for a Bulk FETCH Operation (LIMIT Clause)

■ Retrieving DML Results Into a Collection (RETURNING INTO Clause)

■ Using FORALL and BULK COLLECT Together

■ Using Host Arrays with Bulk Binds

■ SELECT BULK COLLECT INTO Statements and Aliasing

Examples of Bulk Fetching from a Cursor
You can fetch from a cursor into one or more collections as shown in Example 12–12.

Example 12–12 Bulk-Fetching from a Cursor Into One or More Collections

DECLARE
  TYPE NameList IS TABLE OF employees.last_name%TYPE;
  TYPE SalList IS TABLE OF employees.salary%TYPE;
  CURSOR c1 IS SELECT last_name, salary
    FROM employees
    WHERE salary > 10000;
  names NameList;
  sals  SalList;
  TYPE RecList IS TABLE OF c1%ROWTYPE;
  recs RecList;
  v_limit PLS_INTEGER := 10;
  PROCEDURE print_results IS
  BEGIN
    -- Check if collections are empty
    IF names IS NULL OR names.COUNT = 0 THEN
       DBMS_OUTPUT.PUT_LINE('No results!');
    ELSE
      DBMS_OUTPUT.PUT_LINE('Results: ');
      FOR i IN names.FIRST .. names.LAST
      LOOP
        DBMS_OUTPUT.PUT_LINE('  Employee ' || names(i) ||
          ': $' || sals(i));
      END LOOP;
    END IF;
  END;
BEGIN
  DBMS_OUTPUT.PUT_LINE
    ('--- Processing all results at once ---');
  OPEN c1;
  FETCH c1 BULK COLLECT INTO names, sals;
  CLOSE c1;
  print_results();
  DBMS_OUTPUT.PUT_LINE
    ('--- Processing ' || v_limit || ' rows at a time ---');
  OPEN c1;
  LOOP
    FETCH c1 BULK COLLECT INTO names, sals LIMIT v_limit;
    EXIT WHEN names.COUNT = 0;
    print_results();
  END LOOP;
  CLOSE c1;
  DBMS_OUTPUT.PUT_LINE
    ('--- Fetching records rather than columns ---');



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

12-20 Oracle Database PL/SQL Language Reference

  OPEN c1;
  FETCH c1 BULK COLLECT INTO recs;
  FOR i IN recs.FIRST .. recs.LAST
  LOOP
-- Now all columns from result set come from one record
    DBMS_OUTPUT.PUT_LINE('  Employee ' || recs(i).last_name ||
          ': $' || recs(i).salary);
  END LOOP;
END;
/

Example 12–13 shows how you can fetch from a cursor into a collection of records.

Example 12–13 Bulk-Fetching from a Cursor Into a Collection of Records

DECLARE
  TYPE DeptRecTab IS TABLE OF departments%ROWTYPE;
  dept_recs DeptRecTab;
  CURSOR c1 IS
    SELECT department_id, department_name, manager_id, location_id
      FROM departments
      WHERE department_id > 70;
BEGIN
  OPEN c1;
  FETCH c1 BULK COLLECT INTO dept_recs;
END;
/

Limiting Rows for a Bulk FETCH Operation (LIMIT Clause)
The optional LIMIT clause, allowed only in bulk FETCH statements, limits the number 
of rows fetched from the database. In Example 12–14, with each iteration of the loop, 
the FETCH statement fetches ten rows (or fewer) into index-by table empids. The 
previous values are overwritten. Note the use of empids.COUNT to determine when to 
exit the loop.

Example 12–14 Using LIMIT to Control the Number of Rows In a BULK COLLECT

DECLARE
   TYPE numtab IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
   CURSOR c1 IS SELECT employee_id
     FROM employees
     WHERE department_id = 80;
   empids    numtab;
   rows      PLS_INTEGER := 10;
BEGIN
  OPEN c1;
  -- Fetch 10 rows or less in each iteration
  LOOP
    FETCH c1 BULK COLLECT INTO empids LIMIT rows;
    EXIT WHEN empids.COUNT = 0;
--  EXIT WHEN c1%NOTFOUND; -- incorrect, can omit some data
    DBMS_OUTPUT.PUT_LINE
     ('------- Results from Each Bulk Fetch --------');
    FOR i IN 1..empids.COUNT LOOP
      DBMS_OUTPUT.PUT_LINE( 'Employee Id: ' || empids(i));
    END LOOP;
  END LOOP;
  CLOSE c1;
END;



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

Tuning PL/SQL Applications for Performance 12-21

/

Retrieving DML Results Into a Collection (RETURNING INTO Clause)
You can use the BULK COLLECT clause in the RETURNING INTO clause of an INSERT, 
UPDATE, or DELETE statement.

Example 12–15 Using BULK COLLECT with the RETURNING INTO Clause

CREATE TABLE emp_temp AS SELECT * FROM employees;
DECLARE
   TYPE NumList IS TABLE OF employees.employee_id%TYPE;
   enums NumList;
   TYPE NameList IS TABLE OF employees.last_name%TYPE;
   names NameList;
BEGIN
   DELETE FROM emp_temp WHERE department_id = 30
     WHERE department_id = 30
     RETURNING employee_id, last_name
     BULK COLLECT INTO enums, names;
   DBMS_OUTPUT.PUT_LINE
     ('Deleted ' || SQL%ROWCOUNT || ' rows:');
   FOR i IN enums.FIRST .. enums.LAST
   LOOP
      DBMS_OUTPUT.PUT_LINE
        ('Employee #' || enums(i) || ': ' || names(i));
   END LOOP;
END;
/

Using FORALL and BULK COLLECT Together
You can combine the BULK COLLECT clause with a FORALL statement. The output 
collections are built up as the FORALL statement iterates.

In Example 12–16, the employee_id value of each deleted row is stored in the 
collection e_ids. The collection depts has 3 elements, so the FORALL statement 
iterates 3 times. If each DELETE issued by the FORALL statement deletes 5 rows, then 
the collection e_ids, which stores values from the deleted rows, has 15 elements 
when the statement completes.

Example 12–16 Using FORALL with BULK COLLECT

CREATE TABLE emp_temp AS SELECT * FROM employees;
DECLARE
   TYPE NumList IS TABLE OF NUMBER;
   depts NumList := NumList(10,20,30);
   TYPE enum_t IS TABLE OF employees.employee_id%TYPE;
   TYPE dept_t IS TABLE OF employees.department_id%TYPE;
   e_ids enum_t;
   d_ids dept_t;
BEGIN
  FORALL j IN depts.FIRST..depts.LAST
    DELETE FROM emp_temp
      WHERE department_id = depts(j)
      RETURNING employee_id, department_id
      BULK COLLECT INTO e_ids, d_ids;
  DBMS_OUTPUT.PUT_LINE
    ('Deleted ' || SQL%ROWCOUNT || ' rows:');
  FOR i IN e_ids.FIRST .. e_ids.LAST
  LOOP



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

12-22 Oracle Database PL/SQL Language Reference

    DBMS_OUTPUT.PUT_LINE('Employee #' || e_ids(i) ||
    ' from dept #' || d_ids(i));
  END LOOP;
END;
/

The column values returned by each execution are added to the values returned 
previously. If you use a FOR loop instead of the FORALL statement, the set of returned 
values is overwritten by each DELETE statement.

You cannot use the SELECT BULK COLLECT statement in a FORALL statement.

Using Host Arrays with Bulk Binds
Client-side programs can use anonymous PL/SQL blocks to bulk-bind input and 
output host arrays. This is the most efficient way to pass collections to and from the 
database server. 

Host arrays are declared in a host environment such as an OCI or a Pro*C program 
and must be prefixed with a colon to distinguish them from PL/SQL collections. In the 
following example, an input host array is used in a DELETE statement. At run time, the 
anonymous PL/SQL block is sent to the database server for execution.

DECLARE
BEGIN
  -- Assume that values were assigned to host array
  -- and host variables in host environment
  FORALL i IN :lower..:upper
    DELETE FROM employees
      WHERE department_id = :depts(i);
  COMMIT;
END;

SELECT BULK COLLECT INTO Statements and Aliasing
In a statement of the form

SELECT column BULK COLLECT INTO collection FROM table ...

column and collection are analogous to IN and OUT NOCOPY subprogram 
parameters, respectively, and PL/SQL passes them by reference. As with subprogram 
parameters that are passed by reference, aliasing can cause unexpected results.

In Example 12–17, the intention is to select specific values from a collection, 
numbers1, and then store them in the same collection. The unexpected result is that 
all elements of numbers1 are deleted. For workarounds, see Example 12–18 and 
Example 12–19.

Example 12–17 SELECT BULK COLLECT INTO Statement with Unexpected Results

SQL> CREATE OR REPLACE TYPE numbers_type IS
  2    TABLE OF INTEGER
  3  /
 
Type created.
 
SQL> CREATE OR REPLACE PROCEDURE p (i IN INTEGER) IS
  2    numbers1  numbers_type := numbers_type(1,2,3,4,5);

See Also: Understanding PL/SQL Subprogram Parameter Aliasing 
on page 8-25



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

Tuning PL/SQL Applications for Performance 12-23

  3  BEGIN
  4    DBMS_OUTPUT.PUT_LINE('Before SELECT statement');
  5    DBMS_OUTPUT.PUT_LINE('numbers1.COUNT() = ' || numbers1.COUNT());
  6  
  7    FOR j IN 1..numbers1.COUNT() LOOP
  8      DBMS_OUTPUT.PUT_LINE('numbers1(' || j || ') = ' || numbers1(j));
  9    END LOOP;
 10  
 11    --Self-selecting BULK COLLECT INTO clause:
 12  
 13    SELECT a.COLUMN_VALUE
 14      BULK COLLECT INTO numbers1
 15        FROM TABLE(numbers1) a
 16          WHERE a.COLUMN_VALUE > p.i
 17            ORDER BY a.COLUMN_VALUE;
 18  
 19    DBMS_OUTPUT.PUT_LINE('After SELECT statement');
 20    DBMS_OUTPUT.PUT_LINE('numbers1.COUNT() = ' || numbers1.COUNT());
 21  END p;
 22  /
 
Procedure created.
 
SQL> BEGIN
  2    p(2);
  3  END;
  4  /
Before SELECT statement
numbers1.COUNT() = 5
numbers1(1) = 1
numbers1(2) = 2
numbers1(3) = 3
numbers1(4) = 4
numbers1(5) = 5
After SELECT statement
numbers1.COUNT() = 0
 
PL/SQL procedure successfully completed.
 
SQL> BEGIN
  2    p(10);
  3  END;
  4  /
Before SELECT statement
numbers1.COUNT() = 5
numbers1(1) = 1
numbers1(2) = 2
numbers1(3) = 3
numbers1(4) = 4
numbers1(5) = 5
After SELECT statement
numbers1.COUNT() = 0
 
SQL> 

Example 12–18 uses a cursor to achieve the result intended by Example 12–17.

Example 12–18 Workaround for Example 12–17 Using a Cursor

SQL> CREATE OR REPLACE TYPE numbers_type IS



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

12-24 Oracle Database PL/SQL Language Reference

  2    TABLE OF INTEGER
  3  /
 
Type created.
 
SQL> CREATE OR REPLACE PROCEDURE p (i IN INTEGER) IS
  2    numbers1  numbers_type := numbers_type(1,2,3,4,5);
  3  
  4    CURSOR c IS
  5      SELECT a.COLUMN_VALUE
  6        FROM TABLE(numbers1) a
  7          WHERE a.COLUMN_VALUE > p.i
  8            ORDER BY a.COLUMN_VALUE;
  9  BEGIN
 10    DBMS_OUTPUT.PUT_LINE('Before FETCH statement');
 11    DBMS_OUTPUT.PUT_LINE('numbers1.COUNT() = ' || numbers1.COUNT());
 12  
 13    FOR j IN 1..numbers1.COUNT() LOOP
 14      DBMS_OUTPUT.PUT_LINE('numbers1(' || j || ') = ' || numbers1(j));
 15    END LOOP;
 16  
 17    OPEN c;
 18    FETCH c BULK COLLECT INTO numbers1;
 19    CLOSE c;
 20  
 21    DBMS_OUTPUT.PUT_LINE('After FETCH statement');
 22    DBMS_OUTPUT.PUT_LINE('numbers1.COUNT() = ' || numbers1.COUNT());
 23  
 24    IF numbers1.COUNT() > 0 THEN
 25      FOR j IN 1..numbers1.COUNT() LOOP
 26        DBMS_OUTPUT.PUT_LINE('numbers1(' || j || ') = ' || numbers1(j));
 27      END LOOP;
 28    END IF;
 29  END p;
 30  /
 
Procedure created.
 
SQL> BEGIN
  2    p(2);
  3  END;
  4  /
Before FETCH statement
numbers1.COUNT() = 5
numbers1(1) = 1
numbers1(2) = 2
numbers1(3) = 3
numbers1(4) = 4
numbers1(5) = 5
After FETCH statement
numbers1.COUNT() = 3
numbers1(1) = 3
numbers1(2) = 4
numbers1(3) = 5
 
PL/SQL procedure successfully completed.
 
SQL> BEGIN
  2    p(10);
  3  END;



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

Tuning PL/SQL Applications for Performance 12-25

  4  /
Before FETCH statement
numbers1.COUNT() = 5
numbers1(1) = 1
numbers1(2) = 2
numbers1(3) = 3
numbers1(4) = 4
numbers1(5) = 5
After FETCH statement
numbers1.COUNT() = 0
 
PL/SQL procedure successfully completed.
 
SQL> DROP TYPE numbers_type;
 
Type dropped.
 
SQL> DROP PROCEDURE p;
 
Procedure dropped.
 
SQL> 

Example 12–19 selects specific values from a collection, numbers1, and then stores 
them in a different collection, numbers2. Example 12–19 performs faster than 
Example 12–18.

Example 12–19 Workaround for Example 12–17 Using a Second Collection

SQL> CREATE OR REPLACE TYPE numbers_type IS
  2    TABLE OF INTEGER
  3  /
 
Type created.
 
SQL> CREATE OR REPLACE PROCEDURE p (i IN INTEGER) IS
  2    numbers1  numbers_type := numbers_type(1,2,3,4,5);
  3    numbers2  numbers_type := numbers_type(0,0,0,0,0);
  4  
  5  BEGIN
  6    DBMS_OUTPUT.PUT_LINE('Before SELECT statement');
  7  
  8    DBMS_OUTPUT.PUT_LINE('numbers1.COUNT() = ' || numbers1.COUNT());
  9  
 10    FOR j IN 1..numbers1.COUNT() LOOP
 11      DBMS_OUTPUT.PUT_LINE('numbers1(' || j || ') = ' || numbers1(j));
 12    END LOOP;
 13  
 14    DBMS_OUTPUT.PUT_LINE('numbers2.COUNT() = ' || numbers2.COUNT());
 15  
 16    FOR j IN 1..numbers2.COUNT() LOOP
 17      DBMS_OUTPUT.PUT_LINE('numbers2(' || j || ') = ' || numbers2(j));
 18    END LOOP;
 19  
 20    SELECT a.COLUMN_VALUE
 21      BULK COLLECT INTO numbers2      -- numbers2 appears here
 22        FROM TABLE(numbers1) a        -- numbers1 appears here
 23          WHERE a.COLUMN_VALUE > p.i
 24            ORDER BY a.COLUMN_VALUE;
 25  



Reducing Loop Overhead for DML Statements and Queries with Bulk SQL

12-26 Oracle Database PL/SQL Language Reference

 26    DBMS_OUTPUT.PUT_LINE('After SELECT statement');
 27    DBMS_OUTPUT.PUT_LINE('numbers1.COUNT() = ' || numbers1.COUNT());
 28  
 29    IF numbers1.COUNT() > 0 THEN
 30      FOR j IN 1..numbers1.COUNT() LOOP
 31        DBMS_OUTPUT.PUT_LINE('numbers1(' || j || ') = ' || numbers1(j));
 32      END LOOP;
 33    END IF;
 34  
 35    DBMS_OUTPUT.PUT_LINE('numbers2.COUNT() = ' || numbers2.COUNT());
 36  
 37    IF numbers2.COUNT() > 0 THEN
 38      FOR j IN 1..numbers2.COUNT() LOOP
 39        DBMS_OUTPUT.PUT_LINE('numbers2(' || j || ') = ' || numbers2(j));
 40      END LOOP;
 41    END IF;
 42  END p;
 43  /
 
Procedure created.
 
SQL> BEGIN
  2    p(2);
  3  END;
  4  /
Before SELECT statement
numbers1.COUNT() = 5
numbers1(1) = 1
numbers1(2) = 2
numbers1(3) = 3
numbers1(4) = 4
numbers1(5) = 5
numbers2.COUNT() = 5
numbers2(1) = 0
numbers2(2) = 0
numbers2(3) = 0
numbers2(4) = 0
numbers2(5) = 0
After SELECT statement
numbers1.COUNT() = 5
numbers1(1) = 1
numbers1(2) = 2
numbers1(3) = 3
numbers1(4) = 4
numbers1(5) = 5
numbers2.COUNT() = 3
numbers2(1) = 3
numbers2(2) = 4
numbers2(3) = 5
 
PL/SQL procedure successfully completed.
 
SQL> BEGIN
  2    p(10);
  3  END;
  4  /
Before SELECT statement
numbers1.COUNT() = 5
numbers1(1) = 1
numbers1(2) = 2



Tuning Dynamic SQL with EXECUTE IMMEDIATE Statement and Cursor Variables

Tuning PL/SQL Applications for Performance 12-27

numbers1(3) = 3
numbers1(4) = 4
numbers1(5) = 5
numbers2.COUNT() = 5
numbers2(1) = 0
numbers2(2) = 0
numbers2(3) = 0
numbers2(4) = 0
numbers2(5) = 0
After SELECT statement
numbers1.COUNT() = 5
numbers1(1) = 1
numbers1(2) = 2
numbers1(3) = 3
numbers1(4) = 4
numbers1(5) = 5
numbers2.COUNT() = 0
 
PL/SQL procedure successfully completed.
 
SQL>

Writing Computation-Intensive PL/SQL Programs
The BINARY_FLOAT and BINARY_DOUBLE data types make it practical to write 
PL/SQL programs to do number-crunching, for scientific applications involving 
floating-point calculations. These data types act much like the native floating-point 
types on many hardware systems, with semantics derived from the IEEE-754 
floating-point standard.

The way these data types represent decimal data make them less suitable for financial 
applications, where precise representation of fractional amounts is more important 
than pure performance.

The PLS_INTEGER data type is a PL/SQL-only data type that is more efficient than 
the SQL data types NUMBER or INTEGER for integer arithmetic. You can use PLS_
INTEGER to write pure PL/SQL code for integer arithmetic, or convert NUMBER or 
INTEGER values to PLS_INTEGER for manipulation by PL/SQL.

Within a package, you can write overloaded versions of subprograms that accept 
different numeric parameters. The math routines can be optimized for each kind of 
parameter (BINARY_FLOAT, BINARY_DOUBLE, NUMBER, PLS_INTEGER), avoiding 
unnecessary conversions.

The built-in math functions such as SQRT, SIN, COS, and so on already have fast 
overloaded versions that accept BINARY_FLOAT and BINARY_DOUBLE parameters. 
You can speed up math-intensive code by passing variables of these types to such 
functions, and by calling the TO_BINARY_FLOAT or TO_BINARY_DOUBLE functions 
when passing expressions to such functions.

Tuning Dynamic SQL with EXECUTE IMMEDIATE Statement and Cursor 
Variables

Some programs (a general-purpose report writer for example) must build and process 
a variety of SQL statements, where the exact text of the statement is unknown until 
run time. Such statements probably change from execution to execution. They are 
called dynamic SQL statements.



Tuning PL/SQL Subprogram Calls with NOCOPY Hint

12-28 Oracle Database PL/SQL Language Reference

Formerly, to execute dynamic SQL statements, you had to use the supplied package 
DBMS_SQL. Now, within PL/SQL, you can execute any kind of dynamic SQL 
statement using an interface called native dynamic SQL. The main PL/SQL features 
involved are the EXECUTE IMMEDIATE statement and cursor variables (also known as 
REF CURSORs).

Native dynamic SQL code is more compact and much faster than calling the DBMS_
SQL package. The following example declares a cursor variable, then associates it with 
a dynamic SELECT statement:

DECLARE
   TYPE EmpCurTyp IS REF CURSOR;
   emp_cv   EmpCurTyp;
   v_ename VARCHAR2(15);
   v_sal   NUMBER := 1000;
   table_name VARCHAR2(30) := 'employees';
BEGIN
   OPEN emp_cv FOR 'SELECT last_name, salary FROM ' || table_name ||
      ' WHERE salary > :s' USING v_sal;
   CLOSE emp_cv;
END;
/

For more information, see Chapter 7, "Using Dynamic SQL."

Tuning PL/SQL Subprogram Calls with NOCOPY Hint
By default, OUT and IN OUT parameters are passed by value. The values of any IN OUT 
parameters are copied before the subprogram is executed. During subprogram 
execution, temporary variables hold the output parameter values. If the subprogram 
exits normally, these values are copied to the actual parameters. If the subprogram 
exits with an unhandled exception, the original parameters are unchanged.

When the parameters represent large data structures such as collections, records, and 
instances of object types, this copying slows down execution and uses up memory. In 
particular, this overhead applies to each call to an object method: temporary copies are 
made of all the attributes, so that any changes made by the method are only applied if 
the method exits normally.

To avoid this overhead, you can specify the NOCOPY hint, which allows the PL/SQL 
compiler to pass OUT and IN OUT parameters by reference. If the subprogram exits 
normally, the action is the same as normal. If the subprogram exits early with an 
exception, the values of OUT and IN OUT parameters (or object attributes) might still 
change. To use this technique, ensure that the subprogram handles all exceptions.

The following example asks the compiler to pass IN OUT parameter v_staff by 
reference, to avoid copying the varray on entry to and exit from the subprogram:

DECLARE
  TYPE Staff IS VARRAY(200) OF Employee;
  PROCEDURE reorganize (v_staff IN OUT NOCOPY Staff) IS ...

Example 12–20 loads 25,000 records into a local nested table, which is passed to two 
local procedures that do nothing. A call to the subprogram that uses NOCOPY takes 
much less time.

Example 12–20 Using NOCOPY with Parameters

DECLARE
  TYPE EmpTabTyp IS TABLE OF employees%ROWTYPE;



Tuning PL/SQL Subprogram Calls with NOCOPY Hint

Tuning PL/SQL Applications for Performance 12-29

  emp_tab EmpTabTyp := EmpTabTyp(NULL);  -- initialize
  t1 NUMBER;
  t2 NUMBER;
  t3 NUMBER;
  PROCEDURE get_time (t OUT NUMBER) IS
    BEGIN t := DBMS_UTILITY.get_time; END;
  PROCEDURE do_nothing1 (tab IN OUT EmpTabTyp) IS
    BEGIN
      NULL;
    END;
  PROCEDURE do_nothing2 (tab IN OUT NOCOPY EmpTabTyp) IS
    BEGIN
      NULL;
    END;
BEGIN
  SELECT * INTO emp_tab(1)
    FROM employees
    WHERE employee_id = 100;
  -- Copy element 1 into 2..50000
  emp_tab.EXTEND(49999, 1);
  get_time(t1);
  -- Pass IN OUT parameter
  do_nothing1(emp_tab);
  get_time(t2);
  -- Pass IN OUT NOCOPY parameter
  do_nothing2(emp_tab);
  get_time(t3);
  DBMS_OUTPUT.PUT_LINE('Call Duration (secs)');
  DBMS_OUTPUT.PUT_LINE('--------------------');
  DBMS_OUTPUT.PUT_LINE
    ('Just IN OUT: ' || TO_CHAR((t2 - t1)/100.0));
  DBMS_OUTPUT.PUT_LINE
    ('With NOCOPY: ' || TO_CHAR((t3 - t2))/100.0);
END;
/

Restrictions on NOCOPY Hint
The use of NOCOPY increases the likelihood of parameter aliasing. For more 
information, see Understanding PL/SQL Subprogram Parameter Aliasing on 
page 8-25.

Remember, NOCOPY is a hint, not a directive. In the following cases, the PL/SQL 
compiler ignores the NOCOPY hint and uses the by-value parameter-passing method; 
no error is generated:

■ The actual parameter is an element of an associative array. This restriction does not 
apply if the parameter is an entire associative array.

■ The actual parameter is constrained, such as by scale or NOT NULL. This restriction 
does not apply to size-constrained character strings. This restriction does not 
extend to constrained elements or attributes of composite types.

■ The actual and formal parameters are records, one or both records were declared 
using %ROWTYPE or %TYPE, and constraints on corresponding fields in the records 
differ.

■ The actual and formal parameters are records, the actual parameter was declared 
(implicitly) as the index of a cursor FOR loop, and constraints on corresponding 
fields in the records differ.

■ Passing the actual parameter requires an implicit data type conversion.



Compiling PL/SQL Units for Native Execution

12-30 Oracle Database PL/SQL Language Reference

■ The subprogram is called through a database link or as an external subprogram.

Compiling PL/SQL Units for Native Execution
You can usually speed up PL/SQL units by compiling them into native code 
(processor-dependent system code), which is stored in the SYSTEM tablespace.

You can natively compile any PL/SQL unit of any type, including those that Oracle 
supplies.

Natively compiled program units work in all server environments, including shared 
server configuration (formerly called "multithreaded server") and Oracle Real 
Application Clusters (Oracle RAC).

On most platforms, PL/SQL native compilation requires no special set-up or 
maintenance. On some platforms, the DBA might want to do some optional 
configuration.

You can test to see how much performance gain you can get by enabling PL/SQL 
native compilation.

If you have determined that PL/SQL native compilation will provide significant 
performance gains in database operations, Oracle recommends compiling the entire 
database for native mode, which requires DBA privileges. This will speed up both 
your own code and calls to all of the built-in PL/SQL packages.

Topics:

■ Determining Whether to Use PL/SQL Native Compilation

■ How PL/SQL Native Compilation Works

■ Dependencies, Invalidation, and Revalidation

■ Setting Up a New Database for PL/SQL Native Compilation*

■ Compiling the Entire Database for PL/SQL Native or Interpreted Compilation*

* Requires DBA privileges.

Determining Whether to Use PL/SQL Native Compilation
Whether to compile a PL/SQL unit for native or interpreted mode depends on where 
you are in the development cycle and on what the program unit does.

While you are debugging program units and recompiling them frequently, interpreted 
mode has these advantages:

■ You can use PL/SQL debugging tools on program units compiled for interpreted 
mode (but not for those compiled for native mode).

■ Compiling for interpreted mode is faster than compiling for native mode.

After the debugging phase of development, consider the following in determining 
whether to compile a PL/SQL unit for native mode:

See Also:

■ Oracle Database Administrator's Guide for information about 
configuring a database

■ Platform-specific configuration documentation for your platform



Compiling PL/SQL Units for Native Execution

Tuning PL/SQL Applications for Performance 12-31

■ PL/SQL native compilation provides the greatest performance gains for 
computation-intensive procedural operations. Examples are data warehouse 
applications and applications with extensive server-side transformations of data 
for display.

■ PL/SQL native compilation provides the least performance gains for PL/SQL 
subprograms that spend most of their time executing SQL.

■ When many program units (typically over 15,000) are compiled for native 
execution, and are simultaneously active, the large amount of shared memory 
required might affect system performance.

How PL/SQL Native Compilation Works
Without native compilation, the PL/SQL statements in a PL/SQL unit are compiled 
into an intermediate form, system code, which is stored in the database dictionary and 
interpreted at run time.

With PL/SQL native compilation, the PL/SQL statements in a PL/SQL unit are 
compiled into native code and stored in the SYSTEM tablespace. The native code need 
not be interpreted at run time, so it runs faster.

Because native compilation applies only to PL/SQL statements, a PL/SQL unit that 
only calls SQL statements might not run faster when natively compiled, but it will run 
at least as fast as the corresponding interpreted code. The compiled code and the 
interpreted code make the same library calls, so their action is exactly the same.

The first time a natively compiled PL/SQL unit is executed, it is fetched from the 
SYSTEM tablespace into shared memory. Regardless of how many sessions call the 
program unit, shared memory has only one copy it. If a program unit is not being 
used, the shared memory it is using might be freed, to reduce memory load.

Natively compiled subprograms and interpreted subprograms can call each other.

PLSQL native compilation works transparently in a Oracle Real Application Clusters 
(Oracle RAC) environment.

The PLSQL_CODE_TYPE compilation parameter determines whether PL/SQL code is 
natively compiled or interpreted. For information about this compilation parameters, 
see PL/SQL Units and Compilation Parameters on page 1-25.

Dependencies, Invalidation, and Revalidation
Recompilation is automatic with invalidated PL/SQL modules. For example, if an 
object on which a natively compiled PL/SQL subprogram depends changes, the 
subprogram is invalidated. The next time the same subprogram is called, the database 
recompiles the subprogram automatically. Because the PLSQL_CODE_TYPE setting is 
stored inside the library unit for each subprogram, the automatic recompilation uses 
this stored setting for code type.

Explicit recompilation does not necessarily use the stored PLSQL_CODE_TYPE setting. 
For the conditions under which explicit recompilation uses stored settings, see 
PL/SQL Units and Compilation Parameters on page 1-25.

Setting Up a New Database for PL/SQL Native Compilation
If you have DBA privileges, you can set up an new database for PL/SQL native 
compilation by setting the compilation parameter PLSQL_CODE_TYPE to NATIVE. The 
performance benefits apply to all the built-in PL/SQL packages, which are used for 
many database operations.



Compiling PL/SQL Units for Native Execution

12-32 Oracle Database PL/SQL Language Reference

Compiling the Entire Database for PL/SQL Native or Interpreted Compilation
If you have DBA privileges, you can recompile all PL/SQL modules in an existing 
database to NATIVE or INTERPRETED, using the dbmsupgnv.sql and 
dbmsupgin.sql scripts respectively during the process described in this section. 
Before making the conversion, review Determining Whether to Use PL/SQL Native 
Compilation on page 12-30.

During the conversion to native compilation, TYPE specifications are not recompiled 
by dbmsupgnv.sql to NATIVE because these specifications do not contain executable 
code.

Package specifications seldom contain executable code so the run-time benefits of 
compiling to NATIVE are not measurable. You can use the TRUE command-line 
parameter with the dbmsupgnv.sql script to exclude package specs from 
recompilation to NATIVE, saving time in the conversion process.

When converting to interpreted compilation, the dbmsupgin.sql script does not 
accept any parameters and does not exclude any PL/SQL units.

1. Ensure that a test PL/SQL unit can be compiled. For example:

ALTER PROCEDURE my_proc COMPILE PLSQL_CODE_TYPE=NATIVE REUSE SETTINGS;

2. Shut down application services, the listener, and the database.

■ Shut down all of the Application services including the Forms Processes, Web 
Servers, Reports Servers, and Concurrent Manager Servers. After shutting 
down all of the Application services, ensure that all of the connections to the 
database were terminated.

■ Shut down the TNS listener of the database to ensure that no new connections 
are made.

■ Shut down the database in normal or immediate mode as the user SYS. See the 
Oracle Database Administrator's Guide.

3. Set PLSQL_CODE_TYPE to NATIVE in the compilation parameter file. If the 
database is using a server parameter file, then set this after the database has 
started.

Note: If you compile the whole database as NATIVE, Oracle 
recommends that you set PLSQL_CODE_TYPE at the system level.

Note: If you compile the whole database as NATIVE, Oracle 
recommends that you set PLSQL_CODE_TYPE at the system level.

Note: The following procedure describes the conversion to native 
compilation. If you must recompile all PL/SQL modules to 
interpreted compilation, make these changes in the steps.

■ Skip the first step.

■ Set the PLSQL_CODE_TYPE compilation parameter to 
INTERPRETED rather than NATIVE.

■ Substitute dbmsupgin.sql for the dbmsupgnv.sql script. 



Compiling PL/SQL Units for Native Execution

Tuning PL/SQL Applications for Performance 12-33

The value of PLSQL_CODE_TYPE does not affect the conversion of the PL/SQL 
units in these steps. However, it does affect all subsequently compiled units, so 
explicitly set it to the compilation type that you want.

4. Start up the database in upgrade mode, using the UPGRADE option. For 
information about SQL*Plus STARTUP, see the SQL*Plus User's Guide and Reference.

5. Execute the following code to list the invalid PL/SQL units. You can save the 
output of the query for future reference with the SQL SPOOL statement:

REM To save the output of the query to a file:
  SPOOL pre_update_invalid.log
SELECT o.OWNER, o.OBJECT_NAME, o.OBJECT_TYPE 
  FROM DBA_OBJECTS o, DBA_PLSQL_OBJECT_SETTINGS s 
  WHERE o.OBJECT_NAME = s.NAME AND o.STATUS='INVALID';
REM To stop spooling the output: SPOOL OFF

If any Oracle supplied units are invalid, try to validate them by recompiling them. 
For example:

ALTER PACKAGE SYS.DBMS_OUTPUT COMPILE BODY REUSE SETTINGS;

If the units cannot be validated, save the spooled log for future resolution and 
continue.

6. Execute the following query to determine how many objects are compiled NATIVE 
and INTERPRETED (to save the output, use the SQL SPOOL statement):

SELECT TYPE, PLSQL_CODE_TYPE, COUNT(*)
  FROM DBA_PLSQL_OBJECT_SETTINGS
  WHERE PLSQL_CODE_TYPE IS NOT NULL
  GROUP BY TYPE, PLSQL_CODE_TYPE
  ORDER BY TYPE, PLSQL_CODE_TYPE;

Any objects with a NULL plsql_code_type are special internal objects and can 
be ignored.

7. Run the $ORACLE_HOME/rdbms/admin/dbmsupgnv.sql script as the user SYS 
to update the plsql_code_type setting to NATIVE in the dictionary tables for all 
PL/SQL units. This process also invalidates the units. Use TRUE with the script to 
exclude package specifications; FALSE to include the package specifications.

This update must be done when the database is in UPGRADE mode. The script is 
guaranteed to complete successfully or rollback all the changes.

8. Shut down the database and restart in NORMAL mode.

9. Before you run the utlrp.sql script, Oracle recommends that no other sessions 
are connected to avoid possible problems. You can ensure this with the following 
statement:

ALTER SYSTEM ENABLE RESTRICTED SESSION;

10. Run the $ORACLE_HOME/rdbms/admin/utlrp.sql script as the user SYS. This 
script recompiles all the PL/SQL modules using a default degree of parellelism. 
See the comments in the script for information about setting the degree explicitly. 

If for any reason the script is abnormally terminated, rerun the utlrp.sql script 
to recompile any remaining invalid PL/SQL modules.

11. After the compilation completes successfully, verify that there are no new invalid 
PL/SQL units using the query in step 5. You can spool the output of the query to 



Performing Multiple Transformations with Pipelined Table Functions

12-34 Oracle Database PL/SQL Language Reference

the post_upgrade_invalid.log file and compare the contents with the pre_
upgrade_invalid.log file, if it was created previously.

12. Reexecute the query in step 6. If recompiling with dbmsupgnv.sql, confirm that 
all PL/SQL units, except TYPE specifications and package specifications if 
excluded, are NATIVE. If recompiling with dbmsupgin.sql, confirm that all 
PL/SQL units are INTERPRETED.

13. Disable the restricted session mode for the database, then start the services that 
you previously shut down. To disable restricted session mode, use the following 
statement:

ALTER SYSTEM DISABLE RESTRICTED SESSION;

Performing Multiple Transformations with Pipelined Table Functions
This section explains how to chain together special kinds of functions known as 
pipelined table functions. These functions are used in situations such as data 
warehousing to apply multiple transformations to data.

Topics:

■ Overview of Pipelined Table Functions

■ Writing a Pipelined Table Function

■ Using Pipelined Table Functions for Transformations

■ Returning Results from Pipelined Table Functions

■ Pipelining Data Between PL/SQL Table Functions

■ Optimizing Multiple Calls to Pipelined Table Functions

■ Fetching from Results of Pipelined Table Functions

■ Passing Data with Cursor Variables

■ Performing DML Operations Inside Pipelined Table Functions

■ Performing DML Operations on Pipelined Table Functions

■ Handling Exceptions in Pipelined Table Functions

Overview of Pipelined Table Functions
Pipelined table functions let you use PL/SQL to program a row source. You invoke the 
table function as the operand of the table operator in the FROM list of a SQL SELECT 
statement. It is also possible to invoke a table function as a SELECT list item; here, you 
do not use the table operator.

A table function can take a collection of rows as input. An input collection parameter 
can be either a collection type (such as a VARRAY or a PL/SQL table) or a REF CURSOR.

Note: A pipelined table function cannot be run over a database link. 
The reason is that the return type of a pipelined table function is a 
SQL user-defined type, which can be used only within a single 
database (as explained in Oracle Database Object-Relational Developer's 
Guide). Although the return type of a pipelined table function might 
appear to be a PL/SQL type, the database actually converts that 
PL/SQL type to a corresponding SQL user-defined type.



Performing Multiple Transformations with Pipelined Table Functions

Tuning PL/SQL Applications for Performance 12-35

Execution of a table function can be parallelized, and returned rows can be streamed 
directly to the next process without intermediate staging. Rows from a collection 
returned by a table function can also be pipelined, that is, iteratively returned as they 
are produced, instead of in a batch after all processing of the table function's input is 
completed.

Streaming, pipelining, and parallel execution of table functions can improve 
performance:

■ By enabling multithreaded, concurrent execution of table functions

■ By eliminating intermediate staging between processes

■ By improving query response time: With non-pipelined table functions, the entire 
collection returned by a table function must be constructed and returned to the 
server before the query can return a single result row. Pipelining enables rows to 
be returned iteratively, as they are produced. This also reduces the memory that a 
table function requires, as the object cache need not materialize the entire 
collection.

■ By iteratively providing result rows from the collection returned by a table 
function as the rows are produced instead of waiting until the entire collection is 
staged in tables or memory and then returning the entire collection.

Writing a Pipelined Table Function
You declare a pipelined table function by specifying the PIPELINED keyword. 
Pipelined functions can be defined at the schema level with CREATE FUNCTION or in a 
package. The PIPELINED keyword indicates that the function returns rows iteratively. 
The return type of the pipelined table function must be a supported collection type, 
such as a nested table or a varray. This collection type can be declared at the schema 
level or inside a package. Inside the function, you return individual elements of the 
collection type. The elements of the collection type must be supported SQL data types, 
such as NUMBER and VARCHAR2. PL/SQL data types, such as PLS_INTEGER and 
BOOLEAN, are not supported as collection elements in a pipelined function.

Example 12–21 shows how to assign the result of a pipelined table function to a 
PL/SQL collection variable and use the function in a SELECT statement.

Example 12–21 Assigning the Result of a Table Function

CREATE PACKAGE pkg1 AS
  TYPE numset_t IS TABLE OF NUMBER;
  FUNCTION f1(x NUMBER) RETURN numset_t PIPELINED;
END pkg1;
/

CREATE PACKAGE BODY pkg1 AS
-- FUNCTION f1 returns a collection of elements (1,2,3,... x)

Note: When rows from a collection returned by a table function are 
pipelined, the pipelined function always references the current state of 
the data. After opening the cursor on the collection, if the data in the 
collection is changed, then the change is reflected in the cursor. 
PL/SQL variables are private to a session and are not transactional. 
Therefore, the notion of read-consistency, well known for its 
applicability to table data, does not apply to PL/SQL collection 
variables.



Performing Multiple Transformations with Pipelined Table Functions

12-36 Oracle Database PL/SQL Language Reference

FUNCTION f1(x NUMBER) RETURN numset_t PIPELINED IS
  BEGIN
    FOR i IN 1..x LOOP
      PIPE ROW(i);
    END LOOP;
    RETURN;
  END;
END pkg1;
/

-- pipelined function is used in FROM clause of SELECT statement
SELECT * FROM TABLE(pkg1.f1(5));

Using Pipelined Table Functions for Transformations
A pipelined table function can accept any argument that regular functions accept. A 
table function that accepts a REF CURSOR as an argument can serve as a 
transformation function. That is, it can use the REF CURSOR to fetch the input rows, 
perform some transformation on them, and then pipeline the results out. 

In Example 12–22, the f_trans function converts a row of the employees table into 
two rows.

Example 12–22 Using a Pipelined Table Function For a Transformation

-- Define the ref cursor types and function
CREATE OR REPLACE PACKAGE refcur_pkg IS
  TYPE refcur_t IS REF CURSOR RETURN employees%ROWTYPE;
  TYPE outrec_typ IS RECORD ( 
    var_num    NUMBER(6),
    var_char1  VARCHAR2(30),
    var_char2  VARCHAR2(30));
  TYPE outrecset IS TABLE OF outrec_typ;
 FUNCTION f_trans(p refcur_t) 
      RETURN outrecset PIPELINED;
END refcur_pkg;
/

CREATE OR REPLACE PACKAGE BODY refcur_pkg IS
  FUNCTION f_trans(p refcur_t) 
   RETURN outrecset PIPELINED IS
    out_rec outrec_typ;
    in_rec  p%ROWTYPE;
  BEGIN
  LOOP
    FETCH p INTO in_rec;
    EXIT WHEN p%NOTFOUND;
    -- first row
    out_rec.var_num := in_rec.employee_id;
    out_rec.var_char1 := in_rec.first_name;
    out_rec.var_char2 := in_rec.last_name;
    PIPE ROW(out_rec);
    -- second row
    out_rec.var_char1 := in_rec.email;
    out_rec.var_char2 := in_rec.phone_number;
    PIPE ROW(out_rec);
  END LOOP;
  CLOSE p;
  RETURN;
  END;



Performing Multiple Transformations with Pipelined Table Functions

Tuning PL/SQL Applications for Performance 12-37

END refcur_pkg;
/
-- SELECT query using the f_transc table function
SELECT * FROM TABLE(
   refcur_pkg.f_trans(CURSOR
     (SELECT * FROM employees WHERE department_id = 60)));

In the preceding query, the pipelined table function f_trans fetches rows from the 
CURSOR subquery SELECT * FROM employees ..., performs the transformation, and 
pipelines the results back to the user as a table. The function produces two output 
rows (collection elements) for each input row.

When a CURSOR subquery is passed from SQL to a REF CURSOR function argument as 
in Example 12–22, the referenced cursor is already open when the function begins 
executing.

Returning Results from Pipelined Table Functions
In PL/SQL, the PIPE ROW statement causes a pipelined table function to pipe a row 
and continue processing. The statement enables a PL/SQL table function to return 
rows as soon as they are produced. For performance, the PL/SQL run-time system 
provides the rows to the consumer in batches.

In Example 12–22, the PIPE ROW(out_rec) statement pipelines data out of the 
PL/SQL table function. out_rec is a record, and its type matches the type of an 
element of the output collection.

The PIPE ROW statement may be used only in the body of pipelined table functions; an 
exception is raised if it is used anywhere else. The PIPE ROW statement can be omitted 
for a pipelined table function that returns no rows.

A pipelined table function may have a RETURN statement that does not return a value. 
The RETURN statement transfers the control back to the consumer and ensures that the 
next fetch gets a NO_DATA_FOUND exception.

Because table functions pass control back and forth to a calling routine as rows are 
produced, there is a restriction on combining table functions and PRAGMA 
AUTONOMOUS_TRANSACTION. If a table function is part of an autonomous transaction, 
it must COMMIT or ROLLBACK before each PIPE ROW statement, to avoid an error in the 
calling subprogram.

The database has three special SQL data types that enable you to dynamically 
encapsulate and access type descriptions, data instances, and sets of data instances of 
any other SQL type, including object and collection types. You can also use these three 
special types to create unnamed types, including anonymous collection types. The 
types are SYS.ANYTYPE, SYS.ANYDATA, and SYS.ANYDATASET. The SYS.ANYDATA 
type can be useful in some situations as a return value from table functions.

Pipelining Data Between PL/SQL Table Functions
With serial execution, results are pipelined from one PL/SQL table function to another 
using an approach similar to co-routine execution. For example, the following 
statement pipelines results from function g to function f:

SELECT * FROM TABLE(f(CURSOR(SELECT * FROM TABLE(g()))));

See Also:  Oracle Database PL/SQL Packages and Types Reference for 
information about the interfaces to the ANYTYPE, ANYDATA, and 
ANYDATASET types and about the DBMS_TYPES package for use 
with these types



Performing Multiple Transformations with Pipelined Table Functions

12-38 Oracle Database PL/SQL Language Reference

Parallel execution works similarly except that each function executes in a different 
process (or set of processes).

Optimizing Multiple Calls to Pipelined Table Functions
Multiple calls to a pipelined table function, either within the same query or in separate 
queries result in multiple executions of the underlying implementation. By default, 
there is no buffering or reuse of rows. For example:

SELECT * FROM TABLE(f(...)) t1, TABLE(f(...)) t2
  WHERE t1.id = t2.id;
SELECT * FROM TABLE(f());
SELECT * FROM TABLE(f());

If the function always produces the same result value for each combination of values 
passed in, you can declare the function DETERMINISTIC, and the database 
automatically buffers rows for it. If the function is not really deterministic, results are 
unpredictable.

Fetching from Results of Pipelined Table Functions
PL/SQL cursors and ref cursors can be defined for queries over table functions. For 
example:

OPEN c FOR SELECT * FROM TABLE(f(...));

Cursors over table functions have the same fetch semantics as ordinary cursors. REF 
CURSOR assignments based on table functions do not have any special semantics.

However, the SQL optimizer will not optimize across PL/SQL statements. For 
example:

DECLARE
  r SYS_REFCURSOR;
BEGIN
  OPEN r FOR SELECT *
    FROM TABLE(f(CURSOR(SELECT * FROM tab)));
  SELECT * BULK COLLECT INTO rec_tab FROM TABLE(g(r));
END;
/

does not execute as well as:

SELECT * FROM TABLE(g(CURSOR(SELECT * FROM
  TABLE(f(CURSOR(SELECT * FROM tab))))));

This is so even ignoring the overhead associated with executing two SQL statements 
and assuming that the results can be pipelined between the two statements.

Passing Data with Cursor Variables
You can pass a set of rows to a PL/SQL function in a REF CURSOR parameter. For 
example, this function is declared to accept an argument of the predefined weakly 
typed REF CURSOR type SYS_REFCURSOR:

FUNCTION f(p1 IN SYS_REFCURSOR) RETURN ... ;

Results of a subquery can be passed to a function directly:

SELECT * FROM TABLE(f(CURSOR(SELECT empid FROM tab)));



Performing Multiple Transformations with Pipelined Table Functions

Tuning PL/SQL Applications for Performance 12-39

In the preceding example, the CURSOR keyword causes the results of a subquery to be 
passed as a REF CURSOR parameter.

A predefined weak REF CURSOR type SYS_REFCURSOR is also supported. With SYS_
REFCURSOR, you need not first create a REF CURSOR type in a package before you can 
use it.

To use a strong REF CURSOR type, you still must create a PL/SQL package and declare 
a strong REF CURSOR type in it. Also, if you are using a strong REF CURSOR type as an 
argument to a table function, then the actual type of the REF CURSOR argument must 
match the column type, or an error is generated. Weak REF CURSOR arguments to table 
functions can only be partitioned using the PARTITION BY ANY clause. You cannot use 
range or hash partitioning for weak REF CURSOR arguments.

PL/SQL functions can accept multiple REF CURSOR input variables as shown in 
Example 12–23.

For more information about cursor variables, see Declaring REF CURSOR Types and 
Cursor Variables on page 6-23.

Example 12–23 Using Multiple REF CURSOR Input Variables

-- Define the ref cursor types
CREATE PACKAGE refcur_pkg IS
  TYPE refcur_t1 IS REF CURSOR RETURN employees%ROWTYPE;
  TYPE refcur_t2 IS REF CURSOR RETURN departments%ROWTYPE;  
  TYPE outrec_typ IS RECORD ( 
    var_num    NUMBER(6),
    var_char1  VARCHAR2(30),
    var_char2  VARCHAR2(30));
  TYPE outrecset IS TABLE OF outrec_typ;
  FUNCTION g_trans(p1 refcur_t1, p2 refcur_t2) 
    RETURN outrecset PIPELINED;
END refcur_pkg;
/

CREATE PACKAGE BODY refcur_pkg IS
FUNCTION g_trans(p1 refcur_t1, p2 refcur_t2) 
    RETURN outrecset PIPELINED IS
    out_rec outrec_typ;
    in_rec1 p1%ROWTYPE;
    in_rec2 p2%ROWTYPE;
BEGIN
  LOOP
    FETCH p2 INTO in_rec2;
    EXIT WHEN p2%NOTFOUND;
  END LOOP;
  CLOSE p2;
  LOOP
    FETCH p1 INTO in_rec1;
    EXIT WHEN p1%NOTFOUND;
    -- first row
    out_rec.var_num := in_rec1.employee_id;
    out_rec.var_char1 := in_rec1.first_name;
    out_rec.var_char2 := in_rec1.last_name;
    PIPE ROW(out_rec);
    -- second row
    out_rec.var_num := in_rec2.department_id;
    out_rec.var_char1 := in_rec2.department_name;
    out_rec.var_char2 := TO_CHAR(in_rec2.location_id);



Performing Multiple Transformations with Pipelined Table Functions

12-40 Oracle Database PL/SQL Language Reference

    PIPE ROW(out_rec);
  END LOOP;
  CLOSE p1;
  RETURN;
END;
END refcur_pkg;
/

-- SELECT query using the g_trans table function
SELECT * FROM TABLE(refcur_pkg.g_trans(
  CURSOR(SELECT * FROM employees WHERE department_id = 60),
  CURSOR(SELECT * FROM departments WHERE department_id = 60)));

You can pass table function return values to other table functions by creating a REF 
CURSOR that iterates over the returned data:

SELECT * FROM TABLE(f(CURSOR(SELECT * FROM TABLE(g(...)))));

You can explicitly open a REF CURSOR for a query and pass it as a parameter to a table 
function:

DECLARE
  r SYS_REFCURSOR;
  rec ...;
BEGIN
  OPEN r FOR SELECT * FROM TABLE(f(...));
  -- Must return a single row result set.
  SELECT * INTO rec FROM TABLE(g(r));
END;
/

In this case, the table function closes the cursor when it completes, so your program 
must not explicitly try to close the cursor.

A table function can compute aggregate results using the input ref cursor. 
Example 12–24 computes a weighted average by iterating over a set of input rows.

Example 12–24 Using a Pipelined Table Function as an Aggregate Function

CREATE TABLE gradereport (student VARCHAR2(30),
                          subject VARCHAR2(30),
                          weight NUMBER, grade NUMBER);
INSERT INTO gradereport VALUES('Mark', 'Physics', 4, 4);
INSERT INTO gradereport VALUES('Mark','Chemistry', 4, 3);
INSERT INTO gradereport VALUES('Mark','Maths', 3, 3);
INSERT INTO gradereport VALUES('Mark','Economics', 3, 4);

CREATE PACKAGE pkg_gpa IS
  TYPE gpa IS TABLE OF NUMBER;
  FUNCTION weighted_average(input_values SYS_REFCURSOR)
    RETURN gpa PIPELINED;
END pkg_gpa;
/
CREATE PACKAGE BODY pkg_gpa IS
FUNCTION weighted_average(input_values SYS_REFCURSOR)
  RETURN gpa PIPELINED IS
  grade NUMBER;
  total NUMBER := 0;
  total_weight NUMBER := 0;
  weight NUMBER := 0;
BEGIN



Performing Multiple Transformations with Pipelined Table Functions

Tuning PL/SQL Applications for Performance 12-41

-- Function accepts ref cursor and loops through all input rows
  LOOP
     FETCH input_values INTO weight, grade;
     EXIT WHEN input_values%NOTFOUND;
-- Accumulate the weighted average
     total_weight := total_weight + weight;
     total := total + grade*weight;
  END LOOP;
  PIPE ROW (total / total_weight);
  RETURN; -- the function returns a single result
END;
END pkg_gpa;
/
-- Query result is a nested table with single row
-- COLUMN_VALUE is keyword that returns contents of nested table
SELECT w.column_value "weighted result" FROM TABLE(
       pkg_gpa.weighted_average(CURSOR(SELECT weight,
       grade FROM gradereport))) w;

Performing DML Operations Inside Pipelined Table Functions
To execute DML statements, declare a pipelined table function with the AUTONOMOUS_
TRANSACTION pragma, which causes the function to execute in a new transaction not 
shared by other processes:

CREATE FUNCTION f(p SYS_REFCURSOR)
  RETURN CollType PIPELINED IS
    PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
  NULL;
END;
/

During parallel execution, each instance of the table function creates an independent 
transaction.

Performing DML Operations on Pipelined Table Functions
Pipelined table functions cannot be the target table in UPDATE, INSERT, or DELETE 
statements. For example, the following statements will raise an exception:

UPDATE F(CURSOR(SELECT * FROM tab)) SET col = value;
  INSERT INTO f(...) VALUES ('any', 'thing');

However, you can create a view over a table function and use INSTEAD OF triggers to 
update it. For example:

CREATE VIEW BookTable AS SELECT x.Name, x.Author
  FROM TABLE(GetBooks('data.txt')) x;

The following INSTEAD OF trigger fires when the user inserts a row into the 
BookTable view:

CREATE TRIGGER BookTable_insert
INSTEAD OF INSERT ON BookTable
REFERENCING NEW AS n
FOR EACH ROW
BEGIN
  ...
END
/



Performing Multiple Transformations with Pipelined Table Functions

12-42 Oracle Database PL/SQL Language Reference

INSERT INTO BookTable VALUES (...);

INSTEAD OF triggers can be defined for all DML operations on a view built on a table 
function.

Handling Exceptions in Pipelined Table Functions
Exception handling in pipelined table functions works just as it does with regular 
functions. 

Some languages, such as C and Java, provide a mechanism for user-supplied exception 
handling. If an exception raised within a table function is handled, the table function 
executes the exception handler and continues processing. Exiting the exception 
handler takes control to the enclosing scope. If the exception is cleared, execution 
proceeds normally. 

An unhandled exception in a table function causes the parent transaction to roll back.



13

PL/SQL Language Elements 13-1

13 PL/SQL Language Elements

This chapter summarizes the syntax and semantics of PL/SQL language elements and 
provides links to examples and related topics.

For instructions for reading the syntax diagrams in this chapter, see Oracle Database 
SQL Language Reference.

Topics:

■ Assignment Statement

■ AUTONOMOUS_TRANSACTION Pragma

■ Block

■ CASE Statement

■ CLOSE Statement

■ Collection

■ Collection Method Call

■ Comment

■ Constant

■ CONTINUE Statement

■ Cursor Attribute

■ Cursor Variable Declaration

■ EXCEPTION_INIT Pragma

■ Exception Declaration

■ Exception Handler

■ EXECUTE IMMEDIATE Statement

■ EXIT Statement

■ Explicit Cursor

■ Expression

■ FETCH Statement

■ FORALL Statement

■ Function Declaration and Definition

■ GOTO Statement

■ IF Statement



13-2 Oracle Database PL/SQL Language Reference

■ INLINE Pragma

■ Literal

■ LOOP Statements

■ NULL Statement

■ OPEN Statement

■ OPEN-FOR Statement

■ Parameter Declaration

■ Procedure Declaration and Definition

■ RAISE Statement

■ Record Definition

■ RESTRICT_REFERENCES Pragma (deprecated)

■ RETURN Statement

■ RETURNING INTO Clause

■ %ROWTYPE Attribute

■ SELECT INTO Statement

■ SERIALLY_REUSABLE Pragma

■ SQL (Implicit) Cursor Attribute

■ SQLCODE Function

■ SQLERRM Function

■ %TYPE Attribute

■ Variable



Assignment Statement

PL/SQL Language Elements 13-3

Assignment Statement

The assignment statement sets the current value of a variable, field, parameter, or 
element that has been declared in the current scope.

The assignment operator (:=) in the assignment statement can also appear in a 
constant or variable declaration. In a variable declaration, it assigns a default value to 
the variable. Without a default value, a variable is initialized to NULL every time a 
block is entered.

If a variable does not have a default value, always use the assignment statement to 
assign a value to it before using it in an expression.

Syntax

assignment_statement ::=

(expression ::= on page 13-51)

Keyword and Parameter Descriptions

attribute_name
The name of an attribute of object_type. The name must be unique within 
object_type (but can be used in other object types).

You cannot initialize an attribute in its declaration. You cannot impose the NOT NULL 
constraint on an attribute.

collection_name
The name of a collection.

cursor_variable_name
The name of a PL/SQL cursor variable.

See Also: CREATE TYPE Statement on page 14-60 for information 
about attributes of object types

collection_name
( index )

cursor_variable_name

: host_cursor_variable_name

: host_variable_name
: indicator_name

object_name
. attribute_name

parameter_name

record_name
. field_name

variable_name

:= expression ;



Assignment Statement

13-4 Oracle Database PL/SQL Language Reference

expression
The expression whose value is to be assigned to the target (the item to the left of the 
assignment operator) when the assignment statement executes.

The value of expression must have a data type that is compatible with the data type 
of the target.

If the target is a variable defined as NOT NULL, the value of expression cannot be 
NULL. If the target is a Boolean variable, the value of expression must be TRUE, 
FALSE, or NULL. If the target is a cursor variable, the value of expression must also 
be a cursor variable.

field_name
The name of a field in record_name.

Specify field_name if you want to assign the value of expression to a specific field 
of a record.

Omit field_name if you want to assign the value of expression to all fields of 
record_name at once; that is, if you want to assign one record to another. You can 
assign one record to another only if their declarations refer to the same table or cursor, 
as in Example 2–17, "Assigning One Record to Another, Correctly and Incorrectly" on 
page 2-16.

host_cursor_variable_name
The name of a cursor variable declared in a PL/SQL host environment and passed to 
PL/SQL as a bind argument.

The data type of a host cursor variable is compatible with the return type of any 
PL/SQL cursor variable.

host_variable_name
The name of a variable declared in a PL/SQL host environment and passed to PL/SQL 
as a bind argument.

index
A numeric expression whose value has data type PLS_INTEGER or a data type 
implicitly convertible to PLS_INTEGER (see Table 3–10, " Possible Implicit PL/SQL 
Data Type Conversions" on page 3-31).

Specify index if you want to assign the value of expression to a specific element of 
collection_name.

Omit index if you want to assign the value of expression to all elements of 
collection_name at once; that is, if you want to assign one collection to another. 
You can assign one collection to another only if the collections have the same data type 
(not merely the same element type).

indicator_name
The name of an indicator variable for host_variable_name.

An indicator variable indicates the value or condition of its host variable. For example, 
in the Oracle Precompiler environment, indicator variables let you detect NULL or 
truncated values in output host variables.



Assignment Statement

PL/SQL Language Elements 13-5

object_name
The name of an instance of an object type.

parameter_name
The name of a formal OUT or IN OUT parameter of the subprogram in which the 
assignment statement appears.

record_name
The name of a user-defined or %ROWTYPE record.

variable_name
The name of a PL/SQL variable.

Examples
■ Example 1–3, "Assigning Values to Variables with the Assignment Operator" on 

page 1-7

■ Example 2–17, "Assigning One Record to Another, Correctly and Incorrectly" on 
page 2-16

■ Example 2–30, "Assigning BOOLEAN Values" on page 2-27

■ Example 3–4, "Assigning a Literal Value to a TIMESTAMP Variable" on page 3-17

■ Example 5–17, "Data Type Compatibility for Collection Assignment" on page 5-14

Related Topics
■ Constant on page 13-28

■ Expression on page 13-51

■ Variable on page 13-121

■ SELECT INTO Statement on page 13-107

■ Assigning Values to Variables on page 2-26

■ Assigning Values to Collections on page 5-13

■ Assigning Values to Records on page 5-34



AUTONOMOUS_TRANSACTION Pragma

13-6 Oracle Database PL/SQL Language Reference

AUTONOMOUS_TRANSACTION Pragma

The AUTONOMOUS_TRANSACTION pragma marks a routine as autonomous; that is, 
independent of the main transaction.

In this context, a routine is one of the following:

■ Top-level (not nested) anonymous PL/SQL block

■ Standalone, packaged, or nested subprogram

■ Method of a SQL object type

■ Database trigger

When an autonomous routine is invoked, the main transaction is suspended. The 
autonomous transaction is fully independent of the main transaction: they share no 
locks, resources, or commit dependencies. The autonomous transaction does not affect 
the main transaction.

Changes made by an autonomous transaction become visible to other transactions 
when the autonomous transaction commits. They become visible to the main 
transaction when it resumes only if its isolation level is READ COMMITTED (the 
default).

Syntax

autonomous_transaction_pragma ::=

Keyword and Parameter Descriptions

PRAGMA
Signifies that the statement is a pragma (compiler directive). Pragmas are processed at 
compile time, not at run time. They pass information to the compiler.

AUTONOMOUS_TRANSACTION
Signifies that the routine is autonomous.

Usage Notes
You cannot apply this pragma to an entire package, but you can apply it to each 
subprogram in a package.

You cannot apply this pragma to an entire an object type, but you can apply it to each 
method of a SQL object type.

Unlike an ordinary trigger, an autonomous trigger can contain transaction control 
statements, such as COMMIT and ROLLBACK, and can issue DDL statements (such as 
CREATE and DROP) through the EXECUTE IMMEDIATE statement.

In the main transaction, rolling back to a savepoint located before the call to the 
autonomous subprogram does not roll back the autonomous transaction. Remember, 
autonomous transactions are fully independent of the main transaction.

PRAGMA AUTONOMOUS_TRANSACTION ;



AUTONOMOUS_TRANSACTION Pragma

PL/SQL Language Elements 13-7

If an autonomous transaction attempts to access a resource held by the main 
transaction (which cannot resume until the autonomous routine exits), a deadlock can 
occur. The database raises an exception in the autonomous transaction, which is rolled 
back if the exception goes unhandled.

If you try to exit an active autonomous transaction without committing or rolling back, 
the database raises an exception. If the exception goes unhandled, or if the transaction 
ends because of some other unhandled exception, the transaction is rolled back.

You cannot execute a PIPE ROW statement in your autonomous routine while your 
autonomous transaction is open. You must close the autonomous transaction before 
executing the PIPE ROW statement. This is normally accomplished by committing or 
rolling back the autonomous transaction before executing the PIPE ROW statement.

Examples
■ Example 6–43, "Declaring an Autonomous Function in a Package" on page 6-42

■ Example 6–44, "Declaring an Autonomous Standalone Procedure" on page 6-42

■ Example 6–45, "Declaring an Autonomous PL/SQL Block" on page 6-42

■ Example 6–46, "Declaring an Autonomous Trigger" on page 6-43

■ Example 6–48, "Invoking an Autonomous Function" on page 6-46

Related Topics
■ EXCEPTION_INIT Pragma on page 13-38

■ INLINE Pragma on page 13-73

■ RESTRICT_REFERENCES Pragma on page 13-98

■ SERIALLY_REUSABLE Pragma on page 13-111

■ Doing Independent Units of Work with Autonomous Transactions on page 6-40



Block

13-8 Oracle Database PL/SQL Language Reference

Block

The block, which groups related declarations and statements, is the basic unit of a 
PL/SQL source program. It has an optional declarative part, a required executable 
part, and an optional exception-handling part. Declarations are local to the block and 
cease to exist when the block completes execution.

A block can appear either at schema level (as a top-level block) or inside another 
block (as a nested block). A block can contain another block wherever it can contain 
an executable statement.

Syntax

plsql_block ::=

(body ::= on page 13-10)

declare_section ::=

(item_list_2 ::= on page 13-9)

item_list_1 ::=

(type_definition ::= on page 13-9, item_declaration ::= on page 13-9, function_declaration ::= 
on page 13-66, procedure_declaration ::= on page 13-92, pragma ::= on page 13-10)

<< label_name >> DECLARE declare_section
body

item_list_1

item_list_2

item_list_1 item_list_2

type_definition

item_declaration

function_declaration

procedure_declaration

type_definition

item_declaration

function_declaration

procedure_declaration

pragma



Block

PL/SQL Language Elements 13-9

item_list_2 ::=

(function_declaration ::= on page 13-66, function_definition ::= on page 13-66, procedure_
declaration ::= on page 13-92, procedure_definition ::= on page 13-92, pragma ::= on 
page 13-10)

type_definition ::=

(record_type_definition ::= on page 13-95, ref_cursor_type_definition ::= on page 13-34, 
collection_type_definition ::= on page 13-19)

subtype_definition ::=

item_declaration ::=

collection_variable_dec ::= on page 13-20, constant_declaration ::= on page 13-28, cursor_
declaration ::= on page 13-47, cursor_variable_declaration ::= on page 13-34, exception_

function_declaration

function_definition

procedure_declaration

procedure_definition

function_declaration

function_definition

procedure_declaration

procedure_definition

pragma

record_type_definition

ref_cursor_type_definition

subtype_definition

collection_type_definition

SUBTYPE subtype_name IS base_type
( constraint ) NOT NULL

collection_variable_declaration

constant_declaration

cursor_declaration

cursor_variable_declaration

exception_declaration

object_declaration

object_ref_declaration

record_declaration

variable_declaration



Block

13-10 Oracle Database PL/SQL Language Reference

declaration ::= on page 13-39, record_type_declaration ::= on page 13-95, variable_
declaration ::= on page 13-121

pragma ::=

(autonomous_transaction_pragma ::= on page 13-6, exception_init_pragma ::= on 
page 13-38, inline_pragma ::= on page 13-73, restrict_references_pragma ::= on page 13-98,  
serially_resuable_pragma ::= on page 13-111)

body ::=

(exception_handler ::= on page 13-40)

autonomous_transaction_pragma

exception_init_pragma

inline_pragma

restrict_references_pragma

serially_resuable_pragma

BEGIN statement

statement

pragma

EXCEPTION exception_handler
END

name
;



Block

PL/SQL Language Elements 13-11

statement ::=

(plsql_block ::= on page 13-8, sql_statement ::= on page 13-11)

sql_statement ::=

Keyword and Parameter Descriptions

base_type
Any scalar or user-defined PL/SQL data type specifier such as CHAR, DATE, or 
RECORD.

<< label_name >>

assignment_statement

close_statement

continue_statement

execute_immediate_statement

exit_statement

fetch_statement

forall_statement

goto_statement

if_statement

loop_statement

null_statement

open_statement

open_for_statement

plsql_block

raise_statement

return_statement

sql_statement

commit_statement

delete_statement

insert_statement

lock_table_statement

rollback_statement

savepoint_statement

select_statement

set_transaction_statement

update_statement



Block

13-12 Oracle Database PL/SQL Language Reference

BEGIN
Signals the start of the executable part of a PL/SQL block, which contains executable 
statements. A PL/SQL block must contain at least one executable statement (even just 
the NULL statement).

collection_variable_dec
Declares a collection (index-by table, nested table, or varray). For the syntax of 
collection_declaration, see Collection on page 13-19.

constant_declaration
Declares a constant. For the syntax of constant_declaration, see Constant on 
page 13-28. 

constraint
Applies only to data types that can be constrained such as CHAR and NUMBER. For 
character data types, this specifies a maximum size in bytes. For numeric data types, 
this specifies a maximum precision and scale.

cursor_declaration
Declares an explicit cursor. For the syntax of cursor_declaration, see Explicit 
Cursor on page 13-47. 

cursor_variable_declaration
Declares a cursor variable. For the syntax of cursor_variable_declaration, see 
Cursor Variable Declaration on page 13-34. 

DECLARE
Signals the start of the declarative part of a PL/SQL block, which contains local 
declarations. Items declared locally exist only within the current block and all its 
sub-blocks and are not visible to enclosing blocks. The declarative part of a PL/SQL 
block is optional. It is terminated implicitly by the keyword BEGIN, which introduces 
the executable part of the block. For more information, see Declarations on page 2-10.

PL/SQL does not allow forward references. You must declare an item before 
referencing it in any other statements. Also, you must declare subprograms at the end 
of a declarative section after all other program items.

END
Signals the end of a PL/SQL block. It must be the last keyword in a block. Remember, 
END does not signal the end of a transaction. Just as a block can span multiple 
transactions, a transaction can span multiple blocks. See PL/SQL Blocks on page 1-4.

EXCEPTION
Signals the start of the exception-handling part of a PL/SQL block. When an exception 
is raised, normal execution of the block stops and control transfers to the appropriate 
exception handler. After the exception handler completes, execution proceeds with the 
statement following the block. See PL/SQL Blocks on page 1-4.

If there is no exception handler for the raised exception in the current block, control 
passes to the enclosing block. This process repeats until an exception handler is found 
or there are no more enclosing blocks. If PL/SQL can find no exception handler for the 
exception, execution stops and an unhandled exception error is returned to the 



Block

PL/SQL Language Elements 13-13

host environment. For more information about exceptions, see Chapter 11, "Handling 
PL/SQL Errors."

exception_declaration
Declares an exception. For the syntax of exception_declaration, see Exception 
Handler on page 13-40. 

exception_handler
Associates an exception with a sequence of statements, which is executed when that 
exception is raised. For the syntax of exception_handler, see Exception Handler on 
page 13-40. 

function_declaration
Declares a function. See Function Declaration and Definition on page 13-66.

label_name
An undeclared identifier that optionally labels a PL/SQL block or statement. If used, 
label_name must be enclosed by double angle brackets and must appear at the 
beginning of the block or statement which it labels. Optionally, when used to label a 
block, the label_name can also appear at the end of the block without the angle 
brackets. Multiple labels are allowed for a block or statement, but they must be unique 
for each block or statement.

A global identifier declared in an enclosing block can be redeclared in a sub-block, in 
which case the local declaration prevails and the sub-block cannot reference the global 
identifier unless you use a block label to qualify the reference. See Example 2–28, 
"Block with Multiple and Duplicate Labels" on page 2-25.

name
Is the label name (without the delimiters << and >>).

object_declaration
Declares an instance of an object type. To create an object type, use the CREATE TYPE 
Statement on page 14-60.

object_ref_declaration

procedure_declaration
Declare a procedure. See Procedure Declaration and Definition on page 13-92.

record_declaration
Declares a user-defined record. For the syntax of record_declaration, see Record 
Definition on page 13-95. 

statement
An executable (not declarative) statement. A sequence of statements can include 
procedural statements such as RAISE, SQL statements such as UPDATE, and PL/SQL 
blocks. PL/SQL statements are free format. That is, they can continue from line to line 
if you do not split keywords, delimiters, or literals across lines. A semicolon (;) serves 
as the statement terminator. 



Block

13-14 Oracle Database PL/SQL Language Reference

subtype_name
A user-defined subtype that was defined using any scalar or user-defined PL/SQL 
data type specifier such as CHAR, DATE, or RECORD.

variable_declaration
Declares a variable. For the syntax of variable_declaration, see Constant on 
page 13-28. 

PL/SQL supports a subset of SQL statements that includes data manipulation, cursor 
control, and transaction control statements but excludes data definition and data 
control statements such as ALTER, CREATE, GRANT, and REVOKE.

Examples
■ Example 1–1, "PL/SQL Block Structure"

■ Example 1–5, "Assigning Values to Variables as Parameters of a Subprogram" on 
page 1-8

■ Example 2–28, "Block with Multiple and Duplicate Labels" on page 2-25

Related Topics
■ Comment on page 13-27

■ Constant on page 13-28

■ Exception Handler on page 13-40

■ Function Declaration and Definition on page 13-66

■ Procedure Declaration and Definition on page 13-92

■ PL/SQL Blocks on page 1-4



CASE Statement

PL/SQL Language Elements 13-15

CASE Statement

The CASE statement chooses from a sequence of conditions, and execute a 
corresponding statement.

The simple CASE statement evaluates a single expression and compares it to several 
potential values.

The searched CASE statement evaluates multiple Boolean expressions and chooses the 
first one whose value is TRUE.

The CASE statement is appropriate when a different action is to be taken for each 
alternative.

Syntax

simple_case_statement ::=

searched_case_statement ::=

(statement ::= on page 13-11, boolean_expression ::= on page 13-51)

label_name
CASE case_operand

WHEN when_operand THEN statement ;

ELSE statement ;

END CASE
label_name

;

label_name
CASE

WHEN boolean_expression THEN statement ;

ELSE statement ;

END CASE
label_name

;



CASE Statement

13-16 Oracle Database PL/SQL Language Reference

Keyword and Parameter Descriptions

case_operand
An expression whose value is used to select one of several alternatives. Its value can be 
of any PL/SQL type except BLOB, BFILE, an object type, a PL/SQL record, an 
index-by table, a varray, or a nested table.

WHEN { when_operand |  boolean_expression } THEN statement
The when_operands or boolean_expressions are evaluated sequentially. If the 
value of a when_operand equals the value of case_operand, or if the value of a 
boolean_expression is TRUE, the statement associated with that when_
operand or boolean_expression executes, and the CASE statement ends. 
Subsequent when_operands or boolean_expressions are not evaluated.

The value of a when_operand can be of any PL/SQL type other than BLOB, BFILE, 
an object type, a PL/SQL record, an index-by table, a varray, or a nested table.

ELSE statement [statement ]...
In the simple CASE statement, the statements execute if and only if no when_
operand has the same value as case_operand.

In the searched CASE statement, the statements execute if and only if no boolean_
expression has the value TRUE.

If you omit the ELSE clause, and there is no match (that is, no when_operand has the 
same value as case_operand, or no boolean_expression has the value TRUE), the 
system raises a CASE_NOT_FOUND exception.

Examples
■ Example 1–10, "Using the IF-THEN-ELSE and CASE Statement for Conditional 

Control" on page 1-14

■ Example 4–6, "Simple CASE Statement" on page 4-5

■ Example 4–7, "Searched CASE Statement" on page 4-6

Related Topics
■ Expression on page 13-51

■ IF Statement on page 13-71

■ CASE Expressions on page 2-40

■ Testing Conditions (IF and CASE Statements) on page 4-2

■ Using the Simple CASE Statement on page 4-5

■ Using the Searched CASE Statement on page 4-6

Caution: The statements can modify the database and invoke 
nondeterministic functions. There is no fall-through mechanism, as 
there is in the C switch statement.



CASE Statement

PL/SQL Language Elements 13-17

See Also:

■ Oracle Database SQL Language Reference for information about the 
NULLIF function

■ Oracle Database SQL Language Reference for information about the 
COALESCE function



CLOSE Statement

13-18 Oracle Database PL/SQL Language Reference

CLOSE Statement

The CLOSE statement closes a cursor or cursor variable, thereby allowing its resources 
to be reused.

After closing a cursor, you can reopen it with the OPEN statement. You must close a 
cursor before reopening it.

After closing a cursor variable, you can reopen it with the OPEN-FOR statement. You 
need not close a cursor variable before reopening it.

Syntax

close_statement ::=

Keyword and Parameter Descriptions

cursor_name
The name of an open explicit cursor that was declared within the current scope.

cursor_variable_name
The name of an open cursor variable that was declared in the current scope.

host_cursor_variable_name
The name of an open cursor variable that was declared in a PL/SQL host environment 
and passed to PL/SQL as a bind argument.

Examples
■ Example 4–24, "EXIT in a FOR LOOP" on page 4-19

■ Example 6–10, "Fetching with a Cursor" on page 6-11

■ Example 6–13, "Fetching Bulk Data with a Cursor" on page 6-12

Related Topics
■ FETCH Statement on page 13-60

■ OPEN Statement on page 13-85

■ OPEN-FOR Statement on page 13-87

■ Closing a Cursor on page 6-13

■ Querying Data with PL/SQL on page 6-16

CLOSE

cursor_name

cursor_variable_name

: host_cursor_variable_name

;



Collection

PL/SQL Language Elements 13-19

Collection

A collection groups elements of the same type in a specified order. Each element has a 
unique subscript that determines its position in the collection.

PL/SQL has three kinds of collections:

■ Associative arrays (formerly called "PL/SQL tables" or "index-by tables")

■ Nested tables

■ Variable-size arrays (varrays)

Associative arrays can be indexed by either integers or strings. Nested tables and 
varrays are indexed by integers.

To create a collection, you first define a collection type, and then declare a variable of 
that type.

Syntax

collection_type_definition ::=

assoc_array_type_def ::=

(element_type ::= on page 13-20)

nested_table_type_def ::=

(element_type ::= on page 13-20)

Note: This topic applies to collection types that you define inside a 
PL/SQL block or package, which are different from standalone stored 
collection types that you create with the CREATE TYPE Statement on 
page 14-60.

In a PL/SQL block or package, you can define all three collection 
types. With the CREATE TYPE statement, you can create nested table 
types and varray types, but not associative array types.

TYPE type_name IS

assoc_array_type_def

nested_table_type_def

varray_type_def

;

TABLE OF element_type
NOT NULL

INDEX BY

PLS_INTEGER

BINARY_INTEGER

VARCHAR2 v_size

TABLE OF element_type
NOT NULL



Collection

13-20 Oracle Database PL/SQL Language Reference

varray_type_def ::=

(element_type ::= on page 13-20)

collection_variable_dec ::=

element_type ::=

Keyword and Parameter Descriptions

collection_name
The name that you give to the variable of the collection type that you defined.

element_type
The data type of the collection element (any PL/SQL data type except REF CURSOR).

For a nested table:

■ If element_type is an object type, then the nested table type describes a table 
whose columns match the name and attributes of the object type.

■ If element_type is a scalar type, then the nested table type describes a table with 
a single, scalar type column called COLUMN_VALUE. 

■ You cannot specify NCLOB for element_type. However, you can specify CLOB or 
BLOB.

INDEX BY
For an associative array, the data type of its indexes—PLS_INTEGER, BINARY_
INTGER, or VARCHAR2.

VARRAY

VARYING ARRAY
( size_limit ) OF element_type

NOT NULL

collection_name type_name ;

cursor_name % ROWTYPE

db_table_name
% ROWTYPE

. column_name % TYPE

object_name % TYPE

REF
object_type_name

record_name
. field_name

% TYPE

record_type_name

scalar_datatype_name

variable_name % TYPE



Collection

PL/SQL Language Elements 13-21

NOT NULL
Specifies that no element of the collection can have the value NULL.

size_limit
For a varray, a positive integer literal that specifies the maximum number of elements 
it can contain. A maximum limit is imposed. See Referencing Collection Elements on 
page 5-12.

type_name
The name that you give to the collection type that you are defining.

v_size
For an associative array, the length of the VARCHAR2 key by which it is indexed.

Usage Notes
The type definition of an associative array can appear only in the declarative part of a 
block, subprogram, package specification, or package body.

The type definition of a nested table or varray can appear either in the declarative part 
of a block, subprogram, package specification, or package body (in which case it is 
local to the block, subprogram, or package) or in the CREATE TYPE Statement on 
page 14-60 (in which case it is a standalone stored type).

Nested tables extend the functionality of associative arrays, so they differ in several 
ways. See Choosing Between Nested Tables and Associative Arrays on page 5-5.

Nested tables and varrays can store instances of an object type and, conversely, can be 
attributes of an object type.

Collections work like the arrays of most third-generation programming languages. A 
collection has only one dimension. To model a multidimensional array, declare a 
collection whose items are other collections.

Collections can be passed as parameters. You can use them to move columns of data 
into and out of database tables or between client-side applications and stored 
subprograms.

Every element reference includes the collection name and one or more subscripts 
enclosed in parentheses; the subscripts determine which element is processed. Except 
for associative arrays, which can have negative subscripts, collection subscripts have a 
fixed lower bound of 1. Subscripts for multilevel collections are evaluated in any 
order; if a subscript includes an expression that modifies the value of a different 
subscript, the result is undefined. See Referencing Collection Elements on page 5-12.

Associative arrays and nested tables can be sparse (have nonconsecutive subscripts), 
but varrays are always dense (have consecutive subscripts). Unlike nested tables, 
varrays retain their ordering and subscripts when stored in the database. Initially, 
associative arrays are sparse. That enables you, for example, to store reference data in a 
temporary variable using a primary key (account numbers or employee numbers for 
example) as the index.

Collections follow the usual scoping and instantiation rules. In a package, collections 
are instantiated when you first reference the package and cease to exist when you end 
the database session. In a block or subprogram, local collections are instantiated when 
you enter the block or subprogram and cease to exist when you exit. 

Until you initialize it, a nested table or varray is atomically null (that is, the collection 
itself is null, not its elements). To initialize a nested table or varray, you use a 



Collection

13-22 Oracle Database PL/SQL Language Reference

constructor, which is a system-defined function with the same name as the collection 
type. This function constructs (creates) a collection from the elements passed to it. 

For information about collection comparisons that are allowed, see Comparing 
Collections on page 5-17.

Collections can store instances of an object type and, conversely, can be attributes of an 
object type. Collections can also be passed as parameters. You can use them to move 
columns of data into and out of database tables or between client-side applications and 
stored subprograms. 

When invoking a function that returns a collection, you use the following syntax to 
reference elements in the collection:

function_name(parameter_list)(subscript)

See Example 5–16, "Referencing an Element of an Associative Array" on page 5-13 and 
Example B–2, "Using the Dot Notation to Qualify Names" on page B-2.

With the Oracle Call Interface (OCI) or the Oracle Precompilers, you can bind host 
arrays to associative arrays (index-by tables) declared as the formal parameters of a 
subprogram. That lets you pass host arrays to stored functions and procedures.

Examples
■ Example 5–1, "Declaring and Using an Associative Array" on page 5-2

■ Example 5–3, "Declaring Nested Tables, Varrays, and Associative Arrays" on 
page 5-8

■ Example 5–4, "Declaring Collections with %TYPE" on page 5-8

■ Example 5–5, "Declaring a Procedure Parameter as a Nested Table" on page 5-9

■ Example 5–42, "Declaring and Initializing Record Types" on page 5-31

Related Topics
■ Collection Method Call on page 13-23

■ CREATE TYPE Statement on page 14-60

■ CREATE TYPE BODY Statement on page 14-77

■ Record Definition on page 13-95

■ Defining Collection Types on page 5-6



Collection Method Call

PL/SQL Language Elements 13-23

Collection Method Call

A collection method is a built-in PL/SQL subprogram that returns information about a 
collection or operates on a collection.

Syntax

collection_method_call ::=

Keyword and Parameter Descriptions

collection_name
The name of a collection declared within the current scope.

COUNT
A function that returns the current number of elements in collection_name.

DELETE
A procedure whose action depends on the number of indexes specified.

DELETE with no indexes specified deletes all elements from collection_name.

DELETE(n) deletes the nth element from an associative array or nested table. If the 
nth element is null, DELETE(n) does nothing.

DELETE(m,n) deletes all elements in the range m..n from an associative array or 
nested table. If m is larger than n or if m or n is null, DELETE(m,n) does nothing.

See Also: Counting the Elements in a Collection (COUNT Method) 
on page 5-21

collection_name .

COUNT

DELETE
( index

, index
)

EXISTS ( index )

EXTEND
( number

, index
)

FIRST

LAST

LIMIT

NEXT ( index )

PRIOR ( index )

TRIM
( number )



Collection Method Call

13-24 Oracle Database PL/SQL Language Reference

If an element to be deleted does not exist, DELETE simply skips it; no exception is 
raised. Varrays are dense, so you cannot delete their individual elements. Because 
PL/SQL keeps placeholders for deleted elements, you can replace a deleted element 
by assigning it a new value. However, PL/SQL does not keep placeholders for 
trimmed elements. 

EXISTS
A function that returns TRUE if the indexth element of collection_name exists; 
otherwise, it returns FALSE.

Typically, you use EXISTS to avoid raising an exception when you reference a 
nonexistent element, and with DELETE to maintain sparse nested tables.

You cannot use EXISTS if collection_name is an associative array.

EXTEND
A procedure whose action depends on the number of indexes specified.

EXTEND appends one null element to a collection.

EXTEND(n) appends n null elements to a collection.

EXTEND(n,i) appends n copies of the ith element to a collection. EXTEND operates on 
the internal size of a collection. If EXTEND encounters deleted elements, it includes 
them in its tally.

You cannot use EXTEND if collection_name is an associative array.

FIRST
A function that returns the first (smallest) subscript or key value in a collection. If the 
collection is empty, FIRST returns NULL. If the collection contains only one element, 
FIRST and LAST return the same subscript value. If the collection is a varray, FIRST 
always returns 1.

For a collection indexed by integers, FIRST and LAST return the first and last (smallest 
and largest) index numbers. 

For an associative array indexed by strings, FIRST and LAST return the lowest and 
highest key values. If the NLS_COMP initialization parameter is set to ANSI, the order 
is based on the sort order specified by the NLS_SORT initialization parameter.

index
A numeric expression whose value has data type PLS_INTEGER or a data type 
implicitly convertible to PLS_INTEGER (see Table 3–10, " Possible Implicit PL/SQL 
Data Type Conversions" on page 3-31).

See Also: Deleting Collection Elements (DELETE Method) on 
page 5-27

See Also: Checking If a Collection Element Exists (EXISTS Method) 
on page 5-21

See Also: Increasing the Size of a Collection (EXTEND Method) on 
page 5-24

See Also: Finding the First or Last Collection Element (FIRST and 
LAST Methods) on page 5-22



Collection Method Call

PL/SQL Language Elements 13-25

LAST
A function that returns the last (largest) subscript value in a collection. If the collection 
is empty, LAST returns NULL. If the collection contains only one element, FIRST and 
LAST return the same subscript value. For varrays, LAST always equals COUNT. For 
nested tables, normally, LAST equals COUNT. But, if you delete elements from the 
middle of a nested table, LAST is larger than COUNT.

LIMIT
A function that returns the maximum number of elements that collection_name 
can have. If collection_name has no maximum size, LIMIT returns NULL.

NEXT
A function that returns the subscript that succeeds index n. If n has no successor, 
NEXT(n) returns NULL. 

PRIOR
A function that returns the subscript that precedes index n in a collection. If n has no 
predecessor, PRIOR(n) returns NULL.

TRIM
A procedure.

TRIM removes one element from the end of a collection.

TRIM(n) removes n elements from the end of a collection. If n is greater than COUNT, 
TRIM(n) raises SUBSCRIPT_BEYOND_COUNT. TRIM operates on the internal size of a 
collection. If TRIM encounters deleted elements, it includes them in its tally.

You cannot use TRIM if is collection_name is an associative array.

Usage Notes
A collection method call can appear wherever a PL/SQL subprogram invocation can 
appear in a PL/SQL statement (but not in a SQL statement).

Only EXISTS can be applied to atomically null collections. If you apply another 
method to such collections, PL/SQL raises COLLECTION_IS_NULL. 

If the collection elements have sequential subscripts, you can use collection.FIRST 
.. collection.LAST in a FOR loop to iterate through all the elements. You can use 
PRIOR or NEXT to traverse collections indexed by any series of subscripts. For 

See Also: Finding the First or Last Collection Element (FIRST and 
LAST Methods) on page 5-22

See Also: Checking the Maximum Size of a Collection (LIMIT 
Method) on page 5-22

See Also: Looping Through Collection Elements (PRIOR and NEXT 
Methods) on page 5-23

See Also: Looping Through Collection Elements (PRIOR and NEXT 
Methods) on page 5-23

See Also: Decreasing the Size of a Collection (TRIM Method) on 
page 5-26



Collection Method Call

13-26 Oracle Database PL/SQL Language Reference

example, you can use PRIOR or NEXT to traverse a nested table from which some 
elements were deleted, or an associative array where the subscripts are string values.

EXTEND operates on the internal size of a collection, which includes deleted elements. 
You cannot use EXTEND to initialize an atomically null collection. Also, if you impose 
the NOT NULL constraint on a TABLE or VARRAY type, you cannot apply the first two 
forms of EXTEND to collections of that type. 

The amount of memory allocated to a nested table can increase or decrease 
dynamically. As you delete elements, memory is freed page by page. If you delete the 
entire table, all the memory is freed.

In general, do not depend on the interaction between TRIM and DELETE. It is better to 
treat nested tables like fixed-size arrays and use only DELETE, or to treat them like 
stacks and use only TRIM and EXTEND.

Within a subprogram, a collection parameter assumes the properties of the argument 
bound to it. You can apply methods FIRST, LAST, COUNT, and so on to such 
parameters. For varray parameters, the value of LIMIT is always derived from the 
parameter type definition, regardless of the parameter mode.

Examples
■ Example 5–28, "Checking Whether a Collection Element EXISTS" on page 5-21

■ Example 5–29, "Counting Collection Elements with COUNT" on page 5-22

■ Example 5–30, "Checking the Maximum Size of a Collection with LIMIT" on 
page 5-22

■ Example 5–31, "Using FIRST and LAST with a Collection" on page 5-23

■ Example 5–32, "Using PRIOR and NEXT to Access Collection Elements" on 
page 5-24

■ Example 5–34, "Using EXTEND to Increase the Size of a Collection" on page 5-25

■ Example 5–35, "Using TRIM to Decrease the Size of a Collection" on page 5-26

■ Example 5–37, "Using the DELETE Method on a Collection" on page 5-27

Related Topics
■ Collection on page 13-19

■ Using Collection Methods on page 5-20



Comment

PL/SQL Language Elements 13-27

Comment

A comment is text that the PL/SQL compiler ignores. Its primary purpose is to 
document code, but you can also disable obsolete or unfinished pieces of code by 
turning them into comments. PL/SQL has both single-line and multiline comments.

Syntax

comment ::=

Keyword and Parameter Descriptions

--
Turns the rest of the line into a single-line comment. Any text that wraps to the next 
line is not part of the comment.

/*
Begins a comment, which can span multiple lines.

*/
Ends a comment.

text
Any text.

Usage Notes
A single-line comment can appear within a statement, at the end of a line. A single-line 
comment can appear inside a multiline comment.

A multiline comment can appear anywhere except within another multiline comment.

Examples
■ Example 2–4, "Single-Line Comments" on page 2-9

■ Example 2–5, "Multiline Comment" on page 2-10

Caution: Do not put a single-line comment in a PL/SQL block that 
will be processed dynamically by an Oracle Precompiler program. The 
Oracle Precompiler program ignores end-of-line characters, which 
means that a single-line comment will end at the end of the block.

–– text

/* text */



Constant

13-28 Oracle Database PL/SQL Language Reference

Constant

A constant holds a value that does not change.

A constant declaration specifies its name, data type, and value, and allocates storage 
for it. The declaration can also impose the NOT NULL constraint.

Syntax

constant_declaration ::=

(expression ::= on page 13-51)

datatype ::=

Keyword and Parameter Descriptions

collection_name
A collection (associative array, nested table, or varray) previously declared within the 
current scope.

collection_type_name
A user-defined collection type defined using the data type specifier TABLE or VARRAY. 

constant_name
The name of the constant. For naming conventions, see Identifiers on page 2-4.

constant_name CONSTANT datatype
NOT NULL :=

DEFAULT
expression ;

collection_name % TYPE

collection_type_name

cursor_name % ROWTYPE

cursor_variable_name % TYPE

db_table_name
% ROWTYPE

. column_name % TYPE

object_name % TYPE

REF
object_type_name

record_name % TYPE

record_type_name

ref_cursor_type_name

scalar_datatype_name

variable_name % TYPE



Constant

PL/SQL Language Elements 13-29

cursor_name
An explicit cursor previously declared within the current scope.

cursor_variable_name
A PL/SQL cursor variable previously declared within the current scope.

db_table_name
A database table or view that must be accessible when the declaration is elaborated. 

db_table_name.column_name
A database table and column that must be accessible when the declaration is 
elaborated.

expression
The value to be assigned to the constant when the declaration is elaborated. The value 
of expression must be of a data type that is compatible with the data type of the 
constant.

NOT NULL
A constraint that prevents the program from assigning a null value to the constant. 
Assigning a null to a variable defined as NOT NULL raises the predefined exception 
VALUE_ERROR.

object_name
An instance of an object type previously declared within the current scope.

record_name
A user-defined or %ROWTYPE record previously declared within the current scope.

record_name.field_name
A field in a user-defined or %ROWTYPE record previously declared within the current 
scope. 

record_type_name
A user-defined record type that is defined using the data type specifier RECORD.

ref_cursor_type_name
A user-defined cursor variable type, defined using the data type specifier REF 
CURSOR.

%ROWTYPE
Represents a record that can hold a row from a database table or a cursor. Fields in the 
record have the same names and data types as columns in the row.

scalar_datatype_name
A predefined scalar data type such as BOOLEAN, NUMBER, or VARCHAR2. Includes any 
qualifiers for size, precision, and character or byte semantics.



Constant

13-30 Oracle Database PL/SQL Language Reference

%TYPE
Represents the data type of a previously declared collection, cursor variable, field, 
object, record, database column, or variable.

Usage Notes
Constants are initialized every time a block or subprogram is entered. Whether public 
or private, constants declared in a package specification are initialized only once for 
each session.

You can define constants of complex types that have no literal values or predefined 
constructors, by invoking a function that returns a filled-in value. For example, you 
can make a constant associative array this way.

Examples
■ Example 2–7, "Declaring Constants" on page 2-11

Related Topics
■ Collection on page 13-19

■ Variable on page 13-121

■ Comments on page 2-9

■ Constants on page 2-11



CONTINUE Statement

PL/SQL Language Elements 13-31

CONTINUE Statement

The CONTINUE statement exits the current iteration of a loop, either conditionally or 
unconditionally, and transfer control to the next iteration. You can name the loop to be 
exited. 

Syntax

continue_statement ::=

(boolean_expression ::= on page 13-51)

Keyword and Parameter Descriptions

boolean_expression
If and only if the value of this expression is TRUE, the current iteration of the loop (or 
the iteration of the loop identified by label_name) is exited immediately.

CONTINUE
An unconditional CONTINUE statement (that is, one without a WHEN clause) exits the 
current iteration of the loop immediately. Execution resumes with the next iteration of 
the loop.

label_name
Identifies the loop exit from either the current loop, or any enclosing labeled loop.

Usage Notes
A CONTINUE statement can appear anywhere inside a loop, but not outside a loop.

If you use a CONTINUE statement to exit a cursor FOR loop prematurely (for example, 
to exit an inner loop and transfer control to the next iteration of an outer loop), the 
cursor is closed automatically (in this context, CONTINUE works like GOTO). The cursor 
is also closed automatically if an exception is raised inside the loop.

Examples
■ Example , "Using the CONTINUE Statement" on page 4-10

■ Example , "Using the CONTINUE-WHEN Statement" on page 4-11

Related Topics
■ EXIT Statement on page 13-45

■ Expression on page 13-51

■ LOOP Statements on page 13-79

■ Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements) on 
page 4-8

CONTINUE
label_name WHEN boolean_expression

;



Cursor Attribute

13-32 Oracle Database PL/SQL Language Reference

Cursor Attribute

Every explicit cursor and cursor variable has four attributes, each of which returns 
useful information about the execution of a data manipulation statement.

Syntax

cursor_attribute ::=

Keyword and Parameter Descriptions

cursor_name
An explicit cursor previously declared within the current scope.

cursor_variable_name
A PL/SQL cursor variable (or parameter) previously declared within the current 
scope.

%FOUND Attribute
A cursor attribute that can be appended to the name of a cursor or cursor variable. 
Before the first fetch from an open cursor, cursor_name%FOUND returns NULL. 
Afterward, it returns TRUE if the last fetch returned a row, or FALSE if the last fetch 
failed to return a row. 

host_cursor_variable_name
A cursor variable declared in a PL/SQL host environment and passed to PL/SQL as a 
bind argument. The data type of the host cursor variable is compatible with the return 
type of any PL/SQL cursor variable. Host variables must be prefixed with a colon. 

%ISOPEN Attribute
A cursor attribute that can be appended to the name of a cursor or cursor variable. If a 
cursor is open, cursor_name%ISOPEN returns TRUE; otherwise, it returns FALSE.

%NOTFOUND Attribute
A cursor attribute that can be appended to the name of a cursor or cursor variable. 
Before the first fetch from an open cursor, cursor_name%NOTFOUND returns NULL. 
Thereafter, it returns FALSE if the last fetch returned a row, or TRUE if the last fetch 
failed to return a row. 

%ROWCOUNT Attribute
A cursor attribute that can be appended to the name of a cursor or cursor variable. 
When a cursor is opened, %ROWCOUNT is zeroed. Before the first fetch, cursor_

cursor_name

cursor_variable_name

: host_cursor_variable_name

%

FOUND

ISOPEN

NOTFOUND

ROWCOUNT



Cursor Attribute

PL/SQL Language Elements 13-33

name%ROWCOUNT returns 0. Thereafter, it returns the number of rows fetched so far. 
The number is incremented if the latest fetch returned a row.

Usage Notes
The cursor attributes apply to every cursor or cursor variable. For example, you can 
open multiple cursors, then use %FOUND or %NOTFOUND to tell which cursors have 
rows left to fetch. Likewise, you can use %ROWCOUNT to tell how many rows were 
fetched so far. 

If a cursor or cursor variable is not open, referencing it with %FOUND, %NOTFOUND, or 
%ROWCOUNT raises the predefined exception INVALID_CURSOR.

When a cursor or cursor variable is opened, the rows that satisfy the associated query 
are identified and form the result set. Rows are fetched from the result set one at a 
time. 

If a SELECT INTO statement returns more than one row, PL/SQL raises the predefined 
exception TOO_MANY_ROWS and sets %ROWCOUNT to 1, not the actual number of rows 
that satisfy the query.

Before the first fetch, %NOTFOUND evaluates to NULL. If FETCH never executes 
successfully, the EXIT WHEN condition is never TRUE and the loop is never exited. To 
be safe, use the following EXIT statement instead:

EXIT WHEN c1%NOTFOUND OR c1%NOTFOUND IS NULL;

You can use the cursor attributes in procedural statements, but not in SQL statements.

Examples
■ Example 6–7, "Using SQL%FOUND" on page 6-8

■ Example 6–8, "Using SQL%ROWCOUNT" on page 6-8

■ Example 6–10, "Fetching with a Cursor" on page 6-11

■ Example 6–15, "Using %ISOPEN" on page 6-14

Related Topics
■ Cursor Variable Declaration on page 13-34

■ Explicit Cursor on page 13-47

■ SQL (Implicit) Cursor Attribute on page 13-113

■ Attributes of Explicit Cursors on page 6-13



Cursor Variable Declaration

13-34 Oracle Database PL/SQL Language Reference

Cursor Variable Declaration

A cursor variable points to the unnamed work area in which the database stores 
processing information when it executes a multiple-row query.  With this pointer to 
the work area, you can access its information, and process the rows of the query 
individually.

A cursor variable is like a C or Pascal pointer, which holds the address of an item 
instead of the item itself.

To create a cursor variable, define a REF CURSOR type, and then declare the cursor 
variable to be of that type. Declaring a cursor variable creates a pointer, not an item.

Syntax

ref_cursor_type_definition ::=

cursor_variable_declaration ::=

Keyword and Parameter Descriptions

cursor_name
An explicit cursor previously declared within the current scope.

cursor_variable_name
A PL/SQL cursor variable previously declared within the current scope.

db_table_name
A database table or view, which must be accessible when the declaration is elaborated.

record_name
A user-defined record previously declared within the current scope. 

record_type_name
A user-defined record type that was defined using the data type specifier RECORD. 

TYPE type_name IS REF CURSOR

RETURN

db_table_name

cursor_name

cursor_variable_name

% ROWTYPE

record_name % TYPE

record_type_name

ref_cursor_type_name
;

cursor_variable_name type_name ;



Cursor Variable Declaration

PL/SQL Language Elements 13-35

REF CURSOR
Cursor variables all have the data type REF CURSOR. 

RETURN
Specifies the data type of a cursor variable return value. You can use the %ROWTYPE 
attribute in the RETURN clause to provide a record type that represents a row in a 
database table, or a row from a cursor or strongly typed cursor variable. You can use 
the %TYPE attribute to provide the data type of a previously declared record.

%ROWTYPE
A record type that represents a row in a database table or a row fetched from a cursor 
or strongly typed cursor variable. Fields in the record and corresponding columns in 
the row have the same names and data types.

%TYPE
Provides the data type of a previously declared user-defined record.

type_name
A user-defined cursor variable type that was defined as a REF CURSOR.

Usage Notes
A REF CURSOR type definition can appear either in the declarative part of a block, 
subprogram, package specification, or package body (in which case it is local to the 
block, subprogram, or package) or in the CREATE TYPE Statement on page 14-60 (in 
which case it is a standalone stored type).

A cursor variable declaration can appear only in the declarative part of a block, 
subprogram, or package body (not in a package specification).

Cursor variables are available to every PL/SQL client. For example, you can declare a 
cursor variable in a PL/SQL host environment such as an OCI or Pro*C program, then 
pass it as a bind argument to PL/SQL. Application development tools that have a 
PL/SQL engine can use cursor variables entirely on the client side. 

You can pass cursor variables back and forth between an application and the database 
server through remote procedure invokes using a database link. If you have a PL/SQL 
engine on the client side, you can use the cursor variable in either location. For 
example, you can declare a cursor variable on the client side, open and fetch from it on 
the server side, then continue to fetch from it back on the client side. 

You use cursor variables to pass query result sets between PL/SQL stored 
subprograms and client programs. Neither PL/SQL nor any client program owns a 
result set; they share a pointer to the work area where the result set is stored. For 
example, an OCI program, Oracle Forms application, and the database can all refer to 
the same work area. 

REF CURSOR types can be strong or weak. A strong REF CURSOR type definition 
specifies a return type, but a weak definition does not. Strong REF CURSOR types are 
less error-prone because PL/SQL lets you associate a strongly typed cursor variable 
only with type-compatible queries. Weak REF CURSOR types are more flexible because 
you can associate a weakly typed cursor variable with any query.

Once you define a REF CURSOR type, you can declare cursor variables of that type. You 
can use %TYPE to provide the data type of a record variable. Also, in the RETURN 
clause of a REF CURSOR type definition, you can use %ROWTYPE to specify a record 
type that represents a row returned by a strongly (not weakly) typed cursor variable. 



Cursor Variable Declaration

13-36 Oracle Database PL/SQL Language Reference

Currently, cursor variables are subject to several restrictions. See Restrictions on 
Cursor Variables on page 6-30. 

You use three statements to control a cursor variable: OPEN-FOR, FETCH, and CLOSE. 
First, you OPEN a cursor variable FOR a multiple-row query. Then, you FETCH rows 
from the result set. When all the rows are processed, you CLOSE the cursor variable.

Other OPEN-FOR statements can open the same cursor variable for different queries. 
You need not close a cursor variable before reopening it. When you reopen a cursor 
variable for a different query, the previous query is lost.

PL/SQL makes sure the return type of the cursor variable is compatible with the INTO 
clause of the FETCH statement. For each column value returned by the query 
associated with the cursor variable, there must be a corresponding, type-compatible 
field or variable in the INTO clause. Also, the number of fields or variables must equal 
the number of column values. Otherwise, you get an error. 

If both cursor variables involved in an assignment are strongly typed, they must have 
the same data type. However, if one or both cursor variables are weakly typed, they 
need not have the same data type.

When declaring a cursor variable as the formal parameter of a subprogram that fetches 
from or closes the cursor variable, you must specify the IN or IN OUT mode. If the 
subprogram opens the cursor variable, you must specify the IN OUT mode. 

Be careful when passing cursor variables as parameters. At run time, PL/SQL raises 
ROWTYPE_MISMATCH if the return types of the actual and formal parameters are 
incompatible. 

You can apply the cursor attributes %FOUND, %NOTFOUND, %ISOPEN, and %ROWCOUNT 
to a cursor variable.

If you try to fetch from, close, or apply cursor attributes to a cursor variable that does 
not point to a query work area, PL/SQL raises the predefined exception INVALID_
CURSOR. You can make a cursor variable (or parameter) point to a query work area in 
two ways:

■ OPEN the cursor variable FOR the query.

■ Assign to the cursor variable the value of an already OPENed host cursor variable 
or PL/SQL cursor variable.

A query work area remains accessible as long as any cursor variable points to it. 
Therefore, you can pass the value of a cursor variable freely from one scope to another. 
For example, if you pass a host cursor variable to a PL/SQL block embedded in a 
Pro*C program, the work area to which the cursor variable points remains accessible 
after the block completes. 

Examples
■ Example 6–9, "Declaring a Cursor" on page 6-10

■ Example 6–10, "Fetching with a Cursor" on page 6-11

■ Example 6–13, "Fetching Bulk Data with a Cursor" on page 6-12

■ Example 6–27, "Passing a REF CURSOR as a Parameter" on page 6-24

■ Example 6–29, "Stored Procedure to Open a Ref Cursor" on page 6-26

■ Example 6–30, "Stored Procedure to Open Ref Cursors with Different Queries" on 
page 6-26

■ Example 6–31, "Cursor Variable with Different Return Types" on page 6-27



Cursor Variable Declaration

PL/SQL Language Elements 13-37

Related Topics
■ CLOSE Statement on page 13-18

■ Cursor Attribute on page 13-32

■ Explicit Cursor on page 13-47

■ FETCH Statement on page 13-60

■ OPEN-FOR Statement on page 13-87

■ Using Cursor Variables (REF CURSORs) on page 6-22

■ Declaring REF CURSOR Types and Cursor Variables on page 6-23



EXCEPTION_INIT Pragma

13-38 Oracle Database PL/SQL Language Reference

EXCEPTION_INIT Pragma

The EXCEPTION_INIT pragma associates a user-defined exception name with an 
Oracle Database error number. You can intercept any Oracle Database error number 
and write an exception handler for it, instead of using the OTHERS handler.

Syntax

exception_init_pragma ::=

Keyword and Parameter Descriptions

error_number
Any valid Oracle Database error number. These are the same error numbers (always 
negative) returned by the function SQLCODE. 

exception_name
A user-defined exception declared within the current scope. 

Be sure to assign only one exception name to an error number.

PRAGMA
Signifies that the statement is a pragma (compiler directive). Pragmas are processed at 
compile time, not at run time. They pass information to the compiler.

Usage Notes
A EXCEPTION_INIT pragma can appear only in the same declarative part as its 
associated exception, anywhere after the exception declaration.

Examples
■ Example 11–4, "Using PRAGMA EXCEPTION_INIT" on page 11-8

■ Example 12–9, "Bulk Operation that Continues Despite Exceptions" on page 12-16

Related Topics
■ Exception Declaration on page 13-39

■ Exception Handler on page 13-40

■ SQLCODE Function on page 13-116

■ SQLERRM Function on page 13-117

■ Associating a PL/SQL Exception with a Number (EXCEPTION_INIT Pragma) on 
page 11-7

PRAGMA EXCEPTION_INIT ( exception_name , error_number ) ;



Exception Declaration

PL/SQL Language Elements 13-39

Exception Declaration

An exception declaration declares a user-defined exception.

Unlike a predefined exception, a user-defined exception must be raised explicitly with 
either a RAISE statement or the procedure DBMS_STANDARD.RAISE_APPLICATION_
ERROR. The latter lets you associate an error message with the user-defined exception.

Syntax

exception_declaration ::=

Keyword and Parameter Descriptions

exception_name
The name you give to the user-defined exception.

Example
Example 1–12, "Using WHILE-LOOP for Control" on page 1-15
Example 1–16, "Creating a Standalone PL/SQL Procedure" on page 1-18
Example 2–28, "Block with Multiple and Duplicate Labels" on page 2-25
Example 5–35, "Using TRIM to Decrease the Size of a Collection" on page 5-26
Example 5–38, "Collection Exceptions" on page 5-28
Example 6–37, "Using ROLLBACK" on page 6-34
Example 7–13, "Using Validation Checks to Guard Against SQL Injection" on page 7-16
Example 8–1, "Declaring, Defining, and Invoking a Simple PL/SQL Procedure" on 
page 8-3
Example 10–3, "Creating the emp_admin Package" on page 10-6
Example 11–1, "Run-Time Error Handling" on page 11-2
Example 11–3, "Scope of PL/SQL Exceptions" on page 11-7
Example 11–9, "Reraising a PL/SQL Exception" on page 11-13
Example 12–6, "Using Rollbacks with FORALL" on page 12-14
Example 12–9, "Bulk Operation that Continues Despite Exceptions" on page 12-16

Related Topics
■ Exception Handler on page 13-40

■ RAISE Statement on page 13-94

■ Defining Your Own PL/SQL Exceptions on page 11-6

■ Declaring PL/SQL Exceptions on page 11-6

Caution: Using the name of a predefined exception for exception_
name is not recommended. For details, see Redeclaring Predefined 
Exceptions on page 11-9.

exception_name EXCEPTION ;



Exception Handler

13-40 Oracle Database PL/SQL Language Reference

Exception Handler

An exception handler processes a raised exception (run-time error or warning 
condition). The exception can be either predefined or user-defined. Predefined 
exceptions are raised implicitly (automatically) by the run-time system. must be raised 
explicitly with either a RAISE statement or the procedure DBMS_STANDARD.RAISE_
APPLICATION_ERROR. The latter lets you associate an error message with the 
user-defined exception.

Syntax

exception_handler ::=

(statement ::= on page 13-11)

Keyword and Parameter Descriptions

exception_name
The name of either a predefined exception (such as ZERO_DIVIDE), or a user-defined 
exception previously declared within the current scope.

OTHERS
Stands for all the exceptions not explicitly named in the exception-handling part of the 
block. The use of OTHERS is optional and is allowed only as the last exception handler. 
You cannot include OTHERS in a list of exceptions following the keyword WHEN. 

WHEN
Introduces an exception handler. You can have multiple exceptions execute the same 
sequence of statements by following the keyword WHEN with a list of the exceptions, 
separating them by the keyword OR. If any exception in the list is raised, the associated 
statements are executed. 

Usage Notes
An exception declaration can appear only in the declarative part of a block, 
subprogram, or package. The scope rules for exceptions and variables are the same. 
But, unlike variables, exceptions cannot be passed as parameters to subprograms.

Some exceptions are predefined by PL/SQL. For a list of these exceptions, see 
Table 11–1 on page 11-4. PL/SQL declares predefined exceptions globally in package 
STANDARD, so you need not declare them yourself. 

Redeclaring predefined exceptions is error prone because your local declaration 
overrides the global declaration. In such cases, you must use dot notation to specify 
the predefined exception, as follows:

EXCEPTION
    WHEN invalid_number OR STANDARD.INVALID_NUMBER THEN ...

WHEN
exception_name

OR

OTHERS
THEN statement



Exception Handler

PL/SQL Language Elements 13-41

The exception-handling part of a PL/SQL block is optional. Exception handlers must 
come at the end of the block. They are introduced by the keyword EXCEPTION. The 
exception-handling part of the block is terminated by the same keyword END that 
terminates the entire block. An exception handler can reference only those variables 
that the current block can reference.

Raise an exception only when an error occurs that makes it undesirable or impossible 
to continue processing. If there is no exception handler in the current block for a raised 
exception, the exception propagates according to the following rules:

■ If there is an enclosing block for the current block, the exception is passed on to 
that block. The enclosing block then becomes the current block. If a handler for the 
raised exception is not found, the process repeats.

■ If there is no enclosing block for the current block, an unhandled exception error is 
passed back to the host environment.

Only one exception at a time can be active in the exception-handling part of a block. 
Therefore, if an exception is raised inside a handler, the block that encloses the current 
block is the first block searched to find a handler for the newly raised exception. From 
there on, the exception propagates normally.

Example
Example 1–12, "Using WHILE-LOOP for Control" on page 1-15
Example 1–16, "Creating a Standalone PL/SQL Procedure" on page 1-18
Example 2–28, "Block with Multiple and Duplicate Labels" on page 2-25
Example 5–35, "Using TRIM to Decrease the Size of a Collection" on page 5-26
Example 5–38, "Collection Exceptions" on page 5-28
Example 6–37, "Using ROLLBACK" on page 6-34
Example 7–13, "Using Validation Checks to Guard Against SQL Injection" on page 7-16
Example 8–1, "Declaring, Defining, and Invoking a Simple PL/SQL Procedure" on 
page 8-3
Example 10–3, "Creating the emp_admin Package" on page 10-6
Example 11–1, "Run-Time Error Handling" on page 11-2
Example 11–3, "Scope of PL/SQL Exceptions" on page 11-7
Example 11–9, "Reraising a PL/SQL Exception" on page 11-13
Example 12–6, "Using Rollbacks with FORALL" on page 12-14
Example 12–9, "Bulk Operation that Continues Despite Exceptions" on page 12-16

Related Topics
■ Block on page 13-8

■ EXCEPTION_INIT Pragma on page 13-38

■ Exception Declaration on page 13-39

■ RAISE Statement on page 13-94

■ SQLCODE Function on page 13-116

■ SQLERRM Function on page 13-117

■ Handling Raised PL/SQL Exceptions on page 11-13



EXECUTE IMMEDIATE Statement

13-42 Oracle Database PL/SQL Language Reference

EXECUTE IMMEDIATE Statement

The EXECUTE IMMEDIATE statement builds and executes a dynamic SQL statement in 
a single operation. It is the means by which native dynamic SQL processes most 
dynamic SQL statements.

Syntax

execute_immediate_statement ::=

into_clause ::=

bulk_collect_into_clause ::=

using_clause ::=

Keyword and Parameter Descriptions

bind_argument
Either an expression whose value is passed to the dynamic SQL statement (an in 
bind), or a variable in which a value returned by the dynamic SQL statement is stored 
(an out bind).

EXECUTE IMMEDIATE dynamic_sql_stmt

into_clause

bulk_collect_into_clause

using_clause

using_clause
dynamic_returning_clause

dynamic_returning_clause

INTO
variable_name

, variable_name

record_name

BULK COLLECT INTO
collection_name

: host_array_name

,

USING

IN

OUT

IN OUT
bind_argument

,



EXECUTE IMMEDIATE Statement

PL/SQL Language Elements 13-43

BULK COLLECT INTO
Used if and only if dynamic_sql_stmt can return multiple rows, this clause 
specifies one or more collections in which to store the returned rows. This clause must 
have a corresponding, type-compatible collection_item or :host_array_name 
for each select_item in dynamic_sql_stmt.

collection_name
The name of a declared collection, in which to store rows returned by dynamic_sql_
stmt.

dynamic_returning_clause
Used if and only if dynamic_sql_stmt has a RETURNING INTO clause, this clause 
returns the column values of the rows affected by dynamic_sql_stmt, in either 
individual variables or records (eliminating the need to select the rows first). This 
clause can include OUT bind arguments. For details, see RETURNING INTO Clause on 
page 13-102.

dynamic_sql_stmt
A string literal, string variable, or string expression that represents any SQL statement. 
It must be of type CHAR, VARCHAR2, or CLOB.

host_array_name
An array into which returned rows are stored. The array must be declared in a 
PL/SQL host environment and passed to PL/SQL as a bind argument (hence the colon 
(:) prefix).

IN, OUT, IN OUT
Parameter modes of bind arguments. An IN bind argument passes its value to the 
dynamic SQL statement. An OUT bind argument stores a value that the dynamic SQL 
statement returns. An IN OUT bind argument passes its initial value to the dynamic 
SQL statement and stores a value that the dynamic SQL statement returns. The default 
parameter mode for bind_argument is IN.

INTO
Used if and only if dynamic_sql_stmt is a SELECT statement that can return at 
most one row, this clause specifies the variables or record into which the column 
values of the returned row are stored. For each select_item in dynamic_sql_
stmt, this clause must have either a corresponding, type-compatible define_
variable or a type-compatible record.

record_name
A user-defined or %ROWTYPE record into which a returned row is stored.

USING
Used only if dynamic_sql_stmt includes placeholders, this clause specifies a list of 
bind arguments.

variable_name
The name of a define variable in which to store a column value of the row returned by 
dynamic_sql_stmt.



EXECUTE IMMEDIATE Statement

13-44 Oracle Database PL/SQL Language Reference

Usage Notes
For DML statements that have a RETURNING clause, you can place OUT bind 
arguments in the RETURNING INTO clause without specifying the parameter mode, 
which, by definition, is OUT. If you use both the USING clause and the RETURNING 
INTO clause, the USING clause can contain only IN arguments.

At run time, bind arguments or define variables replace corresponding placeholders in 
the dynamic SQL statement. Every placeholder must be associated with a bind 
argument in the USING clause or RETURNING INTO clause (or both) or with a define 
variable in the INTO clause.

The value a of bind argument cannot be a Boolean literal (TRUE, FALSE, or NULL). To 
pass the value NULL to the dynamic SQL statement, use an uninitialized variable 
where you want to use NULL, as in Uninitialized Variable for NULL in USING Clause 
on page 7-4.

You can execute a dynamic SQL statement repeatedly using new values for the bind 
arguments. You incur some overhead, because EXECUTE IMMEDIATE prepares the 
dynamic string before every execution.

Examples
■ Example 7–1, "Invoking a Subprogram from a Dynamic PL/SQL Block" on 

page 7-3

■ Example 7–2, "Unsupported Data Type in Native Dynamic SQL" on page 7-3

■ Example 7–3, "Uninitialized Variable for NULL in USING Clause" on page 7-4

■ Example 7–5, "Repeated Placeholder Names in Dynamic PL/SQL Block" on 
page 7-6

Related Topics
■ OPEN-FOR Statement on page 13-87

■ RETURNING INTO Clause on page 13-102

■ Using the EXECUTE IMMEDIATE Statement on page 7-2

■ Using DBMS_SQL Package on page 7-6

Note: When using dynamic SQL, be aware of SQL injection, a 
security risk. For more information about SQL injection, see Avoiding 
SQL Injection in PL/SQL on page 7-9.



EXIT Statement

PL/SQL Language Elements 13-45

EXIT Statement

The EXIT statement exits a loop and transfers control to the end of the loop. The EXIT 
statement has two forms: the unconditional EXIT and the conditional EXIT WHEN. 
With either form, you can name the loop to be exited. 

Syntax

exit_statement ::=

(boolean_expression ::= on page 13-51)

Keyword and Parameter Descriptions

boolean_expression
If and only if the value of this expression is TRUE, the current loop (or the loop labeled 
by label_name) is exited immediately.

EXIT
An unconditional EXIT statement (that is, one without a WHEN clause) exits the current 
loop immediately. Execution resumes with the statement following the loop.

label_name
Identifies the loop exit from: either the current loop, or any enclosing labeled loop. 

Usage Notes
An EXIT statement can appear anywhere inside a loop, but not outside a loop. 
PL/SQL lets you code an infinite loop. For example, the following loop will never 
terminate normally so you must use an EXIT statement to exit the loop.

WHILE TRUE LOOP ... END LOOP;

If you use an EXIT statement to exit a cursor FOR loop prematurely, the cursor is 
closed automatically. The cursor is also closed automatically if an exception is raised 
inside the loop.

Examples
■ Example 4–9, "EXIT Statement" on page 4-9

■ Example 4–24, "EXIT in a FOR LOOP" on page 4-19

■ Example 4–25, "EXIT with a Label in a FOR LOOP" on page 4-19

Related Topics
■ CONTINUE Statement on page 13-31

■ Expression on page 13-51

■ LOOP Statements on page 13-79

EXIT
label_name WHEN boolean_expression

;



EXIT Statement

13-46 Oracle Database PL/SQL Language Reference

■ Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements) on 
page 4-8



Explicit Cursor

PL/SQL Language Elements 13-47

Explicit Cursor

An explicit cursor names the unnamed work area in which the database stores 
processing information when it executes a multiple-row query. When you have named 
the work area, you can access its information, and process the rows of the query 
individually.

Syntax

cursor_declaration ::=

(cursor_parameter_declaration ::= on page 13-47, rowtype ::= on page 13-48)

cursor_spec ::=

(cursor_parameter_declaration ::= on page 13-47, rowtype ::= on page 13-48)

cursor_body ::=

cursor_parameter_declaration ::=

(expression ::= on page 13-51)

CURSOR cursor_name
( cursor_parameter_declaration

,
)

RETURN rowtype
IS select_statement ;

CURSOR cursor_name
( cursor_parameter_declaration

,
)

RETURN rowtype ;

CURSOR cursor_name
( cursor_parameter_declaration

,
)

RETURN rowtype IS select_statement ;

parameter_name
IN

datatype

:=

DEFAULT
expression



Explicit Cursor

13-48 Oracle Database PL/SQL Language Reference

rowtype ::=

Keyword and Parameter Descriptions

cursor_name
An explicit cursor previously declared within the current scope.

datatype
A type specifier. For the syntax of datatype, see Constant on page 13-28.

db_table_name
A database table or view that must be accessible when the declaration is elaborated.

expression
A combination of variables, constants, literals, operators, and function calls. The 
simplest expression consists of a single variable. When the declaration is elaborated, 
the value of expression is assigned to the parameter. The value and the parameter 
must have compatible data types. 

parameter_name
A variable declared as the formal parameter of a cursor. A cursor parameter can 
appear in a query wherever a constant can appear. The formal parameters of a cursor 
must be IN parameters. The query can also reference other PL/SQL variables within 
its scope. 

record_name
A user-defined record previously declared within the current scope. 

record_type_name
A user-defined record type that was defined using the data type specifier RECORD.

RETURN
Specifies the data type of a cursor return value. You can use the %ROWTYPE attribute in 
the RETURN clause to provide a record type that represents a row in a database table or 
a row returned by a previously declared cursor. Also, you can use the %TYPE attribute 
to provide the data type of a previously declared record.

A cursor body must have a SELECT statement and the same RETURN clause as its 
corresponding cursor specification. Also, the number, order, and data types of select 
items in the SELECT clause must match the RETURN clause.

Note: If you supply an actual parameter for parameter_name 
when you open the cursor, then expression is not evaluated.

db_table_name

cursor_name

cursor_variable_name

% ROWTYPE

record_name % TYPE

record_type_name



Explicit Cursor

PL/SQL Language Elements 13-49

%ROWTYPE
A record type that represents a row in a database table or a row fetched from a 
previously declared cursor or cursor variable. Fields in the record and corresponding 
columns in the row have the same names and data types.

select_statement
A SQL SELECT statement. If the cursor declaration declares parameters, each 
parameter must appear in select_statement.

%TYPE
Provides the data type of a previously declared user-defined record.

Usage Notes
You must declare a cursor before referencing it in an OPEN, FETCH, or CLOSE 
statement.

You must declare a variable before referencing it in a cursor declaration. The word 
SQL is reserved by PL/SQL as the default name for SQL cursors, and cannot be used 
in a cursor declaration.

You cannot assign values to a cursor name or use it in an expression. However, cursors 
and variables follow the same scoping rules. For more information, see Scope and 
Visibility of PL/SQL Identifiers on page 2-22.

You retrieve data from a cursor by opening it, then fetching from it. Because the FETCH 
statement specifies the target variables, using an INTO clause in the SELECT statement 
of a cursor_declaration is redundant and invalid.

The scope of cursor parameters is local to the cursor, meaning that they can be 
referenced only within the query used in the cursor declaration. The values of cursor 
parameters are used by the associated query when the cursor is opened. The query can 
also reference other PL/SQL variables within its scope. 

The data type of a cursor parameter must be specified without constraints, that is, 
without precision and scale for numbers, and without length for strings.

Examples
■ Example 6–9, "Declaring a Cursor" on page 6-10

■ Example 6–10, "Fetching with a Cursor" on page 6-11

■ Example 6–13, "Fetching Bulk Data with a Cursor" on page 6-12

■ Example 6–27, "Passing a REF CURSOR as a Parameter" on page 6-24

■ Example 6–29, "Stored Procedure to Open a Ref Cursor" on page 6-26

See: Oracle Database SQL Language Reference for SELECT statement 
syntax

Note: An explicit cursor declared in a package specification is 
affected by the AUTHID clause of the package. For more information, 
see "CREATE PACKAGE Statement" on page 14-36.



Explicit Cursor

13-50 Oracle Database PL/SQL Language Reference

■ Example 6–30, "Stored Procedure to Open Ref Cursors with Different Queries" on 
page 6-26

Related Topics
■ CLOSE Statement on page 13-18

■ Cursor Attribute on page 13-32

■ Cursor Variable Declaration on page 13-34

■ FETCH Statement on page 13-60

■ OPEN Statement on page 13-85

■ SELECT INTO Statement on page 13-107

■ Declaring a Cursor on page 6-10

■ Querying Data with PL/SQL on page 6-16



Expression

PL/SQL Language Elements 13-51

Expression

An expression is an arbitrarily complex combination of operands (variables, constants, 
literals, operators, function calls, and placeholders) and operators. The simplest 
expression is a single variable.

The PL/SQL compiler determines the data type of an expression from the types of the 
operands and operators that comprise the expression. Every time the expression is 
evaluated, a single value of that type results.

Syntax

expression ::=

boolean_expression ::=

boolean_expression

character_expression

date_expression

numeric_expression

simple_case_expression

searched_case_expression

( expression )

NOT

boolean_constant_name

boolean_function_call

boolean_literal

boolean_variable_name

other_boolean_form

AND

OR

NOT

boolean_constant_name

boolean_function_call

boolean_literal

boolean_variable_name

other_boolean_form



Expression

13-52 Oracle Database PL/SQL Language Reference

other_boolean_form ::=

character_expression ::=

collection_name . EXISTS ( index )

cursor_name

cursor_variable_name

: host_cursor_variable_name

SQL

%

FOUND

ISOPEN

NOTFOUND

expression

relational_operator expression

IS
NOT

NULL

NOT

LIKE pattern

BETWEEN expression AND expression

IN expression
,

character_constant_name

character_function_call

character_literal

character_variable_name

: host_variable_name
: indicator_name

||

character_constant_name

character_function_call

character_literal

character_variable_name

: host_variable_name
: indicator_name



Expression

PL/SQL Language Elements 13-53

numeric_subexpression ::=

date_expression ::=

numeric_expression ::=

cursor_name

cursor_variable_name

: host_cursor_variable_name

SQL

% ROWCOUNT

SQL % BULK_ROWCOUNT ( integer )

: host_variable_name
: indicator_name

numeric_constant_name

numeric_function_call

numeric_literal

numeric_variable_name

collection_name .

COUNT

FIRST

LAST

LIMIT

NEXT

PRIOR
( index )

** exponent

date_constant_name

date_function_call

date_literal

date_variable_name

: host_variable_name
: indicator_name

+

–
numeric_expression

numeric_subexpression

+

–

*

/

numeric_subexpression



Expression

13-54 Oracle Database PL/SQL Language Reference

simple_case_expression ::=

searched_case_expression ::=

(boolean_expression ::= on page 13-51)

Keyword and Parameter Descriptions

BETWEEN
This comparison operator tests whether a value lies in a specified range. It means: 
greater than or equal to low value and less than or equal to high value. 

boolean_constant_name
A constant of type BOOLEAN, which must be initialized to the value TRUE, FALSE, or 
NULL. Arithmetic operations on Boolean constants are not allowed. 

boolean_expression
An expression whose value is Boolean (TRUE, FALSE, or NULL). 

boolean_function_call
A call to a function that returns a Boolean value.

boolean_literal
The predefined values TRUE, FALSE, or NULL (which stands for a missing, unknown, 
or inapplicable value). You cannot insert the value TRUE or FALSE into a database 
column. 

CASE case_operand

WHEN case_operand_value THEN result_value ;

ELSE result_value ;

END CASE ;

CASE

WHEN boolean_expression THEN result_value ;

ELSE result_value ;

END CASE ;



Expression

PL/SQL Language Elements 13-55

boolean_variable_name
A variable of type BOOLEAN. Only the values TRUE, FALSE, and NULL can be assigned 
to a BOOLEAN variable. You cannot select or fetch column values into a BOOLEAN 
variable. Also, arithmetic operations on BOOLEAN variables are not allowed. 

%BULK_ROWCOUNT
Designed for use with the FORALL statement, this is a composite attribute of the 
implicit cursor SQL. For more information, see SQL (Implicit) Cursor Attribute on 
page 13-113.

character_constant_name
A previously declared constant that stores a character value. It must be initialized to a 
character value or a value implicitly convertible to a character value. 

character_expression
An expression that returns a character or character string. 

character_function_call
A function call that returns a character value or a value implicitly convertible to a 
character value. 

character_literal
A literal that represents a character value or a value implicitly convertible to a 
character value. 

character_variable_name
A previously declared variable that stores a character value. 

collection_name
A collection (nested table, index-by table, or varray) previously declared within the 
current scope. 

cursor_name
An explicit cursor previously declared within the current scope. 

cursor_variable_name
A PL/SQL cursor variable previously declared within the current scope. 

date_constant_name
A previously declared constant that stores a date value. It must be initialized to a date 
value or a value implicitly convertible to a date value. 

date_expression
An expression that returns a date/time value. 

date_function_call
A function call that returns a date value or a value implicitly convertible to a date 
value. 



Expression

13-56 Oracle Database PL/SQL Language Reference

date_literal
A literal representing a date value or a value implicitly convertible to a date value. 

date_variable_name
A previously declared variable that stores a date value. 

EXISTS, COUNT, FIRST, LAST, LIMIT, NEXT, PRIOR
Collection methods. When appended to the name of a collection, these methods return 
useful information. For example, EXISTS(n) returns TRUE if the nth element of a 
collection exists. Otherwise, EXISTS(n) returns FALSE. For more information, see 
Collection Method Call on page 13-23. 

exponent
An expression that must return a numeric value. 

%FOUND, %ISOPEN, %NOTFOUND, %ROWCOUNT
Cursor attributes. When appended to the name of a cursor or cursor variable, these 
attributes return useful information about the execution of a multiple-row query. You 
can also append them to the implicit cursor SQL.

host_cursor_variable_name
A cursor variable declared in a PL/SQL host environment and passed to PL/SQL as a 
bind argument. Host cursor variables must be prefixed with a colon. 

host_variable_name
A variable declared in a PL/SQL host environment and passed to PL/SQL as a bind 
argument. The data type of the host variable must be implicitly convertible to the 
appropriate PL/SQL data type. Also, host variables must be prefixed with a colon. 

IN
Comparison operator that tests set membership. It means: equal to any member of. 
The set can contain nulls, but they are ignored. Also, expressions of the form

value NOT IN set

return FALSE if the set contains a null.

index
A numeric expression that must return a value of type BINARY_INTEGER, PLS_
INTEGER, or a value implicitly convertible to that data type. 

indicator_name
An indicator variable declared in a PL/SQL host environment and passed to PL/SQL. 
Indicator variables must be prefixed with a colon. An indicator variable indicates the 
value or condition of its associated host variable. For example, in the Oracle 
Precompiler environment, indicator variables can detect nulls or truncated values in 
output host variables. 

IS NULL
Comparison operator that returns the Boolean value TRUE if its operand is null, or 
FALSE if its operand is not null. 



Expression

PL/SQL Language Elements 13-57

LIKE
Comparison operator that compares a character value to a pattern. Case is significant. 
LIKE returns the Boolean value TRUE if the character patterns match, or FALSE if they 
do not match. 

NOT, AND, OR
Logical operators, which follow the tri-state logic of Table 2–3 on page 2-30. AND 
returns the value TRUE only if both its operands are true. OR returns the value TRUE if 
either of its operands is true. NOT returns the opposite value (logical negation) of its 
operand. For more information, see Logical Operators on page 2-30. 

NULL
Keyword that represents a null. It stands for a missing, unknown, or inapplicable 
value. When NULL is used in a numeric or date expression, the result is a null. 

numeric_constant_name
A previously declared constant that stores a numeric value. It must be initialized to a 
numeric value or a value implicitly convertible to a numeric value. 

numeric_expression
An expression that returns an integer or real value. 

numeric_function_call
A function call that returns a numeric value or a value implicitly convertible to a 
numeric value. 

numeric_literal
A literal that represents a number or a value implicitly convertible to a number. 

numeric_variable_name
A previously declared variable that stores a numeric value. 

pattern
A character string compared by the LIKE operator to a specified string value. It can 
include two special-purpose characters called wildcards. An underscore (_) matches 
exactly one character; a percent sign (%) matches zero or more characters. The pattern 
can be followed by ESCAPE 'character_literal', which turns off wildcard 
expansion wherever the escape character appears in the string followed by a percent 
sign or underscore.

relational_operator
Operator that compares expressions. For the meaning of each operator, see 
Comparison Operators on page 2-34. 

SQL
A cursor opened implicitly by the database to process a SQL data manipulation 
statement. The implicit cursor SQL always refers to the most recently executed SQL 
statement.



Expression

13-58 Oracle Database PL/SQL Language Reference

+, -, /, *, **
Symbols for the addition, subtraction, division, multiplication, and exponentiation 
operators.

||
The concatenation operator. As the following example shows, the result of 
concatenating string1 with string2 is a character string that contains string1 followed by 
string2:

'Good' || ' morning!' = 'Good morning!'

The next example shows that nulls have no effect on the result of a concatenation:

'suit' || NULL || 'case' = 'suitcase'

A null string (''), which is zero characters in length, is treated like a null.

case_operand
An expression whose value is used to select one of several alternative result values. 
The value of case_operand can be of any PL/SQL type except BLOB, BFILE, an 
object type, a PL/SQL record, an index-by table, a varray, or a nested table.

WHEN { case_operand_value |  boolean_expression } THEN result_value
The case_operand_values or boolean_expressions are evaluated sequentially. 
If a case_operand_value is the value of case_operand, or if the value of a 
boolean_expression is TRUE, the result_value associated with that case_
operand_value or boolean_expression is returned. Subsequent case_
operand_values or boolean_expressions are not evaluated.

A case_operand_value can be of any PL/SQL type other than BLOB, BFILE, an 
object type, a PL/SQL record, an index-by table, a varray, or a nested table.

ELSE result_value
In the simple CASE expression, the result_value is returned if and only if no case_
operand_value has the same value as case_operand.

In the searched CASE statement, the result_value is returned if and only if no 
boolean_expression has the value TRUE.

If you omit the ELSE clause, the case expression returns NULL.

Usage Notes
In a Boolean expression, you can only compare values that have compatible data 
types. For more information, see PL/SQL Data Type Conversion on page 3-28.

In conditional control statements, if a Boolean expression returns TRUE, its associated 
sequence of statements is executed. But, if the expression returns FALSE or NULL, its 
associated sequence of statements is not executed. 

The relational operators can be applied to operands of type BOOLEAN. By definition, 
TRUE is greater than FALSE. Comparisons involving nulls always return a null. The 
value of a Boolean expression can be assigned only to Boolean variables, not to host 
variables or database columns. Also, data type conversion to or from type BOOLEAN is 
not supported.

You can use the addition and subtraction operators to increment or decrement a date 
value, as the following examples show:



Expression

PL/SQL Language Elements 13-59

hire_date := '10-MAY-95';
hire_date := hire_date + 1;  -- makes hire_date '11-MAY-95'
hire_date := hire_date - 5;  -- makes hire_date '06-MAY-95'

When PL/SQL evaluates a boolean expression, NOT has the highest precedence, AND 
has the next-highest precedence, and OR has the lowest precedence. However, you can 
use parentheses to override the default operator precedence. 

Within an expression, operations occur in the following order (first to last):

1. Parentheses

2. Exponents

3. Unary operators

4. Multiplication and division

5. Addition, subtraction, and concatenation

PL/SQL evaluates operators of equal precedence in no particular order. When 
parentheses enclose an expression that is part of a larger expression, PL/SQL 
evaluates the parenthesized expression first, then uses the result in the larger 
expression. When parenthesized expressions are nested, PL/SQL evaluates the 
innermost expression first and the outermost expression last. 

Examples
■ Example 1–3, "Assigning Values to Variables with the Assignment Operator" on 

page 1-7

■ Using the WHEN Clause with a CASE Statement on page 2-41

■ Using a Search Condition with a CASE Statement on page 2-41

Related Topics
■ Assignment Statement on page 13-3

■ CASE Statement on page 13-15

■ Constant on page 13-28

■ EXIT Statement on page 13-45

■ IF Statement on page 13-71

■ LOOP Statements on page 13-79

■ PL/SQL Expressions and Comparisons on page 2-28



FETCH Statement

13-60 Oracle Database PL/SQL Language Reference

FETCH Statement

The FETCH statement retrieves rows of data from the result set of a multiple-row 
query. You can fetch rows one at a time, several at a time, or all at once. The data is 
stored in variables or fields that correspond to the columns selected by the query.

Syntax

fetch_statement ::=

into_clause ::=

bulk_collect_into_clause ::=

Keyword and Parameter Descriptions

BULK COLLECT INTO
Instructs the SQL engine to bulk-bind output collections before returning them to the 
PL/SQL engine. The SQL engine bulk-binds all collections referenced in the INTO list.

collection_name
The name of a declared collection into which column values are bulk fetched. For each 
query select_item, there must be a corresponding, type-compatible collection in the 
list.

cursor_name
An explicit cursor declared within the current scope.

FETCH

cursor_name

cursor_variable_name

: host_cursor_variable_name

into_clause

bulk_collect_into_clause
LIMIT numeric_expression ;

INTO
variable_name

, variable_name

record_name

BULK COLLECT INTO
collection_name

: host_array_name

,



FETCH Statement

PL/SQL Language Elements 13-61

cursor_variable_name
A PL/SQL cursor variable (or parameter) declared within the current scope.

host_array_name
An array (declared in a PL/SQL host environment and passed to PL/SQL as a bind 
argument) into which column values are bulk fetched. For each query select_item, 
there must be a corresponding, type-compatible array in the list.

host_cursor_variable_name
A cursor variable declared in a PL/SQL host environment and passed to PL/SQL as a 
bind argument. The data type of the host cursor variable is compatible with the return 
type of any PL/SQL cursor variable.

LIMIT
This optional clause, allowed only in bulk (not scalar) FETCH statements, lets you bulk 
fetch several rows at a time, rather than the entire result set.

record_name
A user-defined or %ROWTYPE record into which rows of values are fetched. For each 
column value returned by the query associated with the cursor or cursor variable, 
there must be a corresponding, type-compatible field in the record. 

variable_name
A variable into which a column value is fetched. For each column value returned by 
the query associated with the cursor or cursor variable, there must be a corresponding, 
type-compatible variable in the list.

Usage Notes
You must use either a cursor FOR loop or the FETCH statement to process a 
multiple-row query.

Any variables in the WHERE clause of the query are evaluated only when the cursor or 
cursor variable is opened. To change the result set or the values of variables in the 
query, you must reopen the cursor or cursor variable with the variables set to their 
new values. 

To reopen a cursor, you must close it first. However, you need not close a cursor 
variable before reopening it.

You can use different INTO lists on separate fetches with the same cursor or cursor 
variable. Each fetch retrieves another row and assigns values to the target variables. 

If you FETCH past the last row in the result set, the values of the target fields or 
variables are indeterminate and the %NOTFOUND attribute returns TRUE. 

PL/SQL makes sure the return type of a cursor variable is compatible with the INTO 
clause of the FETCH statement. For each column value returned by the query 
associated with the cursor variable, there must be a corresponding, type-compatible 
field or variable in the INTO clause. Also, the number of fields or variables must equal 
the number of column values.

When you declare a cursor variable as the formal parameter of a subprogram that 
fetches from the cursor variable, you must specify the IN or IN OUT mode. However, if 
the subprogram also opens the cursor variable, you must specify the IN OUT mode.



FETCH Statement

13-62 Oracle Database PL/SQL Language Reference

Because a sequence of FETCH statements always runs out of data to retrieve, no 
exception is raised when a FETCH returns no data. To detect this condition, you must 
use the cursor attribute %FOUND or %NOTFOUND.

PL/SQL raises the predefined exception INVALID_CURSOR if you try to fetch from a 
closed or never-opened cursor or cursor variable.

Restrictions on BULK COLLECT INTO
The following restrictions apply to the BULK COLLECT INTO clause:

■ You cannot bulk collect into an associative array that has a string type for the key.

■ You can use the BULK COLLECT INTO clause only in server-side programs (not in 
client-side programs). Otherwise, you get the following error:

this feature is not supported in client-side programs

■ All target variables listed in a BULK COLLECT INTO clause must be collections.

■ Composite targets (such as objects) cannot be used in the RETURNING INTO 
clause. Otherwise, you get the following error:

error unsupported feature with RETURNING clause

■ When implicit data type conversions are needed, multiple composite targets 
cannot be used in the BULK COLLECT INTO clause.

■ When an implicit data type conversion is needed, a collection of a composite target 
(such as a collection of objects) cannot be used in the BULK COLLECT INTO clause.

Examples
■ Example 6–10, "Fetching with a Cursor" on page 6-11

■ Example 6–13, "Fetching Bulk Data with a Cursor" on page 6-12

■ Example 6–23, "Passing Parameters to Explicit Cursors" on page 6-21

■ Example 6–27, "Passing a REF CURSOR as a Parameter" on page 6-24

■ Example 6–32, "Fetching from a Cursor Variable into a Record" on page 6-28

■ Example 6–33, "Fetching from a Cursor Variable into Collections" on page 6-28

■ Example 6–35, "Using a Cursor Expression" on page 6-31

■ Example 6–41, "Using CURRENT OF to Update the Latest Row Fetched from a 
Cursor" on page 6-38

Related Topics
■ CLOSE Statement on page 13-18

■ Cursor Variable Declaration on page 13-34

■ Explicit Cursor on page 13-47

■ LOOP Statements on page 13-79

■ OPEN Statement on page 13-85

■ OPEN-FOR Statement on page 13-87

■ RETURNING INTO Clause on page 13-102

■ Querying Data with PL/SQL on page 6-16



FORALL Statement

PL/SQL Language Elements 13-63

FORALL Statement

The FORALL statement issues a series of static or dynamic DML statements, usually 
much faster than an equivalent FOR loop. It requires some setup code, because each 
iteration of the loop must use values from one or more collections in its VALUES or 
WHERE clauses. 

Syntax

forall_statement ::=

bounds_clause ::=

Keyword and Parameter Descriptions

INDICES OF collection_name
A clause specifying that the values of the index variable correspond to the subscripts 
of the elements of the specified collection. With this clause, you can use FORALL with 
nested tables where some elements were deleted, or with associative arrays that have 
numeric subscripts.

BETWEEN lower_bound AND upper_bound
Limits the range of subscripts in the INDICES OF clause. If a subscript in the range 
does not exist in the collection, that subscript is skipped.

VALUES OF index_collection_name
A clause specifying that the subscripts for the FORALL index variable are taken from 
the values of the elements in another collection, specified by index_collection_
name. This other collection acts as a set of pointers; FORALL can iterate through 
subscripts in arbitrary order, even using the same subscript more than once, 
depending on what elements you include in index_collection_name.

The index collection must be a nested table, or an associative array indexed by PLS_
INTEGER or BINARY_INTEGER, whose elements are also PLS_INTEGER or BINARY_
INTEGER. If the index collection is empty, an exception is raised and the FORALL 
statement is not executed.

index_name
An undeclared identifier that can be referenced only within the FORALL statement and 
only as a collection subscript.

FORALL index_name IN bounds_clause sql_statement
SAVE EXCEPTIONS

;

lower_bound .. upper_bound

INDICES OF collection
BETWEEN lower_bound AND upper_bound

VALUES OF index_collection



FORALL Statement

13-64 Oracle Database PL/SQL Language Reference

The implicit declaration of index_name overrides any other declaration outside the 
loop. You cannot refer to another variable with the same name inside the statement. 
Inside a FORALL statement, index_name cannot appear in expressions and cannot be 
assigned a value.

lower_bound .. upper_bound
Numeric expressions that specify a valid range of consecutive index numbers. PL/SQL 
rounds them to the nearest integer, if necessary. The SQL engine executes the SQL 
statement once for each index number in the range. The expressions are evaluated 
once, when the FORALL statement is entered.

SAVE EXCEPTIONS
Optional keywords that cause the FORALL loop to continue even if some DML 
operations fail. Instead of raising an exception immediately, the program raises a 
single exception after the FORALL statement finishes. The details of the errors are 
available after the loop in SQL%BULK_EXCEPTIONS. The program can report or clean 
up all the errors after the FORALL loop, rather than handling each exception as it 
happens. See Handling FORALL Exceptions (%BULK_EXCEPTIONS Attribute) on 
page 12-16.

sql_statement
A static, such as UPDATE or DELETE, or dynamic (EXECUTE IMMEDIATE) DML 
statement that references collection elements in the VALUES or WHERE clauses.

Usage Notes
Although the SQL statement can reference more than one collection, the performance 
benefits apply only to subscripted collections.

If a FORALL statement fails, database changes are rolled back to an implicit savepoint 
marked before each execution of the SQL statement. Changes made during previous 
iterations of the FORALL loop are not rolled back.

Restrictions
The following restrictions apply to the FORALL statement:

■ You cannot loop through the elements of an associative array that has a string type 
for the key.

■ Within a FORALL loop, you cannot refer to the same collection in both the SET 
clause and the WHERE clause of an UPDATE statement. You might need to make a 
second copy of the collection and refer to the new name in the WHERE clause.

■ You can use the FORALL statement only in server-side programs, not in client-side 
programs.

■ The INSERT, UPDATE, or DELETE statement must reference at least one collection. 
For example, a FORALL statement that inserts a set of constant values in a loop 
raises an exception.

■ When you specify an explicit range, all collection elements in that range must 
exist. If an element is missing or was deleted, you get an error.

■ When you use the INDICES OF or VALUES OF clauses, all the collections 
referenced in the DML statement must have subscripts matching the values of the 
index variable. Make sure that any DELETE, EXTEND, and so on operations are 
applied to all the collections so that they have the same set of subscripts. If any of 



FORALL Statement

PL/SQL Language Elements 13-65

the collections is missing a referenced element, you get an error. If you use the 
SAVE EXCEPTIONS clause, this error is treated like any other error and does not 
stop the FORALL statement.

■ Collection subscripts must be just the index variable rather than an expression, 
such as i rather than i+1.

■ The cursor attribute %BULK_ROWCOUNT cannot be assigned to other collections, or 
be passed as a parameter to subprograms.

■ If the FORALL uses a dynamic SQL statement, then values (binds for the dynamic 
SQL statement) in the USING clause must be simple references to the collection, 
not expressions. For example, collection_name(i) is valid, but 
UPPER(collection_name(i) is not valid.

Examples
■ Example 12–2, "Issuing DELETE Statements in a Loop" on page 12-10

■ Example 12–3, "Issuing INSERT Statements in a Loop" on page 12-11

■ Example 12–4, "Using FORALL with Part of a Collection" on page 12-11

■ Example 12–5, "Using FORALL with Nonconsecutive Index Values" on page 12-12

■ Example 12–9, "Bulk Operation that Continues Despite Exceptions" on page 12-16

■ Example 12–16, "Using FORALL with BULK COLLECT" on page 12-21

Related Topics
■ Reducing Loop Overhead for DML Statements and Queries with Bulk SQL on 

page 12-9

■ Retrieving Query Results into Collections (BULK COLLECT Clause) on page 12-17



Function Declaration and Definition

13-66 Oracle Database PL/SQL Language Reference

Function Declaration and Definition

A function is a subprogram that returns a single value. You must declare and define a 
function before invoking it. You can either declare and define it at the same time, or 
you can declare it first and then define it later in the same block.

Syntax

function_declaration ::=

function_heading ::=

(parameter_declaration ::= on page 13-90, datatype ::= on page 13-28)

function_definition ::=

(body ::= on page 13-10, declare_section ::= on page 13-8)

Note: This topic applies to functions that you declare and define 
inside a PL/SQL block or package, which are different from 
standalone stored functions that you create with the CREATE 
FUNCTION Statement on page 14-27.

function_heading

DETERMINISTIC

PIPELINED

RESULT_CACHE
;

FUNCTION function_name
( parameter_declaration

,

)
RETURN datatype

function_heading

DETERMINISTIC

PIPELINED

result_cache_clause

IS

AS

declare_section
body



Function Declaration and Definition

PL/SQL Language Elements 13-67

result_cache_clause ::=

Keyword and Parameter Descriptions

body
The required executable part of the function and, optionally, the exception-handling 
part of the function.

At least one execution path must lead to a RETURN statement; otherwise, you get a 
run-time error.

data_source
The name of either a database table or a database view.

declare_section
The optional declarative part of the function. Declarations are local to the function, can 
be referenced in body, and cease to exist when the function completes execution.

DETERMINISTIC
Specify DETERMINISTIC to indicate that the function returns the same result value 
whenever it is invoked with the same values for its parameters. This helps the 
optimizer avoid redundant function calls: If a stored function was invoked previously 
with the same arguments, the optimizer can elect to use the previous result.

Do not specify DETERMINISTIC for a function whose result depends on the state of 
session variables or schema objects, because results might vary across calls. Instead, 
consider making the function result-cached (see Making Result-Cached Functions 
Handle Session-Specific Settings on page 8-33 and Making Result-Cached Functions 
Handle Session-Specific Application Contexts on page 8-34).

Only DETERMINISTIC functions can be invoked from a function-based index or a 
materialized view that has query-rewrite enabled. For more information and possible 
limitations of the DETERMINISTIC option, see CREATE FUNCTION Statement on 
page 14-27

function_declaration
Declares a function, but does not define it. The definition must appear later in the 
same block or subprogram as the declaration.

A function declaration is also called a function specification, or function spec.

function_definition
Either defines a function that was declared earlier in the same block or subprogram, or 
declares and defines a function.

See Also: CREATE INDEX statement in Oracle Database SQL Language 
Reference

RESULT_CACHE
RELIES_ON (

data_source

,

)



Function Declaration and Definition

13-68 Oracle Database PL/SQL Language Reference

function_name
The name that you give to the function that you are declaring or defining.

IN, OUT, IN OUT
Parameter modes that define the action of formal parameters. For summary 
information about parameter modes, see Table 8–1 on page 8-9.

NOCOPY
Specify NOCOPY to instruct the database to pass this argument as fast as possible. This 
clause can significantly enhance performance when passing a large value like a record, 
an index-by table, or a varray to an OUT or IN OUT parameter. IN parameter values are 
always passed NOCOPY.

■ When you specify NOCOPY, assignments made to a package variable may show 
immediately in this parameter, or assignments made to this parameter may show 
immediately in a package variable, if the package variable is passed as the actual 
assignment corresponding to this parameter.

■ Similarly, changes made either to this parameter or to another parameter may be 
visible immediately through both names if the same variable is passed to both.

■ If the function is exited with an unhandled exception, then any assignment made 
to this parameter may be visible in the caller's variable.

These effects may or may not occur on any particular call. You should use NOCOPY 
only when these effects would not matter.

parameter_name
The name of the formal parameter that you are declaring, which you can reference in 
body.

PIPELINED
PIPELINED specifies to return the results of a table function iteratively. A table 
function returns a collection type (a nested table or varray) with elements that are SQL 
data types. You can query table functions using the TABLE keyword before the 
function name in the FROM clause of a SQL query. For more information, see 
Performing Multiple Transformations with Pipelined Table Functions on page 12-34.

RELIES_ON
Specifies the data sources on which the results of a function depend. For more 
information, see Using the PL/SQL Function Result Cache on page 8-27.

RESULT_CACHE
Causes the results of the function to be cached. For more information, see Using the 
PL/SQL Function Result Cache on page 8-27.

RETURN datatype
For datatype, specify the data type of the return value of the function. The return 
value can have any data type supported by PL/SQL. You cannot constrain this data 
type (with NOT NULL, for example).

{ := | DEFAULT } expression
Specifies a default value for an IN parameter. If the invoker of the function specifies a 
value for the parameter, then expression is not evaluated for that invocation (see 



Function Declaration and Definition

PL/SQL Language Elements 13-69

Example 8–7). Otherwise, the parameter is initialized to the value of  expression. 
The value and the parameter must have compatible data types.

Examples
■ Example 8–2, "Declaring, Defining, and Invoking a Simple PL/SQL Function" on 

page 8-5

■ Example 5–44, "Returning a Record from a Function" on page 5-33

Related Topics
■ Parameter Declaration on page 13-90

■ Procedure Declaration and Definition on page 13-92

■ Using the PL/SQL Function Result Cache on page 8-27

■ Chapter 8, "Using PL/SQL Subprograms"

See Also: Oracle Database Advanced Application Developer's Guide for 
information about restrictions on user-defined functions that are 
called from SQL statements and expressions



GOTO Statement

13-70 Oracle Database PL/SQL Language Reference

GOTO Statement

The GOTO statement branches unconditionally to a statement label or block label. The 
label must be unique within its scope and must precede an executable statement or a 
PL/SQL block. The GOTO statement transfers control to the labeled statement or block. 

Syntax

label_declaration ::=

goto_statement ::=

Keyword and Parameter Descriptions

label_name
A label that you assigned to an executable statement or a PL/SQL block. A GOTO 
statement transfers control to the statement or block following <<label_name>>. 

Usage Notes
A GOTO label must precede an executable statement or a PL/SQL block. A GOTO 
statement cannot branch into an IF statement, LOOP statement, or sub-block. To 
branch to a place that does not have an executable statement, add the NULL statement.

From the current block, a GOTO statement can branch to another place in the block or 
into an enclosing block, but not into an exception handler. From an exception handler, 
a GOTO statement can branch into an enclosing block, but not into the current block.

If you use the GOTO statement to exit a cursor FOR loop prematurely, the cursor is 
closed automatically. The cursor is also closed automatically if an exception is raised 
inside the loop.

A given label can appear only once in a block. However, the label can appear in other 
blocks including enclosing blocks and sub-blocks. If a GOTO statement cannot find its 
target label in the current block, it branches to the first enclosing block in which the 
label appears.

Examples
■ Example 4–26, "Simple GOTO Statement" on page 4-20

■ Example 4–29, "Using a GOTO Statement to Branch to an Enclosing Block" on 
page 4-22

<< label_name >>

GOTO label_name ;



IF Statement

PL/SQL Language Elements 13-71

IF Statement

The IF statement executes or skips a sequence of statements, depending on the value 
of a Boolean expression. For more information, see Testing Conditions (IF and CASE 
Statements) on page 4-2.

Syntax

if_statement ::=

(boolean_expression ::= on page 13-51)

Keyword and Parameter Descriptions

boolean_expression
If and only if the value of this expression is TRUE, the statements following THEN 
execute.

ELSE
If control reaches this keyword, the statements that follow it execute. This occurs when 
no boolean_expression had the value TRUE.

ELSIF
Introduces a boolean_expression that is evaluated if no preceding boolean_
expression had the value TRUE.

THEN
If the expression returns TRUE, the statements after the THEN keyword are executed.

Usage Notes
There are three forms of IF statements: IF-THEN, IF-THEN-ELSE, and 
IF-THEN-ELSIF. The simplest form of IF statement associates a Boolean expression 
with a sequence of statements enclosed by the keywords THEN and END IF. The 
sequence of statements is executed only if the expression returns TRUE. If the 
expression returns FALSE or NULL, the IF statement does nothing. In either case, 
control passes to the next statement.

The second form of IF statement adds the keyword ELSE followed by an alternative 
sequence of statements. The sequence of statements in the ELSE clause is executed 

IF boolean_expression THEN statement

ELSIF boolean_expression THEN statement

ELSE statement
END IF ;



IF Statement

13-72 Oracle Database PL/SQL Language Reference

only if the Boolean expression returns FALSE or NULL. Thus, the ELSE clause ensures 
that a sequence of statements is executed.

The third form of IF statement uses the keyword ELSIF to introduce additional 
Boolean expressions. If the first expression returns FALSE or NULL, the ELSIF clause 
evaluates another expression. An IF statement can have any number of ELSIF 
clauses; the final ELSE clause is optional. Boolean expressions are evaluated one by 
one from top to bottom. If any expression returns TRUE, its associated sequence of 
statements is executed and control passes to the next statement. If all expressions 
return FALSE or NULL, the sequence in the ELSE clause is executed.

An IF statement never executes more than one sequence of statements because 
processing is complete after any sequence of statements is executed. However, the 
THEN and ELSE clauses can include more IF statements. That is, IF statements can be 
nested.

Examples
■ Example 1–10, "Using the IF-THEN-ELSE and CASE Statement for Conditional 

Control" on page 1-14

■ Example 4–1, "Simple IF-THEN Statement" on page 4-2

■ Example 4–2, "Using a Simple IF-THEN-ELSE Statement" on page 4-3

■ Example 4–3, "Nested IF-THEN-ELSE Statements" on page 4-3

■ Example 4–4, "Using the IF-THEN-ELSIF Statement" on page 4-4

Related Topics 
■ CASE Statement on page 13-15

■ Expression on page 13-51

■ Testing Conditions (IF and CASE Statements) on page 4-2

■ Using the GOTO Statement on page 4-20



INLINE Pragma

PL/SQL Language Elements 13-73

INLINE Pragma

The INLINE pragma specifys that a subprogram call is, or is not, to be inlined. Inlining 
replaces a subprogram call (to a subprogram in the same program unit) with a copy of 
the called subprogram.

Syntax

inline_pragma ::=

Keyword and Parameter Descriptions

PRAGMA
Signifies that the statement is a pragma (compiler directive). Pragmas are processed at 
compile time, not at run time. They pass information to the compiler.

identifier
The name of a subprogram.

YES
If PLSQL_OPTIMIZE_LEVEL=2, YES specifies that the subprogram call is to be 
inlined.

If PLSQL_OPTIMIZE_LEVEL=3, YES specifies that the subprogram call has a high 
priority for inlining.

NO
Specifies that the subprogram call is not to be inlined.

Usage Notes
The INLINE pragma affects only the immediately following declaration or statement, 
and only some kinds of statements.

When the INLINE pragma immediately precedes one of the following statements, the 
pragma affects every call to the specified subprogram in that statement (see 
Example 13–1):

■ Assignment

■ Call

■ Conditional

■ CASE

■ CONTINUE-WHEN

■ EXECUTE IMMEDIATE

■ EXIT-WHEN

■ LOOP

PRAGMA INLINE ( identifier , ’
YES

NO
’ ) ;



INLINE Pragma

13-74 Oracle Database PL/SQL Language Reference

■ RETURN

The INLINE pragma does not affect statements that are not in the preceding list.

When the INLINE pragma immediately precedes a declaration, it affects the following:

■ Every call to the specified subprogram in that declaration

■ Every initialization value in that declaration except the default initialization values 
of records

If the name of the subprogram (identifier) is overloaded (that is, if it belongs to 
more than one subprogram), the INLINE pragma applies to every subprogram with 
that name (see Example 13–2). For information about overloaded subprogram names, 
see Overloading PL/SQL Subprogram Names on page 8-12.

The PRAGMA INLINE (identifier, 'YES') very strongly encourages the compiler 
to inline a particular call, but the compiler might not to do so if other considerations or 
limits make the inlining undesirable. If you specify PRAGMA INLINE ( 
identifier,'NO'), the compiler does not inline calls to subprograms named 
identifier (see Example 13–3).

Multiple pragmas can affect the same declaration or statement. Each pragma applies 
its own effect to the statement. If PRAGMA INLINE(identifier,'YES') and 
PRAGMA INLINE (identifier,'NO') have the same identifier, 'NO' 
overrides 'YES' (see Example 13–4). One PRAGMA INLINE (identifier,'NO') 
overrides any number of occurrences of PRAGMA INLINE (identifier,'YES'), 
and the order of these pragmas is not important.

Examples
In Example 13–1 and Example 13–2, assume that PLSQL_OPTIMIZE_LEVEL=2.

In Example 13–1, the INLINE pragma affects the procedure calls p1(1) and p1(2), 
but not the procedure calls p1(3) and p1(4).

Example 13–1 Specifying that a Subprogram Is To Be Inlined

PROCEDURE p1 (x PLS_INTEGER) IS ...
...
PRAGMA INLINE (p1, 'YES');
x:= p1(1) + p1(2) + 17;    -- These 2 calls to p1 will be inlined
...
x:= p1(3) + p1(4) + 17;    -- These 2 calls to p1 will not be inlined
...

In Example 13–2 the INLINE pragma affects both functions named p2.

Example 13–2 Specifying that an Overloaded Subprogram Is To Be Inlined

FUNCTION p2 (p boolean) return PLS_INTEGER IS ...
FUNCTION p2 (x PLS_INTEGER) return PLS_INTEGER IS ...
...
PRAGMA INLINE(p2, 'YES');
x := p2(true) + p2(3);
...

In Example 13–3, assume that PLSQL_OPTIMIZE_LEVEL=3. The INLINE pragma 
affects the procedure calls p1(1) and p1(2), but not the procedure calls p1(3) and 
p1(4).



INLINE Pragma

PL/SQL Language Elements 13-75

Example 13–3 Specifying that a Subprogram Is Not To Be Inlined

PROCEDURE p1 (x PLS_INTEGER) IS ...
...
PRAGMA INLINE (p1, 'NO');
x:= p1(1) + p1(2) + 17;    -- These 2 calls to p1 will not be inlined
...
x:= p1(3) + p1(4) + 17;    -- These 2 calls to p1 might be inlined
...

PRAGMA INLINE ... 'NO' overrides PRAGMA INLINE ... 'YES' for the same 
subprogram, regardless of their order in the code. In Example 13–4, the second 
INLINE pragma overrides both the first and third INLINE pragmas.

Example 13–4 Applying Two INLINE Pragmas to the Same Subprogram

PROCEDURE p1 (x PLS_INTEGER) IS ...
...
PRAGMA INLINE (p1, 'YES');
PRAGMA INLINE (p1, 'NO');
PRAGMA INLINE (p1, 'YES');
x:= p1(1) + p1(2) + 17;    -- These 2 calls to p1 will not be inlined
...

Related Topics
■ How PL/SQL Optimizes Your Programs on page 12-1



Literal

13-76 Oracle Database PL/SQL Language Reference

Literal

A literal is an explicit numeric, character, string, or Boolean value not represented by 
an identifier. The numeric literal 135 and the string literal 'hello world' are 
examples. 

Syntax

numeric_literal ::=

integer_literal ::=

real_number_literal ::=

character_literal ::=

string_literal ::=

boolean_literal ::=

+

– integer

real_number

digit

integer

. integer

.

. integer

E

e

+

–
integer

’ character ’

’’

’ character ’

’’

TRUE

FALSE

NULL



Literal

PL/SQL Language Elements 13-77

Keyword and Parameter Descriptions

character
A member of the PL/SQL character set. For more information, see Character Sets and 
Lexical Units on page 2-1.

digit
One of the numerals 0 .. 9. 

TRUE, FALSE, NULL
A predefined Boolean value. 

Usage Notes
Integer and real numeric literals can be used in arithmetic expressions. Numeric 
literals must be separated by punctuation. Spaces can be used in addition to the 
punctuation. For more information, see Numeric Literals on page 2-6.

A character literal is an individual character enclosed by single quotes (apostrophes). 
Character literals include all the printable characters in the PL/SQL character set: 
letters, numerals, spaces, and special symbols. PL/SQL is case sensitive within 
character literals. For example, PL/SQL considers the literals 'Q' and 'q' to be 
different. For more information, see Character Literals on page 2-7.

A string literal is a sequence of zero or more characters enclosed by single quotes. The 
null string ('') contains zero characters. A string literal can hold up to 32,767 
characters. PL/SQL is case sensitive within string literals. For example, PL/SQL 
considers the literals 'white' and 'White' to be different.

To represent an apostrophe within a string, enter two single quotes instead of one. For 
literals where doubling the quotes is inconvenient or hard to read, you can designate 
an escape character using the notation q'esc_char ... esc_char'. This escape 
character must not occur anywhere else inside the string.

Trailing blanks are significant within string literals, so 'abc' and 'abc ' are 
different. Trailing blanks in a string literal are not trimmed during PL/SQL processing, 
although they are trimmed if you insert that value into a table column of type CHAR. 
For more information, including NCHAR string literals, see String Literals on page 2-7.

The BOOLEAN values TRUE and FALSE cannot be inserted into a database column. For 
more information, see BOOLEAN Literals on page 2-8.

Examples
■ Numeric literals:

25  6.34  7E2  25e-03  .1  1.  +17  -4.4  -4.5D  -4.6F

■ Character literals:

'H'   '&'   ' '   '9'   ']'   'g'

■ String literals:

'$5,000'
'02-AUG-87'
'Don''t leave until you''re ready and I''m ready.'
q'#Don't leave until you're ready and I'm ready.#'



Literal

13-78 Oracle Database PL/SQL Language Reference

■ Example 2–3, "Using DateTime Literals" on page 2-8

■ Example 2–56, "Using Conditional Compilation with Database Versions" on 
page 2-54

Related Topics
■ Constant on page 13-28

■ Expression on page 13-51

■ Literals on page 2-6



LOOP Statements

PL/SQL Language Elements 13-79

LOOP Statements

A LOOP statement executes a sequence of statements multiple times. PL/SQL provides 
these loop statements:

■ Basic loop

■ WHILE loop

■ FOR loop

■ Cursor FOR loop

Syntax

basic_loop_statement ::=

while_loop_statement ::=

(boolean_expression ::= on page 13-51)

for_loop_statement ::=

<< label_name >>
LOOP statement END LOOP

label_name
;

<< label_name >>
WHILE boolean_expression

LOOP statement END LOOP
label_name

;

<< label_name >>
FOR index_name IN

REVERSE
lower_bound .. upper_bound

LOOP statement END LOOP
label_name

;



LOOP Statements

13-80 Oracle Database PL/SQL Language Reference

cursor_for_loop_statement ::=

Keyword and Parameter Descriptions

basic_loop_statement
A loop that executes an unlimited number of times. It encloses a sequence of 
statements between the keywords LOOP and END LOOP. With each iteration, the 
sequence of statements is executed, then control resumes at the top of the loop. An 
EXIT, GOTO, or RAISE statement branches out of the loop. A raised exception also 
ends the loop. 

boolean_expression
If and only if the value of this expression is TRUE, the statements after LOOP execute.

cursor_for_loop_statement
Issues a SQL query and loops through the rows in the result set. This is a convenient 
technique that makes processing a query as simple as reading lines of text in other 
programming languages.

A cursor FOR loop implicitly declares its loop index as a %ROWTYPE record, opens a 
cursor, repeatedly fetches rows of values from the result set into fields in the record, 
and closes the cursor when all rows were processed.

cursor_name
An explicit cursor previously declared within the current scope. When the cursor FOR 
loop is entered, cursor_name cannot refer to a cursor already opened by an OPEN 
statement or an enclosing cursor FOR loop.

cursor_parameter_name
A variable declared as the formal parameter of a cursor. For the syntax of cursor_
parameter_declaration, see Explicit Cursor on page 13-47. A cursor parameter 
can appear in a query wherever a constant can appear. The formal parameters of a 
cursor must be IN parameters. 

for_loop_statement
Numeric FOR_LOOP loops iterate over a specified range of integers. The range is part 
of an iteration scheme, which is enclosed by the keywords FOR and LOOP. 

<< label_name >>
FOR record_name IN

cursor_name
( cursor_parameter_name

,
)

( select_statement )

LOOP statement END LOOP
label_name

;



LOOP Statements

PL/SQL Language Elements 13-81

The range is evaluated when the FOR loop is first entered and is never re-evaluated. 
The loop body is executed once for each integer in the range defined by lower_
bound..upper_bound. After each iteration, the loop index is incremented.

index_name
An undeclared identifier that names the loop index (sometimes called a loop counter). 
Its scope is the loop itself; you cannot reference the index outside the loop.

The implicit declaration of index_name overrides any other declaration outside the 
loop. To refer to another variable with the same name, use a label. See Example 4–22, 
"Referencing Global Variable with Same Name as Loop Counter" on page 4-18.

Inside a loop, the index is treated like a constant: it can appear in expressions, but 
cannot be assigned a value.

label_name
An optional undeclared identifier that labels a loop. label_name must be enclosed by 
double angle brackets and must appear at the beginning of the loop. Optionally, 
label_name (not enclosed in angle brackets) can also appear at the end of the loop.

You can use label_name in an EXIT statement to exit the loop labeled by label_
name. You can exit not only the current loop, but any enclosing loop. 

You cannot reference the index of a FOR loop from a nested FOR loop if both indexes 
have the same name, unless the outer loop is labeled by label_name and you use dot 
notation. See Example 4–23, "Referencing Outer Counter with Same Name as Inner 
Counter" on page 4-18.

lower_bound .. upper_bound
Expressions that return numbers. Otherwise, PL/SQL raises the predefined exception 
VALUE_ERROR. The expressions are evaluated only when the loop is first entered. The 
lower bound need not be 1, it can be a negative integer as in the following example:

FOR i IN -5..10

The loop counter increment (or decrement) must be 1.

Internally, PL/SQL assigns the values of the bounds to temporary PLS_INTEGER 
variables, and, if necessary, rounds the values to the nearest integer. The magnitude 
range of a PLS_INTEGER is -2147483648 to 2147483647, represented in 32 bits. If a 
bound evaluates to a number outside that range, you get a numeric overflow error when 
PL/SQL attempts the assignment. See PLS_INTEGER and BINARY_INTEGER Data 
Types on page 3-2.

By default, the loop index is assigned the value of lower_bound. If that value is not 
greater than the value of upper_bound, the sequence of statements in the loop is 
executed, then the index is incremented. If the value of the index is still not greater 
than the value of upper_bound, the sequence of statements is executed again. This 
process repeats until the value of the index is greater than the value of upper_bound. 
At that point, the loop completes.

record_name
An implicitly declared record. The record has the same structure as a row retrieved by 
cursor_name or select_statement.

The record is defined only inside the loop. You cannot refer to its fields outside the 
loop. The implicit declaration of record_name overrides any other declaration 



LOOP Statements

13-82 Oracle Database PL/SQL Language Reference

outside the loop. You cannot refer to another record with the same name inside the 
loop unless you qualify the reference using a block label.

Fields in the record store column values from the implicitly fetched row. The fields 
have the same names and data types as their corresponding columns. To access field 
values, you use dot notation, as follows:

record_name.field_name

Select-items fetched from the FOR loop cursor must have simple names or, if they are 
expressions, must have aliases. In the following example, wages is an alias for the 
select item salary+NVL(commission_pct,0)*1000:

CURSOR c1 IS SELECT employee_id,
  salary + NVL(commission_pct,0) * 1000 wages FROM employees ...

REVERSE
By default, iteration proceeds upward from the lower bound to the upper bound. If 
you use the keyword REVERSE, iteration proceeds downward from the upper bound 
to the lower bound. An example follows:

BEGIN
  FOR i IN REVERSE 1..10 LOOP  -- i starts at 10, ends at 1
   DBMS_OUTPUT.PUT_LINE(i); -- statements here execute 10 times
  END LOOP;
END;
/

The loop index is assigned the value of upper_bound. If that value is not less than the 
value of lower_bound, the sequence of statements in the loop is executed, then the 
index is decremented. If the value of the index is still not less than the value of lower_
bound, the sequence of statements is executed again. This process repeats until the 
value of the index is less than the value of lower_bound. At that point, the loop 
completes. 

select_statement
A query associated with an internal cursor unavailable to you. Its syntax is like that of 
select_into_statement without the INTO clause. See SELECT INTO Statement on 
page 13-107. PL/SQL automatically declares, opens, fetches from, and closes the 
internal cursor. Because select_statement is not an independent statement, the 
implicit cursor SQL does not apply to it. 

while_loop_statement
The WHILE-LOOP statement associates a Boolean expression with a sequence of 
statements enclosed by the keywords LOOP and END LOOP. Before each iteration of the 
loop, the expression is evaluated. If the expression returns TRUE, the sequence of 
statements is executed, then control resumes at the top of the loop. If the expression 
returns FALSE or NULL, the loop is bypassed and control passes to the next statement. 

Usage Notes
You can use the EXIT WHEN statement to exit any loop prematurely. If the Boolean 
expression in the WHEN clause returns TRUE, the loop is exited immediately. 

When you exit a cursor FOR loop, the cursor is closed automatically even if you use an 
EXIT or GOTO statement to exit the loop prematurely. The cursor is also closed 
automatically if an exception is raised inside the loop.



LOOP Statements

PL/SQL Language Elements 13-83

Examples
■ Example 4–25, "EXIT with a Label in a FOR LOOP" on page 4-19

■ Example 6–10, "Fetching with a Cursor" on page 6-11

■ Example 6–13, "Fetching Bulk Data with a Cursor" on page 6-12

Related Topics
■ CONTINUE Statement on page 13-31

■ EXIT Statement on page 13-45

■ Explicit Cursor on page 13-47

■ FETCH Statement on page 13-60

■ FORALL Statement on page 13-63

■ OPEN Statement on page 13-85

■ Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements) on 
page 4-8



NULL Statement

13-84 Oracle Database PL/SQL Language Reference

NULL Statement

The NULL statement is a no-op (no operation)—it passes control to the next statement 
without doing anything. In the body of an IF-THEN clause, a loop, or a procedure, the 
NULL statement serves as a placeholder.

Syntax

null_statement ::=

Usage Notes
The NULL statement improves readability by making the meaning and action of 
conditional statements clear. It tells readers that the associated alternative was not 
overlooked, that you decided that no action is necessary.

Certain clauses in PL/SQL, such as in an IF statement or an exception handler, must 
contain at least one executable statement. You can use the NULL statement to make 
these constructs compile, while not taking any action.

You might not be able to branch to certain places with the GOTO statement because the 
next statement is END, END IF, and so on, which are not executable statements. In 
these cases, you can put a NULL statement where you want to branch.

The NULL statement and Boolean value NULL are not related.

Examples
■ Example 1–16, "Creating a Standalone PL/SQL Procedure" on page 1-18

■ Example 1–8, "Declaring a Record Type" on page 1-12

■ Example 4–28, "Using a NULL Statement to Allow a GOTO to a Label" on 
page 4-21

■ Example 4–31, "Using the NULL Statement to Show No Action" on page 4-23

■ Example 4–32, "Using NULL as a Placeholder When Creating a Subprogram" on 
page 4-24

Related Topics
■ Sequential Control (GOTO and NULL Statements) on page 4-20

■ Using the NULL Statement on page 4-23

NULL ;



OPEN Statement

PL/SQL Language Elements 13-85

OPEN Statement

The OPEN statement executes the query associated with a cursor. It allocates database 
resources to process the query and identifies the result set—the rows that match the 
query conditions. The cursor is positioned before the first row in the result set.

Syntax

open_statement ::=

Keyword and Parameter Descriptions

cursor_name
An explicit cursor previously declared within the current scope and not currently 
open. 

cursor_parameter_name
A variable declared as the formal parameter of a cursor. (For the syntax of cursor_
parameter_declaration, see Explicit Cursor on page 13-47.) A cursor parameter 
can appear in a query wherever a constant can appear. 

Usage Notes
Generally, PL/SQL parses an explicit cursor only the first time it is opened and parses 
a SQL statement (creating an implicit cursor) only the first time the statement is 
executed. All the parsed SQL statements are cached. A SQL statement is reparsed only 
if it is aged out of the cache by a new SQL statement. Although you must close a 
cursor before you can reopen it, PL/SQL need not reparse the associated SELECT 
statement. If you close, then immediately reopen the cursor, a reparse is definitely not 
needed.

Rows in the result set are not retrieved when the OPEN statement is executed. The 
FETCH statement retrieves the rows. With a FOR UPDATE cursor, the rows are locked 
when the cursor is opened.

If formal parameters are declared, actual parameters must be passed to the cursor. The 
formal parameters of a cursor must be IN parameters; they cannot return values to 
actual parameters. The values of actual parameters are used when the cursor is 
opened. The data types of the formal and actual parameters must be compatible. The 
query can also reference PL/SQL variables declared within its scope.

Unless you want to accept default values, each formal parameter in the cursor 
declaration must have a corresponding actual parameter in the OPEN statement. 
Formal parameters declared with a default value do not need a corresponding actual 
parameter. They assume their default values when the OPEN statement is executed.

You can associate the actual parameters in an OPEN statement with the formal 
parameters in a cursor declaration using positional or named notation.

If a cursor is currently open, you cannot use its name in a cursor FOR loop.

OPEN cursor_name
( cursor_parameter_name

,
)

;



OPEN Statement

13-86 Oracle Database PL/SQL Language Reference

Examples
■ Example 6–10, "Fetching with a Cursor" on page 6-11

■ Example 6–13, "Fetching Bulk Data with a Cursor" on page 6-12

Related Topics
■ CLOSE Statement on page 13-18

■ Explicit Cursor on page 13-47

■ FETCH Statement on page 13-60

■ LOOP Statements on page 13-79

■ Querying Data with PL/SQL on page 6-16



OPEN-FOR Statement

PL/SQL Language Elements 13-87

OPEN-FOR Statement

The OPEN-FOR statement executes the SELECT statement associated with a cursor 
variable. It allocates database resources to process the statement, identifies the result 
set (the rows that meet the conditions), and positions the cursor variable before the 
first row in the result set. 

With the optional USING clause, the OPEN-FOR statement processes a dynamic 
SELECT statement that returns multiple rows: it associates a cursor variable with the 
SELECT statement, executes the statement, identifies the result set, positions the cursor 
before the first row in the result set, and zeroes the rows-processed count kept by 
%ROWCOUNT. 

Syntax

open_for_statement ::=

using_clause ::=

Keyword and Parameter Descriptions

cursor_variable_name
A cursor variable or parameter (without a return type), previously declared within the 
current scope.

host_cursor_variable_name
A cursor variable, which must be declared in a PL/SQL host environment and passed 
to PL/SQL as a bind argument (hence the colon (:) prefix). The data type of the cursor 
variable is compatible with the return type of any PL/SQL cursor variable.

select_statement
A string literal, string variable, or string expression that represents a multiple-row 
SELECT statement (without the final semicolon) associated with cursor_variable_
name. It must be of type CHAR, VARCHAR2, or CLOB (not NCHAR or NVARCHAR2).

dynamic_string
A string literal, string variable, or string expression that represents any SQL statement. 
It must be of type CHAR, VARCHAR2, or CLOB.

OPEN
cursor_variable_name

: host_cursor_variable_name
FOR

select_statement

dynamic_string

using_clause

USING

IN

OUT

IN OUT
bind_argument

,



OPEN-FOR Statement

13-88 Oracle Database PL/SQL Language Reference

USING
Used only if select_statment includes placeholders, this clause specifies a list of 
bind arguments.

bind_argument
Either an expression whose value is passed to the dynamic SQL statement (an in 
bind), or a variable in which a value returned by the dynamic SQL statement is stored 
(an out bind). The default parameter mode for bind_argument is IN.

Usage Notes
You can declare a cursor variable in a PL/SQL host environment such as an OCI or 
Pro*C program. To open the host cursor variable, you can pass it as a bind argument to 
an anonymous PL/SQL block. You can reduce network traffic by grouping OPEN-FOR 
statements. For example, the following PL/SQL block opens five cursor variables in a 
single round-trip:

/* anonymous PL/SQL block in host environment */
BEGIN
  OPEN :emp_cv FOR SELECT * FROM employees;
  OPEN :dept_cv FOR SELECT * FROM departments;
  OPEN :grade_cv FOR SELECT * FROM salgrade;
  OPEN :pay_cv FOR SELECT * FROM payroll;
  OPEN :ins_cv FOR SELECT * FROM insurance
END;

Other OPEN-FOR statements can open the same cursor variable for different queries. 
You need not close a cursor variable before reopening it. When you reopen a cursor 
variable for a different query, the previous query is lost.

Unlike cursors, cursor variables do not take parameters. Instead, you can pass whole 
queries (not just parameters) to a cursor variable. Although a PL/SQL stored 
subprogram can open a cursor variable and pass it back to a calling subprogram, the 
calling and called subprograms must be in the same instance. You cannot pass or 
return cursor variables to procedures and functions called through database links. 
When you declare a cursor variable as the formal parameter of a subprogram that 
opens the cursor variable, you must specify the IN OUT mode. That way, the 
subprogram can pass an open cursor back to the caller.

Examples
■ Example 6–27, "Passing a REF CURSOR as a Parameter" on page 6-24

■ Example 6–29, "Stored Procedure to Open a Ref Cursor" on page 6-26

■ Example 6–30, "Stored Procedure to Open Ref Cursors with Different Queries" on 
page 6-26

■ Example 6–31, "Cursor Variable with Different Return Types" on page 6-27

■ Example 6–32, "Fetching from a Cursor Variable into a Record" on page 6-28

■ Example 6–33, "Fetching from a Cursor Variable into Collections" on page 6-28

■ Example 7–4, "Native Dynamic SQL with OPEN-FOR, FETCH, and CLOSE 
Statements" on page 7-4

Related Topics
■ CLOSE Statement on page 13-18



OPEN-FOR Statement

PL/SQL Language Elements 13-89

■ Cursor Variable Declaration on page 13-34

■ EXECUTE IMMEDIATE Statement on page 13-42

■ FETCH Statement on page 13-60

■ LOOP Statements on page 13-79

■ Using Cursor Variables (REF CURSORs) on page 6-22

■ Using the OPEN-FOR, FETCH, and CLOSE Statements on page 7-4



Parameter Declaration

13-90 Oracle Database PL/SQL Language Reference

Parameter Declaration

A parameter declaration can appear in in following:

■ Function Declaration and Definition on page 13-66

■ Procedure Declaration and Definition on page 13-92

■ CREATE FUNCTION Statement on page 14-27

■ CREATE PROCEDURE Statement on page 14-42

Syntax

parameter_declaration ::=

(datatype ::= on page 13-28, expression ::= on page 13-51)

Keyword and Parameter Descriptions

datatype
The data type of the parameter that you are declaring. You cannot constrain this data 
type (with NOT NULL, for example).

IN, OUT, IN OUT
Parameter modes that define the action of formal parameters. For summary 
information about parameter modes, see Table 8–1 on page 8-9.

NOCOPY
Specify NOCOPY to instruct the database to pass this argument as fast as possible. This 
clause can significantly enhance performance when passing a large value like a record, 
an index-by table, or a varray to an OUT or IN OUT parameter. IN parameter values are 
always passed NOCOPY.

■ When you specify NOCOPY, assignments made to a package variable may show 
immediately in this parameter, or assignments made to this parameter may show 
immediately in a package variable, if the package variable is passed as the actual 
assignment corresponding to this parameter.

■ Similarly, changes made either to this parameter or to another parameter may be 
visible immediately through both names if the same variable is passed to both.

Note: Avoid using OUT and IN OUT with functions. The purpose of a 
function is to take zero or more parameters and return a single value. 
Functions must be free from side effects, which change the values of 
variables not local to the subprogram.

parameter_name

IN

OUT

IN OUT

NOCOPY

datatype

:=

DEFAULT
expression



Parameter Declaration

PL/SQL Language Elements 13-91

■ If the subprogram is exited with an unhandled exception, then any assignment 
made to this parameter may be visible in the caller's variable.

These effects might or might not occur on any particular call. Use NOCOPY only when 
these effects would not matter.

parameter_name
The name of the formal parameter that you are declaring, which you can reference in 
the body of the subprogram.

{ := | DEFAULT } expression
Specifies a default value for an IN parameter. If the invoker of the subprogram 
specifies a value for the parameter, then expression is not evaluated for that 
invocation (see Example 8–7). Otherwise, the parameter is initialized to the value of  
expression. The value and the parameter must have compatible data types.

Examples
■ Example 8–5, "Using OUT Mode" on page 8-8

■ Example 8–6, "Procedure with Default Parameter Values" on page 8-10

■ Example 8–7, "Formal Parameter with Expression as Default Value" on page 8-10

Related Topics
■ Function Declaration and Definition on page 13-66

■ Procedure Declaration and Definition on page 13-92

■ CREATE FUNCTION Statement on page 14-27

■ CREATE PROCEDURE Statement on page 14-42

■ Declaring and Passing Subprogram Parameters on page 8-6



Procedure Declaration and Definition

13-92 Oracle Database PL/SQL Language Reference

Procedure Declaration and Definition

A procedure is a subprogram that performs a specific action.

You must declare and define a procedure before invoking it. You can either declare and 
define it at the same time, or you can declare it first and then define it later in the same 
block or subprogram.

Syntax

procedure_declaration ::=

procedure_heading ::=

(parameter_declaration ::= on page 13-90)

procedure_definition ::=

(body ::= on page 13-10, declare_section ::= on page 13-8)

Keyword and Parameter Descriptions

body
The required executable part of the procedure and, optionally, the exception-handling 
part of the procedure.

declare_section
The optional declarative part of the procedure. Declarations are local to the procedure, 
can be referenced in body, and cease to exist when the procedure completes execution.

procedure_declaration
Declares a procedure, but does not define it. The definition must appear later in the 
same block or subprogram as the declaration.

A procedure declaration is also called a procedure specification, or procedure spec.

Note: This topic applies to procedures that you declare and define 
inside a PL/SQL block or package, which are different from 
standalone stored procedures that you create with the CREATE 
PROCEDURE Statement on page 14-42.

procedure_heading

PROCEDURE procedure_name
( parameter_declaration

’

)

procedure_heading
IS

AS

declare_section
body



Procedure Declaration and Definition

PL/SQL Language Elements 13-93

procedure_definition
Either defines a procedure that was declared earlier in the same block or subprogram, 
or declares and defines a procedure.

procedure_name
The name that you give to the procedure that you are declaring or defining.

Examples
■ Example 1–15, "PL/SQL Procedure" on page 1-17

■ Example 8–1, "Declaring, Defining, and Invoking a Simple PL/SQL Procedure" on 
page 8-3

Related Topics
■ Function Declaration and Definition on page 13-66

■ Parameter Declaration on page 13-90

■ CREATE PROCEDURE Statement on page 14-42

■ Chapter 8, "Using PL/SQL Subprograms"



RAISE Statement

13-94 Oracle Database PL/SQL Language Reference

RAISE Statement

The RAISE statement stops normal execution of a PL/SQL block or subprogram and 
transfers control to an exception handler.

RAISE statements can raise predefined exceptions, such as ZERO_DIVIDE or NO_
DATA_FOUND, or user-defined exceptions whose names you decide. 

Syntax

raise_statement ::=

Keyword and Parameter Descriptions

exception_name
A predefined or user-defined exception. For a list of the predefined exceptions, see 
Predefined PL/SQL Exceptions on page 11-4. 

Usage Notes
Raise an exception in a PL/SQL block or subprogram only when an error makes it 
impractical to continue processing. You can code a RAISE statement for a given 
exception anywhere within the scope of that exception.

When an exception is raised, if PL/SQL cannot find a handler for it in the current 
block, the exception propagates to successive enclosing blocks, until a handler is found 
or there are no more blocks to search. If no handler is found, PL/SQL returns an 
unhandled exception error to the host environment.

In an exception handler, you can omit the exception name in a RAISE statement, 
which raises the current exception again. This technique enables you to take some 
initial corrective action (perhaps just logging the problem), then pass control to 
another handler that does more extensive correction. When an exception is reraised, 
the first block searched is the enclosing block, not the current block.

Examples
■ Example 1–16, "Creating a Standalone PL/SQL Procedure" on page 1-18

■ Example 10–3, "Creating the emp_admin Package" on page 10-6

■ Example 11–3, "Scope of PL/SQL Exceptions" on page 11-7

■ Example 11–9, "Reraising a PL/SQL Exception" on page 11-13

Related Topics
■ Exception Handler on page 13-40

■ Defining Your Own PL/SQL Exceptions on page 11-6

RAISE
exception_name

;



Record Definition

PL/SQL Language Elements 13-95

Record Definition

A record is a composite variable that can store data values of different types, similar to 
a struct type in C, C++, or Java. 

In PL/SQL records are useful for holding data from table rows, or certain columns 
from table rows. For ease of maintenance, you can declare variables as 
table%ROWTYPE or cursor%ROWTYPE instead of creating new record types.

Syntax

record_type_definition ::=

record_field_declaration ::=

record_type_declaration ::=

Keyword and Parameter Descriptions

datatype
A data type specifier. For the syntax of datatype, see Constant on page 13-28.

expression
A combination of variables, constants, literals, operators, and function calls. The 
simplest expression consists of a single variable. For the syntax of expression, see 
Expression on page 13-51. When the declaration is elaborated, the value of 
expression is assigned to the field. The value and the field must have compatible 
data types. 

field_name
A field in a user-defined record.

NOT NULL
At run time, trying to assign a null to a field defined as NOT NULL raises the predefined 
exception VALUE_ERROR. The constraint NOT NULL must be followed by an 
initialization clause. 

record_name
A user-defined record.

TYPE type_name IS_RECORD ( field_declaration
,

) ;

field_name datatype

NOT_NULL :=

DEFAULT
expression

record_name type_name ;



Record Definition

13-96 Oracle Database PL/SQL Language Reference

type_name
A user-defined record type that was defined using the data type specifier RECORD.

:= | DEFAULT
Initializes fields to default values.

Usage Notes
You can define RECORD types and declare user-defined records in the declarative part 
of any block, subprogram, or package. 

A record can be initialized in its declaration. You can use the %TYPE attribute to 
specify the data type of a field. You can add the NOT NULL constraint to any field 
declaration to prevent the assigning of nulls to that field. Fields declared as NOT NULL 
must be initialized. To reference individual fields in a record, you use dot notation. For 
example, to reference the dname field in the dept_rec record, use dept_rec.dname.

Instead of assigning values separately to each field in a record, you can assign values 
to all fields at once:

■ You can assign one user-defined record to another if they have the same data type. 
(Having fields that match exactly is not enough.) You can assign a %ROWTYPE 
record to a user-defined record if their fields match in number and order, and 
corresponding fields have compatible data types.

■ You can use the SELECT or FETCH statement to fetch column values into a record. 
The columns in the select-list must appear in the same order as the fields in your 
record.

User-defined records follow the usual scoping and instantiation rules. In a package, 
they are instantiated when you first reference the package and cease to exist when you 
end the database session. In a block or subprogram, they are instantiated when you 
enter the block or subprogram and cease to exist when you exit the block or 
subprogram.

Like scalar variables, user-defined records can be declared as the formal parameters of 
procedures and functions. The restrictions that apply to scalar parameters also apply 
to user-defined records.

You can specify a RECORD type in the RETURN clause of a function specification. That 
allows the function to return a user-defined record of the same type. When invoking a 
function that returns a user-defined record, use the following syntax to reference fields 
in the record:

function_name(parameter_list).field_name

To reference nested fields, use this syntax:

function_name(parameter_list).field_name.nested_field_name

If the function takes no parameters, code an empty parameter list. The syntax follows:

function_name().field_name

Examples
■ Example 1–8, "Declaring a Record Type" on page 1-12

■ Example 5–8, "VARRAY of Records" on page 5-10

■ Example 5–20, "Assigning Values to VARRAYs with Complex Data Types" on 
page 5-15



Record Definition

PL/SQL Language Elements 13-97

■ Example 5–21, "Assigning Values to Tables with Complex Data Types" on 
page 5-16

■ Example 5–41, "Declaring and Initializing a Simple Record Type" on page 5-31

■ Example 5–42, "Declaring and Initializing Record Types" on page 5-31

■ Example 5–44, "Returning a Record from a Function" on page 5-33

■ Example 5–45, "Using a Record as Parameter to a Procedure" on page 5-33

■ Example 5–46, "Declaring a Nested Record" on page 5-34

■ Example 5–47, "Assigning Default Values to a Record" on page 5-34

■ Example 5–50, "Inserting a PL/SQL Record Using %ROWTYPE" on page 5-36

■ Example 5–51, "Updating a Row Using a Record" on page 5-37

■ Example 5–52, "Using the RETURNING INTO Clause with a Record" on page 5-37

■ Example 5–53, "Using BULK COLLECT with a SELECT INTO Statement" on 
page 5-38

■ Example 6–26, "Cursor Variable Returning a Record Type" on page 6-24

■ Example 10–3, "Creating the emp_admin Package" on page 10-6

Related Topics
■ Collection on page 13-19

■ Function Declaration and Definition on page 13-66

■ Procedure Declaration and Definition on page 13-92

■ Defining and Declaring Records on page 5-31



RESTRICT_REFERENCES Pragma

13-98 Oracle Database PL/SQL Language Reference

RESTRICT_REFERENCES Pragma

The RESTRICT REFERENCES pragma asserts that a user-defined subprogram does 
not read or write database tables or package variables.

Subprograms that read or write database tables or package variables are difficult to 
optimize, because any call to the subprogram might produce different results or 
encounter errors.

Syntax

restrict_references_pragma ::=

Keyword and Parameter Descriptions

PRAGMA
Signifies that the statement is a pragma (compiler directive). Pragmas are processed at 
compile time, not at run time. They pass information to the compiler.

subprogram_name
The name of a user-defined subprogram, usually a function.

If subprogram_name is overloaded, the pragma applies only to the most recent 
subprogram declaration.

DEFAULT
Specifies that the pragma applies to all subprograms in the package specification or 
object type specification (including the system-defined constructor for object types).

You can still declare the pragma for individual subprograms, overriding the DEFAULT 
pragma.

RNDS
Asserts that the subprogram reads no database state (does not query database tables).

Note: The RESTRICT REFERENCES pragma is deprecated. Oracle 
recommends using DETERMINISTIC and PARALLEL_ENABLE 
(described in Function Declaration and Definition on page 13-66) 
instead of RESTRICT REFERENCES.

PRAGMA RESTRICT_REFERENCES (
subprogram_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,



RESTRICT_REFERENCES Pragma

PL/SQL Language Elements 13-99

WNDS
Asserts that the subprogram writes no database state (does not modify tables).

RNPS
Asserts that the subprogram reads no package state (does not reference the values of 
packaged variables)

You cannot specify RNPS if the subprogram invokes the SQLCODE or SQLERRM 
function.

WNPS
Asserts that the subprogram writes no package state (does not change the values of 
packaged variables).

You cannot specify WNPS if the subprogram invokes the SQLCODE or SQLERRM 
function.

TRUST
Asserts that the subprogram can be trusted not to violate one or more rules.

When you specify TRUST, the subprogram body is not checked for violations of the 
constraints listed in the pragma. The subprogram is trusted not to violate them. 
Skipping these checks can improve performance. TRUST is needed for functions 
written in C or Java that are invoked from PL/SQL, since PL/SQL cannot verify them 
at run time.

Usage Notes
A RESTRICT_REFERENCES pragma can appear only in a package specification or 
object type specification. Typically, this pragma is specified for functions. If a function 
calls procedures, specify the pragma for those procedures also.

To invoke a subprogram from parallel queries, you must specify all four 
constraints—RNDS, WNDS, RNPS, and WNPS. No constraint implies another.

Examples
■ Example 6–48, "Invoking an Autonomous Function" on page 6-46

■ Example 8–20, "RESTRICT_REFERENCES Pragma" on page 8-25

Related Topics
■ AUTONOMOUS_TRANSACTION Pragma on page 13-6

■ EXCEPTION_INIT Pragma on page 13-38

■ SERIALLY_REUSABLE Pragma on page 13-111

■ SQLCODE Function on page 13-116

■ SQLERRM Function on page 13-117

■ Controlling Side Effects of PL/SQL Subprograms on page 8-24



RETURN Statement

13-100 Oracle Database PL/SQL Language Reference

RETURN Statement

The RETURN statement immediately completes the execution of a subprogram and 
returns control to the invoker. Execution resumes with the statement following the 
subprogram call. In a function, the RETURN statement also sets the function identifier 
to the return value. 

Syntax

return_statement ::=

Keyword and Parameter Descriptions

expression
A combination of variables, constants, literals, operators, and function calls. The 
simplest expression consists of a single variable. When the RETURN statement is 
executed, the value of expression is assigned to the function identifier. 

Usage Notes
The RETURN statement is different than the RETURN clause in a function specification, 
which specifies the data type of the return value. 

A subprogram can contain several RETURN statements. Executing any of them 
completes the subprogram immediately. The RETURN statement might not be 
positioned as the last statement in the subprogram. The RETURN statement can be used 
in an anonymous block to exit the block and all enclosing blocks, but the RETURN 
statement cannot contain an expression.

In procedures, a RETURN statement cannot contain an expression. The statement just 
returns control to the invoker before the normal end of the procedure is reached. In 
functions, a RETURN statement must contain an expression, which is evaluated when 
the RETURN statement is executed. The resulting value is assigned to the function 
identifier. In functions, there must be at least one execution path that leads to a 
RETURN statement. Otherwise, PL/SQL raises an exception at run time.

Examples
■ Example 1–19, "Creating a Package and Package Body" on page 1-20

■ Example 2–23, "Using a Subprogram Name for Name Resolution" on page 2-21

■ Example 5–44, "Returning a Record from a Function" on page 5-33

■ Example 6–43, "Declaring an Autonomous Function in a Package" on page 6-42

■ Example 6–48, "Invoking an Autonomous Function" on page 6-46

■ Example 10–3, "Creating the emp_admin Package" on page 10-6

Related Topics
■ Function Declaration and Definition on page 13-66

RETURN

(
expression

)

;



RETURN Statement

PL/SQL Language Elements 13-101

■ RETURN Statement on page 8-4



RETURNING INTO Clause

13-102 Oracle Database PL/SQL Language Reference

RETURNING INTO Clause

The RETURNING INTO clause specifies the variables in which to store the values 
returned by the statement to which the clause belongs. The variables can be either 
individual variables or collections. If the statement does not affect any rows, the values 
of the variables are undefined.

The static RETURNING INTO clause belongs to a DELETE, INSERT, or UPDATE 
statement. The dynamic RETURNING INTO clause belongs to an EXECUTE IMMEDIATE 
statement.

You cannot use the RETURNING INTO clause for remote or parallel deletes.

Syntax

static_returning_clause ::=

dynamic_returning_clause ::=

into_clause ::=

bulk_collect_into_clause ::=

Keyword and Parameter Descriptions

BULK COLLECT INTO
Used only for a statement that returns multiple rows, this clause specifies one or more 
collections in which to store the returned rows. This clause must have a corresponding, 
type-compatible collection_item or :host_array_name for each select_item 
in the statement to which the RETURNING INTO clause belongs.

RETURNING

RETURN

single_row_expression

,

into_clause

multiple_row_expression

,

bulk_collect_into_clause

RETURNING

RETURN

into_clause

bulk_collect_into_clause

INTO
variable_name

, variable_name

record_name

BULK COLLECT INTO
collection_name

: host_array_name

,



RETURNING INTO Clause

PL/SQL Language Elements 13-103

For the reason to use this clause, see Table , "Reducing Loop Overhead for DML 
Statements and Queries with Bulk SQL" on page 12-9.

collection_name
The name of a declared collection, into which returned rows are stored.

host_array_name
An array into which returned rows are stored. The array must be declared in a 
PL/SQL host environment and passed to PL/SQL as a bind argument (hence the colon 
(:) prefix).

INTO
Used only for a statement that returns a single row, this clause specifies the variables 
or record into which the column values of the returned row are stored. This clause 
must have a corresponding, type-compatible variable or record field for each select_
item in the statement to which the RETURNING INTO clause belongs.

multiple_row_expression
An expression that returns multiple rows of a table.

record_name
A record into which a returned row is stored.

single_row_expression
An expression that returns a single row of a table.

variable_name
Either the name of a variable into which a column value of the returned row is stored, 
or the name of a cursor variable that is declared in a PL/SQL host environment and 
passed to PL/SQL as a bind argument. The data type of the cursor variable is 
compatible with the return type of any PL/SQL cursor variable.

Usage
For DML statements that have a RETURNING clause, you can place OUT bind 
arguments in the RETURNING INTO clause without specifying the parameter mode, 
which, by definition, is OUT. If you use both the USING clause and the RETURNING 
INTO clause, the USING clause can contain only IN arguments.

At run time, bind arguments or define variables replace corresponding placeholders in 
the dynamic SQL statement. Every placeholder must be associated with a bind 
argument in the USING clause or RETURNING INTO clause (or both) or with a define 
variable in the INTO clause.

The value a of bind argument cannot be a Boolean literal (TRUE, FALSE, or NULL). To 
pass the value NULL to the dynamic SQL statement, see Uninitialized Variable for 
NULL in USING Clause on page 7-4.

Examples
■ Example 5–52, "Using the RETURNING INTO Clause with a Record" on page 5-37

■ Example 6–1, "Data Manipulation with PL/SQL" on page 6-1



RETURNING INTO Clause

13-104 Oracle Database PL/SQL Language Reference

■ Example 12–15, "Using BULK COLLECT with the RETURNING INTO Clause" on 
page 12-21

■ Example 12–16, "Using FORALL with BULK COLLECT" on page 12-21

Related Topics
■ EXECUTE IMMEDIATE Statement on page 13-42

■ SELECT INTO Statement on page 13-107

■ Using the EXECUTE IMMEDIATE Statement on page 7-2



%ROWTYPE Attribute

PL/SQL Language Elements 13-105

%ROWTYPE Attribute

The %ROWTYPE attribute lets you declare a record that represents a row in a table or 
view. For each column in the referenced table or view, the record has a field with the 
same name and data type. To reference a field in the record, use record_
name.field_name. The record fields do not inherit the constraints or default values 
of the corresponding columns.

If the referenced item table or view changes, your declaration is automatically 
updated. You need not change your code when, for example, columns are added or 
dropped from the table or view.

Syntax

%rowtype_attribute ::=

Keyword and Parameter Descriptions

cursor_name
An explicit cursor previously declared within the current scope.

cursor_variable_name
A PL/SQL strongly typed cursor variable, previously declared within the current 
scope.

table_name
A database table or view that must be accessible when the declaration is elaborated. 

Examples
■ Example 1–6, "Using %ROWTYPE with an Explicit Cursor" on page 1-10

■ Example 2–14, "Using %ROWTYPE to Declare a Record that Represents a Table 
Row" on page 2-15

■ Example 2–15, "Declaring a Record that Represents a Subset of Table Columns" on 
page 2-15

■ Example 2–16, "Declaring a Record that Represents a Row from a Join" on 
page 2-16

■ Example 2–17, "Assigning One Record to Another, Correctly and Incorrectly" on 
page 2-16

■ Example 2–18, "Using SELECT INTO for Aggregate Assignment" on page 2-17

■ Example 3–15, "Column Constraints Inherited by Subtypes" on page 3-27

■ Example 5–7, "Specifying Collection Element Types with %TYPE and 
%ROWTYPE" on page 5-9

cursor_name

cursor_variable_name

table_name

% ROWTYPE



%ROWTYPE Attribute

13-106 Oracle Database PL/SQL Language Reference

■ Example 5–20, "Assigning Values to VARRAYs with Complex Data Types" on 
page 5-15

■ Example 5–42, "Declaring and Initializing Record Types" on page 5-31

■ Example 6–24, "Cursor Variable Returning a %ROWTYPE Variable" on page 6-24

■ Example 6–25, "Using the %ROWTYPE Attribute to Provide the Data Type" on 
page 6-24

Related Topics
■ Constant on page 13-28

■ Cursor Variable Declaration on page 13-34

■ Explicit Cursor on page 13-47

■ FETCH Statement on page 13-60

■ Using the %ROWTYPE Attribute on page 2-15



SELECT INTO Statement

PL/SQL Language Elements 13-107

SELECT INTO Statement

The SELECT INTO statement retrieves values from one or more database tables (as the 
SQL SELECT statement does) and stores them in either variables or a record (which 
the SQL SELECT statement does not do). 

By default, the SELECT INTO statement retrieves one or more columns from a single 
row. With the BULK COLLECT INTO clause, this statement retrieves an entire result set 
at once.

Syntax

select_into_statement ::=

SELECT

DISTINCT

UNIQUE

ALL
*

select_item
,

BULK COLLECT
INTO

variable_name
,

record_name

FROM

table_reference

THE
( subquery )

alias
rest_of_statement ;



SELECT INTO Statement

13-108 Oracle Database PL/SQL Language Reference

select_item ::=

table_reference ::=

Keyword and Parameter Descriptions

alias
Another (usually short) name for the referenced column, table, or view. 

BULK COLLECT INTO
Stores result values in one or more collections, for faster queries than loops with 
FETCH statements. For more information, see Reducing Loop Overhead for DML 
Statements and Queries with Bulk SQL on page 12-9.

collection_name
A declared collection into which select_item values are fetched. For each select_
item, there must be a corresponding, type-compatible collection in the list.

function_name
A user-defined function. 

function_name
( parameter_name )

,

NULL

numeric_literal

schema_name . table_name

view_name
. *

schema_name . table_name

view_name
.

column_name

sequence_name .
CURRVAL

NEXTVAL

’ text ’

AS
alias

schema . table_name

view_name

PARTITION ( partition )

SUBPARTITION ( subpartition )

@ dblink



SELECT INTO Statement

PL/SQL Language Elements 13-109

host_array_name
An array (declared in a PL/SQL host environment and passed to PL/SQL as a bind 
argument) into which select_item values are fetched. For each select_item, 
there must be a corresponding, type-compatible array in the list. Host arrays must be 
prefixed with a colon. 

numeric_literal
A literal that represents a number or a value implicitly convertible to a number. 

parameter_name
A formal parameter of a user-defined function. 

record_name
A user-defined or %ROWTYPE record into which rows of values are fetched. For each 
select_item value returned by the query, there must be a corresponding, 
type-compatible field in the record. 

rest_of_statement
Anything that can follow the FROM clause in a SQL SELECT statement (except the 
SAMPLE clause). 

schema_name
The schema containing the table or view. If you omit schema_name, the database 
assumes the table or view is in your schema.

subquery
A SELECT statement that provides a set of rows for processing. Its syntax is similar to 
that of select_into_statement without the INTO clause.

table_reference
A table or view that must be accessible when you execute the SELECT statement, and 
for which you must have SELECT privileges.

TABLE (subquery2)
The operand of TABLE is a SELECT statement that returns a single column value, 
which must be a nested table or a varray. Operator TABLE informs the database that 
the value is a collection, not a scalar value.

variable_name
A previously declared variable into which a select_item value is fetched. For each 
select_item value returned by the query, there must be a corresponding, 
type-compatible variable in the list. 

view_name
The name of a database view.

Usage Notes
By default, a SELECT INTO statement must return only one row. Otherwise, PL/SQL 
raises the predefined exception TOO_MANY_ROWS and the values of the variables in the 



SELECT INTO Statement

13-110 Oracle Database PL/SQL Language Reference

INTO clause are undefined. Make sure your WHERE clause is specific enough to only 
match one row

If no rows are returned, PL/SQL raises NO_DATA_FOUND. You can guard against this 
exception by selecting the result of the aggregate function COUNT(*), which returns a 
single value, even if no rows match the condition.

A SELECT BULK COLLECT INTO statement can return multiple rows. You must set up 
collection variables to hold the results. You can declare associative arrays or nested 
tables that grow as needed to hold the entire result set.

The implicit cursor SQL and its attributes %NOTFOUND, %FOUND, %ROWCOUNT, and 
%ISOPEN provide information about the execution of a SELECT INTO statement.

Examples
■ Example 1–4, "Using SELECT INTO to Assign Values to Variables" on page 1-8

■ Example 1–5, "Assigning Values to Variables as Parameters of a Subprogram" on 
page 1-8

■ Example 1–12, "Using WHILE-LOOP for Control" on page 1-15

■ Example 5–51, "Updating a Row Using a Record" on page 5-37

■ Example 5–52, "Using the RETURNING INTO Clause with a Record" on page 5-37

■ Example 6–5, "Using CURRVAL and NEXTVAL" on page 6-4

■ Example 6–37, "Using ROLLBACK" on page 6-34

■ Example 6–38, "Using SAVEPOINT with ROLLBACK" on page 6-35

■ Example 6–43, "Declaring an Autonomous Function in a Package" on page 6-42

■ Example 7–13, "Using Validation Checks to Guard Against SQL Injection" on 
page 7-16

Related Topics
■ Assignment Statement on page 13-3

■ FETCH Statement on page 13-60

■ %ROWTYPE Attribute on page 13-105

■ Selecting At Most One Row (SELECT INTO Statement) on page 6-16

See Also: Oracle Database SQL Language Reference for information 
about the SQL SELECT statement



SERIALLY_REUSABLE Pragma

PL/SQL Language Elements 13-111

SERIALLY_REUSABLE Pragma

The SERIALLY_REUSABLE pragma indicates that the package state is needed only for 
the duration of one call to the server (for example, an OCI call to the database or a 
stored procedure call through a database link). After this call, the storage for the 
package variables can be reused, reducing the memory overhead for long-running 
sessions. 

This pragma is appropriate for packages that declare large temporary work areas that 
are used only once in the same session.

Syntax

serially_resuable_pragma ::=

Keyword and Parameter Descriptions

PRAGMA
Signifies that the statement is a pragma (compiler directive). Pragmas are processed at 
compile time, not at run time. They pass information to the compiler.

SERIALLY_REUSABLE
The global memory for serially reusable packages is pooled in the System Global Area 
(SGA), not allocated to individual users in the User Global Area (UGA). That way, the 
package work area can be reused. When the call to the server ends, the memory is 
returned to the pool. Each time the package is reused, its public variables are 
initialized to their default values or to NULL.

Serially reusable packages cannot be accessed from database triggers or other PL/SQL 
subprograms that are called from SQL statements. If you try, the database generates an 
error.

Usage Notes
A SERIALLY_REUSABLE pragma can appear in the specification of a bodiless 
package, or in both the specification and body of a package. The pragma cannot 
appear only in the body of a package.

Examples
Example 13–5 creates a serially reusable package.

Example 13–5 Creating a Serially Reusable Package

CREATE PACKAGE pkg1 IS
   PRAGMA SERIALLY_REUSABLE;
   num NUMBER := 0;
   PROCEDURE init_pkg_state(n NUMBER);
   PROCEDURE print_pkg_state;
END pkg1;
/
CREATE PACKAGE BODY pkg1 IS

PRAGMA SERIALLY_REUSABLE ;



SERIALLY_REUSABLE Pragma

13-112 Oracle Database PL/SQL Language Reference

   PRAGMA SERIALLY_REUSABLE;
   PROCEDURE init_pkg_state (n NUMBER) IS
   BEGIN
      pkg1.num := n;
   END;
   PROCEDURE print_pkg_state IS
   BEGIN
      DBMS_OUTPUT.PUT_LINE('Num: ' || pkg1.num);
   END;
END pkg1;
/

Related Topics
■ AUTONOMOUS_TRANSACTION Pragma on page 13-6

■ EXCEPTION_INIT Pragma on page 13-38

■ INLINE Pragma on page 13-73

■ RESTRICT_REFERENCES Pragma on page 13-98

See Also: Oracle Database Advanced Application Developer's Guide for 
more information about serially reusable PL/SQL packages



SQL (Implicit) Cursor Attribute

PL/SQL Language Elements 13-113

SQL (Implicit) Cursor Attribute

A SQL (implicit) cursor is opened by the database to process each SQL statement that 
is not associated with an explicit cursor. Every SQL (implicit) cursor has six attributes, 
each of which returns useful information about the execution of a data manipulation 
statement.

Syntax

sql_cursor ::=

Keyword and Parameter Descriptions

%BULK_ROWCOUNT
A composite attribute designed for use with the FORALL statement. This attribute acts 
like an index-by table. Its ith element stores the number of rows processed by the ith 
execution of an UPDATE or DELETE statement. If the ith execution affects no rows, 
%BULK_ROWCOUNT(i) returns zero.

%BULK_EXCEPTIONS
An associative array that stores information about any exceptions encountered by a 
FORALL statement that uses the SAVE EXCEPTIONS clause. You must loop through its 
elements to determine where the exceptions occurred and what they were. For each 
index value i between 1 and SQL%BULK_EXCEPTIONS.COUNT, SQL%BULK_
EXCEPTIONS(i).ERROR_INDEX specifies which iteration of the FORALL loop caused 
an exception. SQL%BULK_EXCEPTIONS(i).ERROR_CODE specifies the Oracle 
Database error code that corresponds to the exception.

%FOUND
Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or more rows 
or a SELECT INTO statement returned one or more rows. Otherwise, it returns FALSE.

%ISOPEN
Always returns FALSE, because the database closes the SQL cursor automatically after 
executing its associated SQL statement.

SQL %

FOUND

ISOPEN

NOTFOUND

ROWCOUNT

BULK_ROWCOUNT ( index )

BULK_EXCEPTIONS ( index ) .
ERROR_INDEX

ERROR_CODE



SQL (Implicit) Cursor Attribute

13-114 Oracle Database PL/SQL Language Reference

%NOTFOUND
The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or DELETE 
statement affected no rows, or a SELECT INTO statement returned no rows. Otherwise, 
it returns FALSE. 

%ROWCOUNT
Returns the number of rows affected by an INSERT, UPDATE, or DELETE statement, or 
returned by a SELECT INTO statement.

SQL
The name of the implicit cursor.

Usage Notes
You can use cursor attributes in procedural statements but not in SQL statements. 
Before the database opens the SQL cursor automatically, the implicit cursor attributes 
return NULL. The values of cursor attributes always refer to the most recently executed 
SQL statement, wherever that statement appears. It might be in a different scope. If 
you want to save an attribute value for later use, assign it to a variable immediately.

If a SELECT INTO statement fails to return a row, PL/SQL raises the predefined 
exception NO_DATA_FOUND, whether you check SQL%NOTFOUND on the next line or 
not. A SELECT INTO statement that invokes a SQL aggregate function never raises 
NO_DATA_FOUND, because those functions always return a value or a NULL. In such 
cases, SQL%NOTFOUND returns FALSE. %BULK_ROWCOUNT is not maintained for bulk 
inserts because a typical insert affects only one row. See Counting Rows Affected by 
FORALL (%BULK_ROWCOUNT Attribute) on page 12-14.

You can use the scalar attributes %FOUND, %NOTFOUND, and %ROWCOUNT with bulk 
binds. For example, %ROWCOUNT returns the total number of rows processed by all 
executions of the SQL statement. Although %FOUND and %NOTFOUND refer only to the 
last execution of the SQL statement, you can use %BULK_ROWCOUNT to deduce their 
values for individual executions. For example, when %BULK_ROWCOUNT(i) is zero, 
%FOUND and %NOTFOUND are FALSE and TRUE, respectively. 

Examples
■ Example 6–7, "Using SQL%FOUND" on page 6-8

■ Example 6–8, "Using SQL%ROWCOUNT" on page 6-8

■ Example 6–10, "Fetching with a Cursor" on page 6-11

■ Example 6–14, "Using %FOUND" on page 6-14

■ Example 6–15, "Using %ISOPEN" on page 6-14

■ Example 6–16, "Using %NOTFOUND" on page 6-14

■ Example 6–17, "Using %ROWCOUNT" on page 6-15

■ Example 12–7, "Using %BULK_ROWCOUNT with the FORALL Statement" on 
page 12-14

Related Topics
■ Explicit Cursor on page 13-47

■ Cursor Attribute on page 13-32

■ FORALL Statement on page 13-63



SQL (Implicit) Cursor Attribute

PL/SQL Language Elements 13-115

■ Attributes of SQL Cursors on page 6-8

■ Querying Data with PL/SQL on page 6-16



SQLCODE Function

13-116 Oracle Database PL/SQL Language Reference

SQLCODE Function

In an exception handler, the SQLCODE function returns the numeric code of the 
exception being handled. (Outside an exception handler, SQLCODE returns 0.)

For an exception that the database raises, the numeric code is the number of the 
associated Oracle Database error. This number is negative except for the error "no data 
found", whose numeric code is +100.

For a user-defined exception, the numeric code is  either +1 (the default) or the Oracle 
Database error number associated with the exception by the EXCEPTION_INIT 
pragma.

A SQL statement cannot invoke SQLCODE. To use the value of SQLCODE in a SQL 
statement, assign it to a local variable first.

If a function invokes SQLCODE, and you use the RESTRICT_REFERENCES pragma to 
assert its purity, you cannot specify the constraints WNPS and RNPS.

Syntax

sqlcode_function ::=

Examples
■ Example 11–11, "Displaying SQLCODE and SQLERRM" on page 11-15

Related Topics
■ Block on page 13-8

■ EXCEPTION_INIT Pragma on page 13-38

■ Exception Handler on page 13-40

■ RESTRICT_REFERENCES Pragma on page 13-98

■ SQLERRM Function on page 13-117

■ Associating a PL/SQL Exception with a Number (EXCEPTION_INIT Pragma) on 
page 11-7

■ Retrieving the Error Code and Error Message on page 11-15

See Also: Oracle Database Error Messages for a list of Oracle Database 
error messages and information about them, including their numbers

SQLCODE



SQLERRM Function

PL/SQL Language Elements 13-117

SQLERRM Function

The SQLERRM function returns the error message associated with an error number.

You cannot use SQLERRM directly in a SQL statement. Assign the value of SQLERRM to 
a local variable first.

If a function invokes SQLERRM, and you use the RESTRICT_REFERENCES pragma to 
assert its purity, you cannot specify the constraints WNPS and RNPS.

Syntax

sqlerrm_function ::=

Keyword and Parameter Descriptions

error_number
An expression whose value is an Oracle Database error number. For a list of Oracle 
Database error numbers, see Oracle Database Error Messages.

The default error number is the one associated with the current value of SQLCODE. 
Like SQLCODE, SQLERRM without error_number is useful only in an exception 
handler. Outside an exception handler, or if the value of error_number is zero, 
SQLERRM returns ORA-0000.

If the value of error_number is +100, SQLERRM returns ORA-01403.

If the value of error_number is a positive number other than +100, SQLERRM returns 
this message:

-error_number: non-ORACLE exception

If the value of error_number is a negative number whose absolute value is an Oracle 
Database error number, SQLERRM returns the error message associated with that error 
number. For example:

SQL> BEGIN
  2    DBMS_OUTPUT.PUT_LINE('SQLERRM(-6511): ' || TO_CHAR(SQLERRM(-6511)));
  3  END;
  4  /
SQLERRM(-6511): ORA-06511: PL/SQL: cursor already open
 
PL/SQL procedure successfully completed.
 
SQL> 

Note: DBMS_UTILTY.FORMAT_ERROR_STACK is recommended over 
SQLERRM, except when using the FORALL statement with its SAVE 
EXCEPTIONS clause. For more information, see Retrieving the Error 
Code and Error Message on page 11-15.

SQLERRM
( error_number )



SQLERRM Function

13-118 Oracle Database PL/SQL Language Reference

If the value of error_number is a negative number whose absolute value is not an 
Oracle Database error number, SQLERRM returns this message:

ORA-error_number: Message error_number not found;  product=RDBMS;
facility=ORA

For example:

SQL> BEGIN
  2    DBMS_OUTPUT.PUT_LINE('SQLERRM(-50000): ' || TO_CHAR(SQLERRM(-50000)));
  3  END;
  4  /
SQLERRM(-50000): ORA-50000: Message 50000 not found;  product=RDBMS;
facility=ORA
 
PL/SQL procedure successfully completed.
 
SQL> 

Examples
■ Example 11–11, "Displaying SQLCODE and SQLERRM" on page 11-15

■ Example 12–9, "Bulk Operation that Continues Despite Exceptions" on page 12-16

Related Topics
■ Block on page 13-8

■ EXCEPTION_INIT Pragma on page 13-38

■ RESTRICT_REFERENCES Pragma on page 13-98

■ SQLCODE Function on page 13-116

■ Retrieving the Error Code and Error Message on page 11-15

See Also: Oracle Database Error Messages for a list of Oracle Database 
error messages and information about them



%TYPE Attribute

PL/SQL Language Elements 13-119

%TYPE Attribute

The %TYPE attribute lets you declare a constant, variable, field, or parameter to be of 
the same data type a previously declared variable, field, record, nested table, or 
database column. If the referenced item changes, your declaration is automatically 
updated.

An item declared with %TYPE (the referencing item) always inherits the data type of 
the referenced item. The referencing item inherits the constraints only if the referenced 
item is not a database column. The referencing item inherits the default value only if 
the referencing item is not a database column and does not have the NOT NULL 
constraint.

Syntax

%type_attribute ::=

Keyword and Parameter Descriptions

collection_name
A nested table, index-by table, or varray previously declared within the current scope.

cursor_variable_name
A PL/SQL cursor variable previously declared within the current scope. Only the 
value of another cursor variable can be assigned to a cursor variable.

db_table_name.column_name
A table and column that must be accessible when the declaration is elaborated.

object_name
An instance of an object type, previously declared within the current scope.

record_name
A user-defined or %ROWTYPE record, previously declared within the current scope.

record_name.field_name
A field in a user-defined or %ROWTYPE record, previously declared within the current 
scope.

collection_name

cursor_variable_name

object name

record_name
. field_name

db_table_name . column_name

variable_name

% TYPE



%TYPE Attribute

13-120 Oracle Database PL/SQL Language Reference

variable_name
A variable, previously declared in the same scope.

Examples
■ Example 1–7, "Using a PL/SQL Collection Type" on page 1-11

■ Example 2–10, "Using %TYPE to Declare Variables of the Types of Other Variables" 
on page 2-13

■ Example 2–11, "Using %TYPE Incorrectly with NOT NULL Referenced Type" on 
page 2-13

■ Example 2–12, "Using %TYPE Correctly with NOT NULL Referenced Type" on 
page 2-13

■ Example 2–13, "Using %TYPE to Declare Variables of the Types of Table Columns" 
on page 2-14

■ Example 2–23, "Using a Subprogram Name for Name Resolution" on page 2-21

■ Example 2–17, "Assigning One Record to Another, Correctly and Incorrectly" on 
page 2-16

■ Example 3–15, "Column Constraints Inherited by Subtypes" on page 3-27

■ Example 5–5, "Declaring a Procedure Parameter as a Nested Table" on page 5-9

■ Example 5–7, "Specifying Collection Element Types with %TYPE and 
%ROWTYPE" on page 5-9

■ Example 5–42, "Declaring and Initializing Record Types" on page 5-31

■ Example 6–1, "Data Manipulation with PL/SQL" on page 6-1

■ Example 6–13, "Fetching Bulk Data with a Cursor" on page 6-12

Related Topics
■ Constant on page 13-28

■ %ROWTYPE Attribute on page 13-105

■ Variable on page 13-121

■ Using the %TYPE Attribute on page 2-12

■ Constraints and Default Values with Subtypes on page 3-26



Variable

PL/SQL Language Elements 13-121

Variable

A variable holds a value that can change.

A variable declaration specifies its name, data type, and value, and allocates storage 
for it. The declaration can also assign an initial value and impose the NOT NULL 
constraint.

Syntax

variable_declaration ::=

(expression ::= on page 13-51)

datatype ::=

Keyword and Parameter Descriptions

collection_name
A collection (associative array, nested table, or varray) previously declared within the 
current scope.

collection_type_name
A user-defined collection type defined using the data type specifier TABLE or VARRAY. 

variable_name datatype

NOT NULL :=

DEFAULT
expression

;

collection_name % TYPE

collection_type_name

cursor_name % ROWTYPE

cursor_variable_name % TYPE

db_table_name
% ROWTYPE

. column_name % TYPE

object_name % TYPE

REF
object_type_name

record_name % TYPE

record_type_name

ref_cursor_type_name

scalar_datatype_name

variable_name % TYPE



Variable

13-122 Oracle Database PL/SQL Language Reference

cursor_name
An explicit cursor previously declared within the current scope.

cursor_variable_name
A PL/SQL cursor variable previously declared within the current scope.

db_table_name
A database table or view that must be accessible when the declaration is elaborated. 

db_table_name.column_name
A database table and column that must be accessible when the declaration is 
elaborated.

expression
The value to be assigned to the variable when the declaration is elaborated. The value 
of expression must be of a data type that is compatible with the data type of the 
variable.

NOT NULL
A constraint that prevents the program from assigning a null value to the variable. 
Assigning a null to a variable defined as NOT NULL raises the predefined exception 
VALUE_ERROR.

object_name
An instance of an object type previously declared within the current scope.

record_name
A user-defined or %ROWTYPE record previously declared within the current scope.

record_name.field_name
A field in a user-defined or %ROWTYPE record previously declared within the current 
scope. 

record_type_name
A user-defined record type that is defined using the data type specifier RECORD.

ref_cursor_type_name
A user-defined cursor variable type, defined using the data type specifier REF 
CURSOR.

%ROWTYPE
Represents a record that can hold a row from a database table or a cursor. Fields in the 
record have the same names and data types as columns in the row.

scalar_datatype_name
A predefined scalar data type such as BOOLEAN, NUMBER, or VARCHAR2. Includes any 
qualifiers for size, precision, and character or byte semantics.



Variable

PL/SQL Language Elements 13-123

%TYPE
Represents the data type of a previously declared collection, cursor variable, field, 
object, record, database column, or variable.

variable_name
The name of the variable. For naming conventions, see Identifiers on page 2-4.

Usage Notes
Variables are initialized every time a block or subprogram is entered. By default, 
variables are initialized to NULL. Whether public or private, variables declared in a 
package specification are initialized only once for each session.

An initialization clause is required when declaring NOT NULL variables. If you use 
%ROWTYPE to declare a variable, initialization is not allowed.

Examples
■ Example 1–2, "PL/SQL Variable Declarations" on page 1-7

■ Example 1–3, "Assigning Values to Variables with the Assignment Operator" on 
page 1-7

■ Example 1–4, "Using SELECT INTO to Assign Values to Variables" on page 1-8

■ Example 2–15, "Declaring a Record that Represents a Subset of Table Columns" on 
page 2-15

Related Topics
■ Assignment Statement on page 13-3

■ Collection on page 13-19

■ Expression on page 13-51

■ %ROWTYPE Attribute on page 13-105

■ %TYPE Attribute on page 13-119

■ Declaring PL/SQL Variables on page 1-6

■ Declarations on page 2-10

■ Predefined PL/SQL Scalar Data Types and Subtypes on page 3-1



Variable

13-124 Oracle Database PL/SQL Language Reference



14

SQL Statements for Stored PL/SQL Units 14-1

14 SQL Statements for Stored PL/SQL Units

This chapter explains how to use the SQL statements that create, change, and drop 
stored PL/SQL units.

For instructions for reading the syntax diagrams in this chapter, see Oracle Database 
SQL Language Reference.

CREATE [OR REPLACE] Statements
Each of the following SQL statements creates a PL/SQL unit and stores it in the 
database:

■ CREATE FUNCTION Statement

■ CREATE PACKAGE Statement

■ CREATE PACKAGE BODY Statement

■ CREATE PROCEDURE Statement

■ CREATE TRIGGER Statement

■ CREATE TYPE Statement

■ CREATE TYPE BODY Statement

Each of these CREATE statements has an optional OR REPLACE clause. Specify OR 
REPLACE to re-create an existing PL/SQL unit—that is, to change its declaration or 
definition without dropping it, re-creating it, and regranting object privileges 
previously granted on it. If you redefine a PL/SQL unit, the database recompiles it. 

None of these CREATE statements can appear in a PL/SQL block.

ALTER Statements
If you want to recompile an existing PL/SQL unit without re-creating it (without 
changing its declaration or definition), use one of the following SQL statements:

■ ALTER FUNCTION Statement

■ ALTER PACKAGE Statement

■ ALTER PROCEDURE Statement

■ ALTER TRIGGER Statement

■ ALTER TYPE Statement

Two reasons to use an ALTER statement are:



14-2 Oracle Database PL/SQL Language Reference

■ To explicitly recompile a stored unit that has become invalid, thus eliminating the 
need for implicit run-time recompilation and preventing associated run-time 
compilation errors and performance overhead.

■ To recompile a unit with different compilation parameters.

For information about compilation parameters, see PL/SQL Units and 
Compilation Parameters on page 1-25.

The ALTER TYPE statement has additional uses. For details, see ALTER TYPE 
Statement on page 14-14.

DROP Statements
To drop an existing PL/SQL unit from the database, use one of the following SQL 
statements:

■ DROP FUNCTION Statement

■ DROP PACKAGE Statement

■ DROP PROCEDURE Statement

■ DROP TRIGGER Statement

■ DROP TYPE Statement

■ DROP TYPE BODY Statement



ALTER FUNCTION Statement

SQL Statements for Stored PL/SQL Units 14-3

ALTER FUNCTION Statement 

The ALTER FUNCTION statement explicitly recompiles an invalid standalone stored 
function. Explicit recompilation eliminates the need for implicit run-time 
recompilation and prevents associated run-time compilation errors and performance 
overhead.

Prerequisites
The function must be in your own schema or you must have ALTER ANY PROCEDURE 
system privilege. 

Syntax

alter_function::=

compiler_parameters_clause::=

Keyword and Parameter Descriptions

schema
Specify the schema containing the function. If you omit schema, then the database 
assumes the function is in your own schema. 

function
Specify the name of the function to be recompiled. 

COMPILE 
Specify COMPILE to cause the database to recompile the function. The COMPILE 
keyword is required. If the database does not compile the function successfully, then 
you can see the associated compiler error messages with the SQL*Plus command SHOW 
ERRORS.

During recompilation, the database drops all persistent compiler switch settings, 
retrieves them again from the session, and stores them at the end of compilation. To 
avoid this process, specify the REUSE SETTINGS clause.

Note: This statement does not change the declaration or definition of 
an existing function. To redeclare or redefine a standalone stored 
function, use the CREATE FUNCTION Statement on page 14-27 with 
the OR REPLACE clause.

ALTER FUNCTION
schema .

function

C0MPILE
DEBUG compiler_parameters_clause REUSE SETTINGS

;

parameter_name = parameter_value



ALTER FUNCTION Statement

14-4 Oracle Database PL/SQL Language Reference

DEBUG
Specify DEBUG to instruct the PL/SQL compiler to generate and store the code for use 
by the PL/SQL debugger. Specifying this clause has the same effect as specifying 
PLSQL_DEBUG = TRUE in the compiler_parameters_clause.

compiler_parameters_clause 
Use this clause to specify a value for one of the PL/SQL persistent compiler 
parameters. The value of these initialization parameters at the time of compilation is 
stored with the unit's metadata. You can learn the value of such a parameter by 
querying the appropriate *_PLSQL_OBJECT_SETTINGS view. The PL/SQL persistent 
parameters are PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG, 
PLSQL_WARNINGS, PLSQL_CCFLAGS, and NLS_LENGTH_SEMANTICS. 

You can specify each parameter only once in each statement. Each setting is valid only 
for the current library unit being compiled and does not affect other compilations in 
this session or system. To affect the entire session or system, you must set a value for 
the parameter using the ALTER SESSION or ALTER SYSTEM statement.

If you omit any parameter from this clause and you specify REUSE SETTINGS, then if 
a value was specified for the parameter in an earlier compilation of this library unit, 
the database uses that earlier value. If you omit any parameter and either you do not 
specify REUSE SETTINGS or no value has been specified for the parameter in an 
earlier compilation, then the database obtains the value for that parameter from the 
session environment.

Restriction on the compiler_parameters_clause You cannot set a value for the 
PLSQL_DEBUG parameter if you also specify DEBUG, because both clauses set the 
PLSQL_DEBUG parameter, and you can specify a value for each parameter only once.

REUSE SETTINGS 
Specify REUSE SETTINGS to prevent Oracle from dropping and reacquiring compiler 
switch settings. With this clause, Oracle preserves the existing settings and uses them 
for the recompilation of any parameters for which values are not specified elsewhere 
in this statement.

For backward compatibility, the database sets the persistently stored value of the 
PLSQL_COMPILER_FLAGS initialization parameter to reflect the values of the PLSQL_
CODE_TYPE and PLSQL_DEBUG parameters that result from this statement.

See Also:

■ Oracle Database Reference for the valid values and semantics of each 
of these parameters

■ Conditional Compilation on page 2-48 for more information about 
compilation parameters

See Also:

■ Oracle Database Reference for the valid values and semantics of each 
of these parameters

■ Conditional Compilation on page 2-48 for more information about 
compilation parameters



ALTER FUNCTION Statement

SQL Statements for Stored PL/SQL Units 14-5

Example

Recompiling a Function: Example To explicitly recompile the function get_bal 
owned by the sample user oe, issue the following statement:

ALTER FUNCTION oe.get_bal
   COMPILE; 

If the database encounters no compilation errors while recompiling get_bal, then 
get_bal becomes valid. the database can subsequently execute it without 
recompiling it at run time. If recompiling get_bal results in compilation errors, then 
the database returns an error, and get_bal remains invalid. 

the database also invalidates all objects that depend upon get_bal. If you 
subsequently reference one of these objects without explicitly recompiling it first, then 
the database recompiles it implicitly at run time. 

Related Topics
■ CREATE FUNCTION Statement on page 14-27

■ DROP FUNCTION Statement on page 14-82



ALTER PACKAGE Statement

14-6 Oracle Database PL/SQL Language Reference

ALTER PACKAGE Statement 

The ALTER PACKAGE statement explicitly recompiles a package specification, body, or 
both. Explicit recompilation eliminates the need for implicit run-time recompilation 
and prevents associated run-time compilation errors and performance overhead.

Because all objects in a package are stored as a unit, the ALTER PACKAGE statement 
recompiles all package objects together. You cannot use the ALTER PROCEDURE 
statement or ALTER FUNCTION statement to recompile individually a procedure or 
function that is part of a package.

Prerequisites 
For you to modify a package, the package must be in your own schema or you must 
have ALTER ANY PROCEDURE system privilege. 

Syntax 

alter_package::=

compiler_parameters_clause::=

Keyword and Parameter Descriptions

schema
Specify the schema containing the package. If you omit schema, then the database 
assumes the package is in your own schema. 

Note: This statement does not change the declaration or definition of 
an existing package. To redeclare or redefine a package, use the 
CREATE PACKAGE Statement on page 14-36, or the CREATE 
PACKAGE BODY Statement on page 14-39 with the OR REPLACE 
clause.

ALTER PACKAGE
schema .

package

COMPILE
DEBUG

PACKAGE

SPECIFICATION

BODY

compiler_parameters_clause REUSE SETTINGS
;

parameter_name = parameter_value



ALTER PACKAGE Statement

SQL Statements for Stored PL/SQL Units 14-7

package
Specify the name of the package to be recompiled. 

COMPILE
You must specify COMPILE to recompile the package specification or body. The 
COMPILE keyword is required. 

During recompilation, the database drops all persistent compiler switch settings, 
retrieves them again from the session, and stores them at the end of compilation. To 
avoid this process, specify the REUSE SETTINGS clause.

If recompiling the package results in compilation errors, then the database returns an 
error and the body remains invalid. You can see the associated compiler error 
messages with the SQL*Plus command SHOW ERRORS.

SPECIFICATION
Specify SPECIFICATION to recompile only the package specification, regardless of 
whether it is invalid. You might want to recompile a package specification to check for 
compilation errors after modifying the specification. 

When you recompile a package specification, the database invalidates any local objects 
that depend on the specification, such as procedures that call procedures or functions 
in the package. The body of a package also depends on its specification. If you 
subsequently reference one of these dependent objects without first explicitly 
recompiling it, then the database recompiles it implicitly at run time. 

BODY
Specify BODY to recompile only the package body regardless of whether it is invalid. 
You might want to recompile a package body after modifying it. Recompiling a 
package body does not invalidate objects that depend upon the package specification.

When you recompile a package body, the database first recompiles the objects on 
which the body depends, if any of those objects are invalid. If the database recompiles 
the body successfully, then the body becomes valid.

PACKAGE
Specify PACKAGE to recompile both the package specification and the package body if 
one exists, regardless of whether they are invalid. This is the default. The 
recompilation of the package specification and body lead to the invalidation and 
recompilation of dependent objects as described for SPECIFICATION and BODY.

DEBUG
Specify DEBUG to instruct the PL/SQL compiler to generate and store the code for use 
by the PL/SQL debugger. Specifying this clause has the same effect as specifying 
PLSQL_DEBUG = TRUE in the compiler_parameters_clause.

compiler_parameters_clause
This clause has the same behavior for a package as it does for a function. See the 
ALTER FUNCTION compiler_parameters_clause on page 14-4.

See Also: Recompiling a Package: Examples on page 14-8

See Also: Oracle Database PL/SQL Packages and Types Reference for 
information about debugging packages



ALTER PACKAGE Statement

14-8 Oracle Database PL/SQL Language Reference

REUSE SETTINGS 
This clause has the same behavior for a package as it does for a function. See the 
ALTER FUNCTION clause REUSE SETTINGS on page 14-4.

Examples

Recompiling a Package: Examples This statement explicitly recompiles the 
specification and body of the hr.emp_mgmt package. See Creating a Package: 
Example on page 14-37 for the example that creates this package.

ALTER PACKAGE emp_mgmt
   COMPILE PACKAGE; 

If the database encounters no compilation errors while recompiling the emp_mgmt 
specification and body, then emp_mgmt becomes valid. The user hr can subsequently 
call or reference all package objects declared in the specification of emp_mgmt without 
run-time recompilation. If recompiling emp_mgmt results in compilation errors, then 
the database returns an error and emp_mgmt remains invalid. 

the database also invalidates all objects that depend upon emp_mgmt. If you 
subsequently reference one of these objects without explicitly recompiling it first, then 
the database recompiles it implicitly at run time. 

To recompile the body of the emp_mgmt package in the schema hr, issue the following 
statement:

ALTER PACKAGE hr.emp_mgmt 
   COMPILE BODY; 

If the database encounters no compilation errors while recompiling the package body, 
then the body becomes valid. The user hr can subsequently call or reference all 
package objects declared in the specification of emp_mgmt without run-time 
recompilation. If recompiling the body results in compilation errors, then the database 
returns an error message and the body remains invalid. 

Because this statement recompiles the body and not the specification of emp_mgmt, the 
database does not invalidate dependent objects. 

Related Topics
■ CREATE PACKAGE Statement on page 14-36

■ DROP PACKAGE Statement on page 14-84



ALTER PROCEDURE Statement

SQL Statements for Stored PL/SQL Units 14-9

ALTER PROCEDURE Statement 

The ALTER PROCEDURE statement explicitly recompiles a standalone stored procedure. 
Explicit recompilation eliminates the need for implicit run-time recompilation and 
prevents associated run-time compilation errors and performance overhead.

To recompile a procedure that is part of a package, recompile the entire package using 
the ALTER PACKAGE Statement on page 14-6).

The ALTER PROCEDURE statement is very similar to the ALTER FUNCTION statement. 
See ALTER FUNCTION Statement on page 14-3 for more information.

Prerequisites
The procedure must be in your own schema or you must have ALTER ANY PROCEDURE 
system privilege. 

Syntax

alter_procedure::=

compiler_parameters_clause::=

Keyword and Parameter Descriptions 

schema
Specify the schema containing the procedure. If you omit schema, then the database 
assumes the procedure is in your own schema. 

procedure
Specify the name of the procedure to be recompiled. 

COMPILE
Specify COMPILE to recompile the procedure. The COMPILE keyword is required. the 
database recompiles the procedure regardless of whether it is valid or invalid. 

Note: This statement does not change the declaration or definition of 
an existing procedure. To redeclare or redefine a standalone stored 
procedure, use the CREATE PROCEDURE Statement on page 14-42 
with the OR REPLACE clause.

ALTER PROCEDURE
schema .

procedure

COMPILE
DEBUG compiler_parameters_clause REUSE SETTINGS

;

parameter_name = parameter_value



ALTER PROCEDURE Statement

14-10 Oracle Database PL/SQL Language Reference

■ the database first recompiles objects upon which the procedure depends, if any of 
those objects are invalid. 

■ the database also invalidates any local objects that depend upon the procedure, 
such as procedures that call the recompiled procedure or package bodies that 
define procedures that call the recompiled procedure.

■  If the database recompiles the procedure successfully, then the procedure becomes 
valid. If recompiling the procedure results in compilation errors, then the database 
returns an error and the procedure remains invalid. You can see the associated 
compiler error messages with the SQL*Plus command SHOW ERRORS.

During recompilation, the database drops all persistent compiler switch settings, 
retrieves them again from the session, and stores them at the end of compilation. To 
avoid this process, specify the REUSE SETTINGS clause.

DEBUG
Specify DEBUG to instruct the PL/SQL compiler to generate and store the code for use 
by the PL/SQL debugger. Specifying this clause is the same as specifying PLSQL_
DEBUG = TRUE in the compiler_parameters_clause.

compiler_parameters_clause
This clause has the same behavior for a procedure as it does for a function. See the 
ALTER FUNCTION compiler_parameters_clause on page 14-4.

REUSE SETTINGS
This clause has the same behavior for a procedure as it does for a function. See the 
ALTER FUNCTION clause REUSE SETTINGS on page 14-4.

Example

Recompiling a Procedure: Example To explicitly recompile the procedure remove_
emp owned by the user hr, issue the following statement:

ALTER PROCEDURE hr.remove_emp
   COMPILE; 

If the database encounters no compilation errors while recompiling remove_emp, then 
remove_emp becomes valid. the database can subsequently execute it without 
recompiling it at run time. If recompiling remove_emp results in compilation errors, 
then the database returns an error and remove_emp remains invalid. 

the database also invalidates all dependent objects. These objects include any 
procedures, functions, and package bodies that call remove_emp. If you subsequently 
reference one of these objects without first explicitly recompiling it, then the database 
recompiles it implicitly at run time. 

Related Topics
■ CREATE PROCEDURE Statement on page 14-42

■ DROP PROCEDURE Statement on page 14-86

See Also: Recompiling a Procedure: Example on page 14-10

See Also: Oracle Database Advanced Application Developer's Guide for 
information about debugging procedures



ALTER TRIGGER Statement

SQL Statements for Stored PL/SQL Units 14-11

ALTER TRIGGER Statement 

The ALTER TRIGGER statement enables, disables, or compiles a database trigger. 

Prerequisites
The trigger must be in your own schema or you must have ALTER ANY TRIGGER 
system privilege. 

In addition, to alter a trigger on DATABASE, you must have the ADMINISTER database 
events system privilege. 

Syntax 

alter_trigger::=

compiler_parameters_clause::=

Keyword and Parameter Descriptions 

schema
Specify the schema containing the trigger. If you omit schema, then the database 
assumes the trigger is in your own schema. 

trigger
Specify the name of the trigger to be altered. 

Note: This statement does not change the declaration or definition of 
an existing trigger. To redeclare or redefine a trigger, use the CREATE 
TRIGGER Statement on page 14-47 with the OR REPLACE clause.

See Also: CREATE TRIGGER Statement on page 14-47 for more 
information about triggers based on DATABASE triggers

ALTER TRIGGER
schema .

trigger

ENABLE

DISABLE

RENAME TO new_name

COMPILE
DEBUG compiler_parameters_clause REUSE SETTINGS

;

parameter_name = parameter_value



ALTER TRIGGER Statement

14-12 Oracle Database PL/SQL Language Reference

ENABLE | DISABLE 
Specify ENABLE to enable the trigger. You can also use the ENABLE ALL TRIGGERS 
clause of ALTER TABLE to enable all triggers associated with a table. See the ALTER 
TABLE statement in Oracle Database SQL Language Reference.

Specify DISABLE to disable the trigger. You can also use the DISABLE ALL TRIGGERS 
clause of ALTER TABLE to disable all triggers associated with a table. 

RENAME Clause 
Specify RENAME TO new_name to rename the trigger. the database renames the trigger 
and leaves it in the same state it was in before being renamed.

When you rename a trigger, the database rebuilds the remembered source of the 
trigger in the USER_SOURCE, ALL_SOURCE, and DBA_SOURCE data dictionary views. 
As a result, comments and formatting may change in the TEXT column of those views 
even though the trigger source did not change.

COMPILE Clause 
Specify COMPILE to explicitly compile the trigger, whether it is valid or invalid. 
Explicit recompilation eliminates the need for implicit run-time recompilation and 
prevents associated run-time compilation errors and performance overhead. 

the database first recompiles objects upon which the trigger depends, if any of these 
objects are invalid. If the database recompiles the trigger successfully, then the trigger 
becomes valid. 

During recompilation, the database drops all persistent compiler switch settings, 
retrieves them again from the session, and stores them at the end of compilation. To 
avoid this process, specify the REUSE SETTINGS clause.

If recompiling the trigger results in compilation errors, then the database returns an 
error and the trigger remains invalid. You can see the associated compiler error 
messages with the SQL*Plus command SHOW ERRORS. 

DEBUG
Specify DEBUG to instruct the PL/SQL compiler to generate and store the code for use 
by the PL/SQL debugger. Specifying this clause has the same effect as specifying 
PLSQL_DEBUG = TRUE in the compiler_parameters_clause.

compiler_parameters_clause 
This clause has the same behavior for a trigger as it does for a function. See the ALTER 
FUNCTION compiler_parameters_clause on page 14-4.

REUSE SETTINGS
This clause has the same behavior for a trigger as it does for a function. See the ALTER 
FUNCTION clause REUSE SETTINGS on page 14-4.

See Also:

■ Enabling Triggers: Example on page 14-13

■ Disabling Triggers: Example on page 14-13

See Also: Oracle Database Advanced Application Developer's Guide for 
information about debugging a trigger using the same facilities 
available for stored subprograms



ALTER TRIGGER Statement

SQL Statements for Stored PL/SQL Units 14-13

Examples

Disabling Triggers: Example The sample schema hr has a trigger named update_
job_history created on the employees table. The trigger is fired whenever an 
UPDATE statement changes an employee's job_id. The trigger inserts into the job_
history table a row that contains the employee's ID, begin and end date of the last 
job, and the job ID and department. 

When this trigger is created, the database enables it automatically. You can 
subsequently disable the trigger with the following statement:

ALTER TRIGGER update_job_history DISABLE;
 
When the trigger is disabled, the database does not fire the trigger when an UPDATE 
statement changes an employee's job. 

Enabling Triggers: Example After disabling the trigger, you can subsequently enable 
it with the following statement:

ALTER TRIGGER update_job_history ENABLE; 

After you reenable the trigger, the database fires the trigger whenever an employee's 
job changes as a result of an UPDATE statement. If an employee's job is updated while 
the trigger is disabled, then the database does not automatically fire the trigger for this 
employee until another transaction changes the job_id again. 

Related Topics
■ CREATE TRIGGER Statement on page 14-47

■ DROP TRIGGER Statement on page 14-87



ALTER TYPE Statement

14-14 Oracle Database PL/SQL Language Reference

ALTER TYPE Statement 

The ALTER TYPE statement adds or drops member attributes or methods. You can 
change the existing properties (FINAL or INSTANTIABLE) of an object type, and you 
can modify the scalar attributes of the type.

You can also use this statement to recompile the specification or body of the type or to 
change the specification of an object type by adding new object member subprogram 
specifications.

Prerequisites
The object type must be in your own schema and you must have CREATE TYPE or 
CREATE ANY TYPE system privilege, or you must have ALTER ANY TYPE system 
privileges.

Syntax

alter_type::=

(compile_type_clause::= on page 14-14, replace_type_clause::= on page 14-15, alter_method_
spec::= on page 14-16, alter_attribute_definition::= on page 14-17, alter_collection_
clauses::= on page 14-17, dependent_handling_clause::= on page 14-17)

compile_type_clause::=

compiler_parameters_clause::=

ALTER TYPE
schema .

type

compile_type_clause

replace_type_clause

alter_method_spec

alter_attribute_definition

alter_collection_clauses

NOT INSTANTIABLE

FINAL

dependent_handling_clause

;

COMPILE
DEBUG

SPECIFICATION

BODY

compiler_parameters_clause REUSE SETTINGS

parameter_name = parameter_value



ALTER TYPE Statement

SQL Statements for Stored PL/SQL Units 14-15

replace_type_clause::=

invoker_rights_clause::=

element_spec::=

(inheritance_clauses::= on page 14-15, subprogram_spec::= on page 14-15, constructor_
spec::= on page 14-16, map_order_function_spec::= on page 14-16, pragma_clause::= on 
page 14-16)

inheritance_clauses::=

subprogram_spec::=

(procedure_spec::= on page 14-15, function_spec::= on page 14-15)

procedure_spec::=

function_spec::=

REPLACE
invoker_rights_clause

AS OBJECT

( atttribute datatype

,
, element_spec

,

)

AUTHID
CURRENT_USER

DEFINER

inheritance_clauses
subprogram_spec

constructor_spec

map_order_function_spec

, pragma_clause

NOT
OVERRIDING

FINAL

INSTANTIABLE

MEMBER

STATIC

procedure_spec

function_spec

PROCEDURE procedure_name ( parameter datatype

,

)

IS

AS
call_spec

FUNCTION name ( parameter datatype

,

) return_clause



ALTER TYPE Statement

14-16 Oracle Database PL/SQL Language Reference

constructor_spec::=

map_order_function_spec::=

(function_spec::= on page 14-15)

pragma_clause::=

alter_method_spec::=

(map_order_function_spec::= on page 14-16, subprogram_spec::= on page 14-15)

FINAL INSTANTIABLE
CONSTRUCTOR FUNCTION datatype

(
SELF IN OUT datatype ,

parameter datatype

,

)

RETURN SELF AS RESULT

IS

AS
call_spec

MAP

ORDER
MEMBER function_spec

PRAGMA RESTRICT_REFERENCES (
method_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

)

ADD

DROP

map_order_function_spec

subprogram_spec

,



ALTER TYPE Statement

SQL Statements for Stored PL/SQL Units 14-17

alter_attribute_definition::=

alter_collection_clauses::=

dependent_handling_clause::=

exceptions_clause::=

Keyword and Parameter Descriptions

schema
Specify the schema that contains the type. If you omit schema, then the database 
assumes the type is in your current schema.

type
Specify the name of an object type, a nested table type, or a varray type.

compile_type_clause 
Specify COMPILE to compile the object type specification and body. This is the default 
if neither SPECIFICATION nor BODY is specified.

During recompilation, the database drops all persistent compiler switch settings, 
retrieves them again from the session, and stores them at the end of compilation. To 
avoid this process, specify the REUSE SETTINGS clause.

If recompiling the type results in compilation errors, then the database returns an error 
and the type remains invalid. You can see the associated compiler error messages with 
the SQL*Plus command SHOW ERRORS.

ADD

MODIFY
ATTRIBUTE

attribute
datatype

( attribute datatype

,

)

DROP ATTRIBUTE

attribute

( attribute

,

)

MODIFY
LIMIT integer

ELEMENT TYPE datatype

INVALIDATE

CASCADE

NOT
INCLUDING TABLE DATA

CONVERT TO SUBSTITUTABLE
FORCE

exceptions_clause

EXCEPTIONS INTO
schema .

table



ALTER TYPE Statement

14-18 Oracle Database PL/SQL Language Reference

DEBUG
Specify DEBUG to instruct the PL/SQL compiler to generate and store the code for use 
by the PL/SQL debugger. Specifying this clause has the same effect as specifying 
PLSQL_DEBUG = TRUE in the compiler_parameters_clause.

SPECIFICATION
Specify SPECIFICATION to compile only the object type specification.

BODY
Specify BODY to compile only the object type body.

compiler_parameters_clause 
This clause has the same behavior for a type as it does for a function. See the ALTER 
FUNCTION compiler_parameters_clause on page 14-4.

REUSE SETTINGS 
This clause has the same behavior for a type as it does for a function. See the ALTER 
FUNCTION clause REUSE SETTINGS on page 14-4.

replace_type_clause 
The REPLACE clause lets you add new member subprogram specifications. This clause 
is valid only for object types, not for nested tables or varrays.

attribute
Specify an object attribute name. Attributes are data items with a name and a type 
specifier that form the structure of the object. 

element_spec 
Specify the elements of the redefined object.

inheritance_clauses The inheritance_clauses have the same semantics in 
CREATE TYPE and ALTER TYPE statements. 

subprogram_spec The MEMBER and STATIC clauses let you specify for the object 
type a function or procedure subprogram which is referenced as an attribute.   

You must specify a corresponding method body in the object type body for each 
procedure or function specification. 

See Also:

■ Recompiling a Type: Example on page 14-25

■ Recompiling a Type Specification: Examples

See Also:

■ CREATE TYPE Statement on page 14-60 for a description of the 
difference between member and static methods, and for examples

■ CREATE TYPE BODY Statement on page 14-77

■ Overloading PL/SQL Subprogram Names on page 8-12 for 
information about overloading subprogram names within a 
package



ALTER TYPE Statement

SQL Statements for Stored PL/SQL Units 14-19

procedure_spec Enter the specification of a procedure subprogram. 

function_spec Enter the specification of a function subprogram.

pragma_clause The pragma_clause is a compiler directive that denies member 
functions read/write access to database tables, packaged variables, or both, and 
thereby helps to avoid side effects.

Restriction on Pragmas The pragma_clause is not valid when dropping a method.

map_order_function_spec You can declare either one MAP method or one ORDER 
method, regardless how many MEMBER or STATIC methods you declare. However, a 
subtype can override a MAP method if the supertype defines a NOT FINAL MAP 
method. If you declare either method, then you can compare object instances in SQL. 

If you do not declare either method, then you can compare object instances only for 
equality or inequality. Instances of the same type definition are equal only if each pair 
of their corresponding attributes is equal. No comparison method must be specified to 
determine the equality of two object types. 

■ For MAP, specify a member function (MAP method) that returns the relative 
position of a given instance in the ordering of all instances of the object. A map 
method is called implicitly and induces an ordering of object instances by 
mapping them to values of a predefined scalar type. the database uses the 
ordering for comparison conditions and ORDER BY clauses. 

If type will be referenced in queries involving sorts (through ORDER BY, GROUP 
BY, DISTINCT, or UNION clauses) or joins, and you want those queries to be 
parallelized, then you must specify a MAP member function.

If the argument to the MAP method is null, then the MAP method returns null and 
the method is not invoked.

An object specification can contain only one MAP method, which must be a 
function. The result type must be a predefined SQL scalar type, and the MAP 
function can have no arguments other than the implicit SELF argument.

A subtype cannot define a new MAP method. However, it can override an inherited 
MAP method.

■ For ORDER, specify a member function (ORDER method) that takes an instance of 
an object as an explicit argument and the implicit SELF argument and returns 
either a negative, zero, or positive integer. The negative, zero, or positive value 
indicates that the implicit SELF argument is less than, equal to, or greater than the 
explicit argument.

If either argument to the ORDER method is null, then the ORDER method returns 
null and the method is not invoked.

Note: This clause has been deprecated. Oracle recommends against 
using this clause unless you must do so for backward compatibility of 
your applications. the database now runs purity checks at run time. If 
you must use this clause for backward compatibility of your 
applications, see its description in CREATE TYPE Statement on 
page 14-60.

See Also: Oracle Database Advanced Application Developer's Guide for 
more information about pragmas



ALTER TYPE Statement

14-20 Oracle Database PL/SQL Language Reference

When instances of the same object type definition are compared in an ORDER BY 
clause, the ORDER method function is invoked. 

An object specification can contain only one ORDER method, which must be a 
function having the return type NUMBER.

A subtype cannot define an ORDER method, nor can it override an inherited 
ORDER method.

invoker_rights_clause
Specifies the AUTHID property of the member functions and procedures of the object 
type. For information about the AUTHID property, see "Using Invoker's Rights or 
Definer's Rights (AUTHID Clause)" on page 8-18.

Restriction on Invoker’s Rights You can specify this clause only for an object type, 
not for a nested table or varray.

AUTHID CURRENT_USER Clause Specify CURRENT_USER if you want the member 
functions and procedures of the object type to execute with the privileges of 
CURRENT_USER. This clause creates an invoker’s rights type.

You must specify this clause to maintain invoker’s rights status for the type if you 
created it with this status. Otherwise the status will revert to definer’s rights.

This clause also specifies that external names in queries, DML operations, and 
dynamic SQL statements resolve in the schema of CURRENT_USER. External names in 
all other statements resolve in the schema in which the type resides. 

AUTHID DEFINER Clause Specify DEFINER if you want the member functions and 
procedures of the object type to execute with the privileges of the owner of the schema 
in which the functions and procedures reside, and that external names resolve in the 
schema where the member functions and procedures reside. This is the default.

alter_method_spec 
The alter_method_spec lets you add a method to or drop a method from type. the 
database disables any function-based indexes that depend on the type.

In one ALTER TYPE statement you can add or drop multiple methods, but you can 
reference each method only once.

ADD When you add a method, its name must not conflict with any existing attributes 
in its type hierarchy.

DROP When you drop a method, the database removes the method from the target 
type.

Restriction on Dropping Methods You cannot drop from a subtype a method 
inherited from its supertype. Instead you must drop the method from the supertype.

subprogram_spec The MEMBER and STATIC clauses let you add a procedure 
subprogram to or drop it from the object type.

See Also: Using Invoker's Rights or Definer's Rights (AUTHID 
Clause) on page 8-18

See Also: Adding a Member Function: Example on page 14-24



ALTER TYPE Statement

SQL Statements for Stored PL/SQL Units 14-21

Restriction on Subprograms You cannot define a STATIC method on a subtype that 
redefines a MEMBER method in its supertype, or vice versa. 

map_order_function_spec If you declare either a MAP or ORDER method, then you 
can compare object instances in SQL.

Restriction on MAP and ORDER Methods You cannot add an ORDER method to a 
subtype. 

alter_attribute_definition
The alter_attribute_definition clause lets you add, drop, or modify an 
attribute of an object type. In one ALTER TYPE statement, you can add, drop, or 
modify multiple member attributes or methods, but you can reference each attribute or 
method only once. 

ADD ATTRIBUTE The name of the new attribute must not conflict with existing 
attributes or methods in the type hierarchy. the database adds the new attribute to the 
end of the locally defined attribute list. 

If you add the attribute to a supertype, then it is inherited by all of its subtypes. In 
subtypes, inherited attributes always precede declared attributes. Therefore, you 
might need to update the mappings of the implicitly altered subtypes after adding an 
attribute to a supertype.

DROP ATTRIBUTE When you drop an attribute from a type, the database drops the 
column corresponding to the dropped attribute as well as any indexes, statistics, and 
constraints referencing the dropped attribute. 

You need not specify the data type of the attribute you are dropping.

Restrictions on Dropping Type Attributes Dropping type attributes is subject to the 
following restrictions:

■ You cannot drop an attribute inherited from a supertype. Instead you must drop 
the attribute from the supertype.

■ You cannot drop an attribute that is part of a partitioning, subpartitioning, or 
cluster key.

■ You cannot drop an attribute of a primary-key-based object identifier of an object 
table or a primary key of an index-organized table.

■ You cannot drop all of the attributes of a root type. Instead you must drop the 
type. However, you can drop all of the locally declared attributes of a subtype.

MODIFY ATTRIBUTE This clause lets you modify the data type of an existing scalar 
attribute. For example, you can increase the length of a VARCHAR2 or RAW attribute, or 
you can increase the precision or scale of a numeric attribute.

Restriction on Modifying Attributes You cannot expand the size of an attribute 
referenced in a function-based index, domain index, or cluster key.

[NOT] FINAL
Use this clause to indicate whether any further subtypes can be created for this type:

■ Specify FINAL if no further subtypes can be created for this type.

See Also: Adding a Collection Attribute: Example on page 14-24



ALTER TYPE Statement

14-22 Oracle Database PL/SQL Language Reference

■ Specify NOT FINAL if further subtypes can be created under this type.

If you change the property between FINAL and NOT FINAL, then you must specify the 
CASCADE clause of the dependent_handling_clause on page 14-23 to convert data in 
dependent columns and tables. 

■ If you change a type from NOT FINAL to FINAL, then you must specify CASCADE 
[INCLUDING TABLE DATA]. You cannot defer data conversion with CASCADE NOT 
INCLUDING TABLE DATA.

■ If you change a type from FINAL to NOT FINAL, then:

– Specify CASCADE INCLUDING TABLE DATA if you want to create new 
substitutable tables and columns of that type, but you are not concerned about 
the substitutability of the existing dependent tables and columns. the database 
marks all existing dependent columns and tables NOT SUBSTITUTABLE AT 
ALL LEVELS, so you cannot insert the new subtype instances of the altered 
type into these existing columns and tables.

– Specify CASCADE CONVERT TO SUBSTITUTABLE if you want to create new 
substitutable tables and columns of the type and also store new subtype 
instances of the altered type in existing dependent tables and columns. the 
database marks all existing dependent columns and tables SUBSTITUTABLE 
AT ALL LEVELS except those that are explicitly marked NOT SUBSTITUTABLE 
AT ALL LEVELS.

Restriction on FINAL You cannot change a user-defined type from NOT FINAL to 
FINAL if the type has any subtypes.

[NOT] INSTANTIABLE
Use this clause to indicate whether any object instances of this type can be constructed:

■ Specify INSTANTIABLE if object instances of this type can be constructed.

■ Specify NOT INSTANTIABLE if no constructor (default or user-defined) exists for 
this object type. You must specify these keywords for any type with 
noninstantiable methods and for any type that has no attributes (either inherited 
or specified in this statement). 

Restriction on NOT INSTANTIABLE You cannot change a user-defined type from 
INSTANTIABLE to NOT INSTANTIABLE if the type has any table dependents.

alter_collection_clauses 
These clauses are valid only for collection types.

MODIFY LIMIT integer This clause lets you increase the number of elements in a 
varray. It is not valid for nested tables. Specify an integer greater than the current 
maximum number of elements in the varray.

ELEMENT TYPE datatype This clause lets you increase the precision, size, or length 
of a scalar data type of a varray or nested table. This clause is not valid for collections 
of object types. 

See Also: Oracle Database Object-Relational Developer's Guide for a full 
discussion of object type evolution

See Also: Increasing the Number of Elements of a Collection Type: 
Example on page 14-25



ALTER TYPE Statement

SQL Statements for Stored PL/SQL Units 14-23

■ For a collection of NUMBER, you can increase the precision or scale.

■ For a collection of RAW, you can increase the maximum size.

■ For a collection of  VARCHAR2 or NVARCHAR2, you can increase the maximum 
length.

dependent_handling_clause 
The dependent_handling_clause lets you instruct the database how to handle 
objects that are dependent on the modified type. If you omit this clause, then the 
ALTER TYPE statement will terminate if type has any dependent type or table. 

INVALIDATE Clause
Specify INVALIDATE to invalidate all dependent objects without any checking 
mechanism.

CASCADE Clause
Specify the CASCADE clause if you want to propagate the type change to dependent 
types and tables. the database terminates the statement if any errors are found in the 
dependent types or tables unless you also specify FORCE.

If you change the property of the type between FINAL and NOT FINAL, then you must 
specify this clause to convert data in dependent columns and tables. See [NOT] FINAL 
on page 14-21.

INCLUDING TABLE DATA Specify INCLUDING TABLE DATA to convert data stored in 
all user-defined columns to the most recent version of the column type. This is the 
default.

■ For each attribute added to the column type, the database adds a new attribute to 
the data and initializes it to null.

■ For each attribute dropped from the referenced type, the database removes the 
corresponding attribute data from each row in the table.

If you specify INCLUDING TABLE DATA, then all of the tablespaces containing the table 
data must be in read/write mode.

If you specify NOT INCLUDING TABLE DATA, then the database upgrades the metadata 
of the column to reflect the changes to the type but does not scan the dependent 
column and update the data as part of this ALTER TYPE statement. However, the 
dependent column data remains accessible, and the results of subsequent queries of 
the data will reflect the type modifications. 

See Also: Increasing the Length of a Collection Type: Example on 
page 14-25

Note: the database does not validate the type change, so you should 
use this clause with caution. For example, if you drop an attribute that 
is a partitioning or cluster key, then you will be unable to write to the 
table.

Note: You must specify this clause if your column data is in Oracle 
database version 8.0 image format. This clause is also required if you 
are changing the type property between FINAL and NOT FINAL



ALTER TYPE Statement

14-24 Oracle Database PL/SQL Language Reference

CONVERT TO SUBSTITUTABLE Specify this clause if you are changing the type from 
FINAL to NOT FINAL and you want to create new substitutable tables and columns of 
the type and also store new subtype instances of the altered type in existing dependent 
tables and columns. See [NOT] FINAL on page 14-21 for more information.

exceptions_clause Specify FORCE if you want the database to ignore the errors from 
dependent tables and indexes and log all errors in the specified exception table. The 
exception table must already have been created by executing the DBMS_
UTILITY.CREATE_ALTER_TYPE_ERROR_TABLE procedure.

Examples

Adding a Member Function: Example The following example uses the data_typ1 
object type. See Object Type Examples on page 14-71 for the example that creates this 
object type. A method is added to data_typ1 and its type body is modified to 
correspond. The date formats are consistent with the order_date column of the 
oe.orders sample table:

ALTER TYPE data_typ1 
   ADD MEMBER FUNCTION qtr(der_qtr DATE) 
   RETURN CHAR CASCADE;

CREATE OR REPLACE TYPE BODY data_typ1 IS 
  MEMBER FUNCTION prod (invent NUMBER) RETURN NUMBER IS 
  BEGIN 
  RETURN (year + invent); 
  END; 
     MEMBER FUNCTION qtr(der_qtr DATE) RETURN CHAR IS 
     BEGIN 
       IF (der_qtr < TO_DATE('01-APR', 'DD-MON')) THEN 
         RETURN 'FIRST'; 
       ELSIF (der_qtr < TO_DATE('01-JUL', 'DD-MON')) THEN 
         RETURN 'SECOND'; 
       ELSIF (der_qtr < TO_DATE('01-OCT', 'DD-MON')) THEN 
         RETURN 'THIRD'; 
       ELSE 
         RETURN 'FOURTH'; 
       END IF; 
     END; 
   END;
/

Adding a Collection Attribute: Example The following example adds the author 
attribute to the textdoc_tab object column of the text table. See Object Type 
Examples on page 14-71 for the example that creates the underlying textdoc_typ 
type. 

CREATE TABLE text (
   doc_id       NUMBER,
   description  textdoc_tab)
   NESTED TABLE description STORE AS text_store;

ALTER TYPE textdoc_typ 
   ADD ATTRIBUTE (author VARCHAR2) CASCADE;

See Also: Oracle Database Object-Relational Developer's Guide for more 
information about the implications of not including table data when 
modifying type attribute



ALTER TYPE Statement

SQL Statements for Stored PL/SQL Units 14-25

The CASCADE keyword is required because both the textdoc_tab and text table are 
dependent on the textdoc_typ type.

Increasing the Number of Elements of a Collection Type: Example The following 
example increases the maximum number of elements in the varray phone_list_
typ_demo. SeeObject Type Examples on page 14-71 for the example that creates this 
type. 

ALTER TYPE phone_list_typ_demo
  MODIFY LIMIT 10 CASCADE;

Increasing the Length of a Collection Type: Example The following example 
increases the length of the varray element type phone_list_typ:

ALTER TYPE phone_list_typ
  MODIFY ELEMENT TYPE VARCHAR(64) CASCADE;

Recompiling a Type: Example The following example recompiles type cust_
address_typ in the hr schema:

ALTER TYPE cust_address_typ2 COMPILE;

Recompiling a Type Specification: Example The following example compiles the 
type specification of link2.

CREATE TYPE link1 AS OBJECT
  (a NUMBER); 
/
CREATE TYPE link2 AS OBJECT
  (a NUMBER, 
   b link1, 
   MEMBER FUNCTION p(c1 NUMBER) RETURN NUMBER); 
/
CREATE TYPE BODY link2 AS
   MEMBER FUNCTION p(c1 NUMBER) RETURN NUMBER IS 
      BEGIN  
         dbms_output.put_line(c1);
         RETURN c1; 
      END; 
   END; 
/

In the following example, both the specification and body of link2 are invalidated 
because link1, which is an attribute of link2, is altered.

ALTER TYPE link1 ADD ATTRIBUTE (b NUMBER) INVALIDATE;

You must recompile the type by recompiling the specification and body in separate 
statements:

ALTER TYPE link2 COMPILE SPECIFICATION;
         
ALTER TYPE link2 COMPILE BODY;
         
Alternatively, you can compile both specification and body at the same time:

ALTER TYPE link2 COMPILE;

Related Topics
■ CREATE TYPE Statement on page 14-60



ALTER TYPE Statement

14-26 Oracle Database PL/SQL Language Reference

■ CREATE TYPE BODY Statement on page 14-77

■ DROP TYPE Statement on page 14-88



CREATE FUNCTION Statement

SQL Statements for Stored PL/SQL Units 14-27

CREATE FUNCTION Statement

The CREATE FUNCTION statement creates or replaces a standalone stored function or a 
call specification.

A standalone stored function is a function (a subprogram that returns a single value) 
that is stored in the database.

A call specification declares a Java method or a third-generation language (3GL) 
routine so that it can be called from PL/SQL. You can also use the SQL CALL statement 
to call such a method or routine. The call specification tells the database which Java 
method, or which named function in which shared library, to invoke when a call is 
made. It also tells the database what type conversions to make for the arguments and 
return value.

Prerequisites
To create or replace a standalone stored function in your own schema, you must have 
the CREATE PROCEDURE system privilege. To create or replace a standalone stored 
function in another user's schema, you must have the CREATE ANY PROCEDURE 
system privilege. 

To invoke a call specification, you may need additional privileges, for example, 
EXECUTE privileges on a C library for a C call specification.

To embed a CREATE FUNCTION statement inside an Oracle precompiler program, you 
must terminate the statement with the keyword END-EXEC followed by the embedded 
SQL statement terminator for the specific language.

Note: A standalone stored function that you create with the CREATE 
FUNCTION statement is different from a function that you declare and 
define in a PL/SQL block or package. For information about the latter, 
see Function Declaration and Definition on page 13-66.

Note: To be callable from SQL statements, a stored function must 
obey certain rules that control side effects. See Controlling Side Effects 
of PL/SQL Subprograms on page 8-24.

See Also: For more information about such prerequisites:

■ Oracle Database Advanced Application Developer's Guide

■ Oracle Database Java Developer's Guide



CREATE FUNCTION Statement

14-28 Oracle Database PL/SQL Language Reference

Syntax

create_function ::=

(parameter_declaration ::= on page 13-90, datatype ::= on page 13-28, result_cache_clause 
::= on page 13-67, declare_section ::= on page 13-8, body ::= on page 13-10)

invoker_rights_clause ::=

parallel_enable_clause ::=

streaming_clause ::=

CREATE
OR REPLACE

FUNCTION
schema .

function_name

( parameter_declaration

’

)
RETURN datatype

invoker_rights_clause

DETERMINISTIC

parallel_enable_clause

result_cache_clause

AGGREGATE

PIPELINED
USING

schema .
implementation_type

PIPELINED IS

AS

declare_section
body

call_spec

;

AUTHID
CURRENT_USER

DEFINER

PARALLEL_ENABLE

( PARTITION argument BY

ANY

HASH

RANGE
( column

,

)

)
streaming_clause

ORDER

CLUSTER
expr BY ( column

,

)



CREATE FUNCTION Statement

SQL Statements for Stored PL/SQL Units 14-29

call_spec ::=

Java_declaration ::=

C_declaration ::=

Keyword and Parameter Descriptions

OR REPLACE 
Specify OR REPLACE to re-create the function if it already exists. Use this clause to 
change the definition of an existing function without dropping, re-creating, and 
regranting object privileges previously granted on the function. If you redefine a 
function, then the database recompiles it. 

Users who had previously been granted privileges on a redefined function can still 
access the function without being regranted the privileges. 

If any function-based indexes depend on the function, then the database marks the 
indexes DISABLED.

schema
Specify the schema to contain the function. If you omit schema, then the database 
creates the function in your current schema. 

function_name
Specify the name of the function to be created.

RETURN datatype 
For datatype, specify the data type of the return value of the function. The return 
value can have any data type supported by PL/SQL.

Note: Oracle SQL does not support calling of functions with 
Boolean parameters or returns. Therefore, if your user-defined 
functions will be called from SQL statements, you must design 
them to return numbers (0 or 1) or character strings (’TRUE’ or 
’FALSE’). 

LANGUAGE
Java_declaration

C_declaration

JAVA NAME string

C
NAME name

LIBRARY lib_name
AGENT IN ( argument

,

)

WITH CONTEXT PARAMETERS ( parameter

,

)



CREATE FUNCTION Statement

14-30 Oracle Database PL/SQL Language Reference

The data type cannot specify a length, precision, or scale. The database derives the 
length, precision, or scale of the return value from the environment from which the 
function is called. 

If the return type is ANYDATASET and you intend to use the function in the FROM 
clause of a query, then you must also specify the PIPELINED clause and define a 
describe method (ODCITableDescribe) as part of the implementation type of the 
function.

You cannot constrain this data type (with NOT NULL, for example).

invoker_rights_clause 
Specifies the AUTHID property of the member functions and procedures of the object 
type. For information about the AUTHID property, see "Using Invoker's Rights or 
Definer's Rights (AUTHID Clause)" on page 8-18.

AUTHID Clause 
■ Specify CURRENT_USER if you want the function to execute with the privileges of 

CURRENT_USER. This clause creates an invoker’s rights function.

This clause also specifies that external names in queries, DML operations, and 
dynamic SQL statements resolve in the schema of CURRENT_USER. External 
names in all other statements resolve in the schema in which the function resides. 

■ Specify DEFINER if you want the function to execute with the privileges of the 
owner of the schema in which the function resides, and that external names 
resolve in the schema where the function resides. This is the default and creates a 
definer’s rights function.

DETERMINISTIC 
Specify DETERMINISTIC to indicate that the function returns the same result value 
whenever it is called with the same values for its parameters.

You must specify this keyword if you intend to call the function in the expression of a 
function-based index or from the query of a materialized view that is marked 
REFRESH FAST or ENABLE QUERY REWRITE. When the database encounters a 
deterministic function in one of these contexts, it attempts to use previously calculated 
results when possible rather than reexecuting the function. If you subsequently change 
the semantics of the function, then you must manually rebuild all dependent 
function-based indexes and materialized views.

 Do not specify this clause to define a function that uses package variables or that 
accesses the database in any way that might affect the return result of the function. The 

See Also:

■ Chapter 3, "PL/SQL Data Types," for information about PL/SQL 
data types

■ Oracle Database Data Cartridge Developer's Guide for information 
about defining the ODCITableDescribe function

See Also:

■ Using Invoker's Rights or Definer's Rights (AUTHID Clause) on 
page 8-18 for more information about the AUTHID clause

■ Oracle Database Security Guide for information about invoker’s 
rights and definer’s rights types



CREATE FUNCTION Statement

SQL Statements for Stored PL/SQL Units 14-31

results of doing so will not be captured if the database chooses not to reexecute the 
function.

The following semantic rules govern the use of the DETERMINISTIC clause:

■ You can declare a top-level subprogram DETERMINISTIC.

■ You can declare a package-level subprogram DETERMINISTIC in the package 
specification but not in the package body. 

■ You cannot declare DETERMINISTIC a private subprogram (declared inside 
another subprogram or inside a package body).

■ A DETERMINISTIC subprogram can call another subprogram whether the called 
program is declared DETERMINISTIC or not.

parallel_enable_clause 
PARALLEL_ENABLE is an optimization hint indicating that the function can be 
executed from a parallel execution server of a parallel query operation. The function 
should not use session state, such as package variables, as those variables are not 
necessarily shared among the parallel execution servers. 

■ The optional PARTITION argument BY clause is used only with functions that 
have a REF CURSOR argument type. It lets you define the partitioning of the inputs 
to the function from the REF CURSOR argument. 

Partitioning the inputs to the function affects the way the query is parallelized 
when the function is used as a table function in the FROM clause of the query. ANY 
indicates that the data can be partitioned randomly among the parallel execution 
servers. Alternatively, you can specify RANGE or HASH partitioning on a specified 
column list.

■ The optional streaming_clause lets you order or cluster the parallel processing 
by a specified column list.

■ ORDER BY indicates that the rows on a parallel execution server must be 
locally ordered.

■ CLUSTER BY indicates that the rows on a parallel execution server must have 
the same key values as specified by the column_list.

■ expr identifies the REF CURSOR parameter name of the table function on 
which partitioning was specified, and on whose columns you are specifying 
ordering or clustering for each slave in a parallel query execution.

The columns specified in all of these optional clauses refer to columns that are 
returned by the REF CURSOR argument of the function.

See Also:

■ Oracle Database Data Warehousing Guide for information about 
materialized views

■ Oracle Database SQL Language Reference for information about 
function-based indexes

See Also: For more information about user-defined aggregate 
functions:

■ Oracle Database Advanced Application Developer's Guide 

■  Oracle Database Data Cartridge Developer's Guide 



CREATE FUNCTION Statement

14-32 Oracle Database PL/SQL Language Reference

PIPELINED { IS | USING } 
Specify PIPELINED to instruct the database to return the results of a table function 
iteratively. A table function returns a collection type (a nested table or varray). You 
query table functions by using the TABLE keyword before the function name in the 
FROM clause of the query. For example:

SELECT * FROM TABLE(function_name(...))

the database then returns rows as they are produced by the function. 

■ If you specify the keyword PIPELINED alone (PIPELINED IS ...), then the 
PL/SQL function body should use the PIPE keyword. This keyword instructs the 
database to return single elements of the collection out of the function, instead of 
returning the whole collection as a single value.

■ You can specify the PIPELINED USING implementation_type clause if you 
want to predefine an interface containing the start, fetch, and close operations. The 
implementation type must implement the ODCITable interface and must exist at 
the time the table function is created. This clause is useful for table functions that 
will be implemented in external languages such as C++ and Java.

If the return type of the function is ANYDATASET, then you must also define a 
describe method (ODCITableDescribe) as part of the implementation type of 
the function.

AGGREGATE USING 
Specify AGGREGATE USING to identify this function as an aggregate function, or one 
that evaluates a group of rows and returns a single row. You can specify aggregate 
functions in the select list, HAVING clause, and ORDER BY clause.

When you specify a user-defined aggregate function in a query, you can treat it as an 
analytic function (one that operates on a query result set). To do so, use the OVER 
analytic_clause syntax available for built-in analytic functions. See Oracle Database 
SQL Language Reference for syntax and semantics of analytic functions.

In the USING clause, specify the name of the implementation type of the function. The 
implementation type must be an object type containing the implementation of the 
ODCIAggregate routines. If you do not specify schema, then the database assumes 
that the implementation type is in your own schema.

Restriction on Creating Aggregate Functions If you specify this clause, then you can 
specify only one input argument for the function.

body
The required executable part of the function and, optionally, the exception-handling 
part of the function.

See Also:

■ Performing Multiple Transformations with Pipelined Table 
Functions on page 12-34

■ Oracle Database Data Cartridge Developer's Guide for information 
about ODCI routines

See Also: Oracle Database Data Cartridge Developer's Guide for 
information about ODCI routines



CREATE FUNCTION Statement

SQL Statements for Stored PL/SQL Units 14-33

declare_section
The optional declarative part of the function. Declarations are local to the function, can 
be referenced in body, and cease to exist when the function completes execution.

call_spec
Use the call_spec to map a Java or C method name, parameter types, and return 
type to their SQL counterparts. In Java_declaration, 'string' identifies the Java 
implementation of the method. 

EXTERNAL
In earlier releases, EXTERNAL was an alternative way of declaring a C method. This 
clause has been deprecated and is supported for backward compatibility only. Oracle 
recommends that you use the LANGUAGE C syntax.

Examples 

Creating a Function: Examples The following statement creates the function get_
bal on the sample table oe.orders:

CREATE FUNCTION get_bal(acc_no IN NUMBER) 
   RETURN NUMBER 
   IS acc_bal NUMBER(11,2);
   BEGIN 
      SELECT order_total 
      INTO acc_bal 
      FROM orders 
      WHERE customer_id = acc_no; 
      RETURN(acc_bal); 
    END;
/

The get_bal function returns the balance of a specified account. 

When you call the function, you must specify the argument acc_no, the number of 
the account whose balance is sought. The data type of acc_no is NUMBER. 

The function returns the account balance. The RETURN clause of the CREATE 
FUNCTION statement specifies the data type of the return value to be NUMBER. 

The function uses a SELECT statement to select the balance column from the row 
identified by the argument acc_no in the orders table. The function uses a RETURN 
statement to return this value to the environment in which the function is called. 

The function created in the preceding example can be used in a SQL statement. For 
example:

SELECT get_bal(165) FROM DUAL; 

GET_BAL(165)
------------
        2519

See Also:

■ Oracle Database Java Developer's Guide

■ Oracle Database Advanced Application Developer's Guide for 
information about calling external procedures



CREATE FUNCTION Statement

14-34 Oracle Database PL/SQL Language Reference

The hypothetical following statement creates a PL/SQL standalone function get_val 
that registers the C routine c_get_val as an external function. (The parameters have 
been omitted from this example.)

CREATE FUNCTION get_val
   ( x_val IN NUMBER,
    y_val IN NUMBER,
    image IN LONG RAW )
   RETURN BINARY_INTEGER AS LANGUAGE C
      NAME "c_get_val"
      LIBRARY c_utils
      PARAMETERS (...);

Creating Aggregate Functions: Example The next statement creates an aggregate 
function called SecondMax to aggregate over number values. It assumes that the 
object type SecondMaxImpl routines contains the implementations of the 
ODCIAggregate routines:

CREATE FUNCTION SecondMax (input NUMBER) RETURN NUMBER
    PARALLEL_ENABLE AGGREGATE USING SecondMaxImpl;

You would use such an aggregate function in a query like the following statement, 
which queries the sample table hr.employees:

SELECT SecondMax(salary) "SecondMax", department_id
      FROM employees
      GROUP BY department_id
      HAVING SecondMax(salary) > 9000
      ORDER BY "SecondMax", department_id;

SecondMax DEPARTMENT_ID
--------- -------------
    13500            80
    17000            90

Using a Packaged Procedure in a Function: Example The following statement 
creates a function that uses a DBMS_LOB.GETLENGTH procedure to return the length 
of a CLOB column:

CREATE OR REPLACE FUNCTION text_length(a CLOB) 
   RETURN NUMBER DETERMINISTIC IS
BEGIN 
  RETURN DBMS_LOB.GETLENGTH(a);
END;

Related Topics
■ ALTER FUNCTION Statement on page 14-3

■ CREATE PROCEDURE Statement on page 14-42

■ DROP FUNCTION Statement on page 14-82

■ Function Declaration and Definition on page 13-66 for information about creating 
a function in a PL/SQL block

See Also: Oracle Database Data Cartridge Developer's Guide for the 
complete implementation of type and type body for SecondMaxImpl

See Also: Oracle Database SQL Language Reference for an example of 
using this function to create a function-based index



CREATE FUNCTION Statement

SQL Statements for Stored PL/SQL Units 14-35

■ Parameter Declaration on page 13-90

■ Chapter 8, "Using PL/SQL Subprograms"

See Also:

■ Oracle Database SQL Language Reference for information about  the 
CALL statement)

■ Oracle Database Advanced Application Developer's Guide for 
information about restrictions on user-defined functions that are 
called from SQL statements and expressions

■ Oracle Database Advanced Application Developer's Guide for more 
information about call specifications



CREATE PACKAGE Statement

14-36 Oracle Database PL/SQL Language Reference

CREATE PACKAGE Statement

The CREATE PACKAGE statement creates or replaces the specification for a stored 
package, which is an encapsulated collection of related procedures, functions, and 
other program objects stored together in the database. The package specification 
declares these objects. The package body, specified subsequently, defines these objects.

Prerequisites
To create or replace a package in your own schema, you must have the CREATE 
PROCEDURE system privilege. To create or replace a package in another user's schema, 
you must have the CREATE ANY PROCEDURE system privilege. 

To embed a CREATE PACKAGE statement inside an the database precompiler program, 
you must terminate the statement with the keyword END-EXEC followed by the 
embedded SQL statement terminator for the specific language. 

Syntax

create_package ::=

(invoker_rights_clause ::= on page 14-36, item_list_1 ::= on page 13-8)

invoker_rights_clause ::=

Keyword and Parameter Descriptions

OR REPLACE 
Specify OR REPLACE to re-create the package specification if it already exists. Use this 
clause to change the specification of an existing package without dropping, 
re-creating, and regranting object privileges previously granted on the package. If you 
change a package specification, then the database recompiles it. 

Users who had previously been granted privileges on a redefined package can still 
access the package without being regranted the privileges. 

If any function-based indexes depend on the package, then the database marks the 
indexes DISABLED.

schema
Specify the schema to contain the package. If you omit schema, then the database 
creates the package in your own schema. 

CREATE
OR REPLACE

PACKAGE
schema .

package_name

invoker_rights_clause IS

AS

item_list_1
END

package_name
;

AUTHID
CURRENT_USER

DEFINER



CREATE PACKAGE Statement

SQL Statements for Stored PL/SQL Units 14-37

item_list_1
Declares package elements. If an item in item_list_1 is a pragma, it must one of the 
following:

■ RESTRICT_REFERENCES Pragma on page 13-98

■ SERIALLY_REUSABLE Pragma on page 13-111

package_name
A package stored in the database. For naming conventions, see Identifiers on page 2-4. 

invoker_rights_clause
Specifies the AUTHID property of the member functions and procedures of the object 
type. For information about the AUTHID property, see "Using Invoker's Rights or 
Definer's Rights (AUTHID Clause)" on page 8-18.

AUTHID CURRENT_USER 
Specify CURRENT_USER to indicate that the package executes with the privileges of 
CURRENT_USER. This clause creates an invoker’s rights package.

This clause also specifies that external names in queries, DML operations, and 
dynamic SQL statements resolve in the schema of CURRENT_USER. External names in 
all other statements resolve in the schema in which the package resides. 

AUTHID DEFINER 
Specify DEFINER to indicate that the package executes with the privileges of the 
owner of the schema in which the package resides and that external names resolve in 
the schema where the package resides. This is the default and creates a definer’s rights 
package.

item_list_1
Declares a list of items. For syntax, see Block on page 13-8.

If an item in item_list_1 is a pragma, it must one of the following:

■ RESTRICT_REFERENCES Pragma on page 13-98

■ SERIALLY_REUSABLE Pragma on page 13-111

Example

Creating a Package: Example The following statement creates the specification of the 
emp_mgmt package.

CREATE OR REPLACE PACKAGE emp_mgmt AS 
   FUNCTION hire (last_name VARCHAR2, job_id VARCHAR2, 
      manager_id NUMBER, salary NUMBER, 
      commission_pct NUMBER, department_id NUMBER) 
      RETURN NUMBER; 
   FUNCTION create_dept(department_id NUMBER, location_id NUMBER) 
      RETURN NUMBER; 
   PROCEDURE remove_emp(employee_id NUMBER); 
   PROCEDURE remove_dept(department_id NUMBER); 

See Also: Using Invoker's Rights or Definer's Rights (AUTHID 
Clause) on page 8-18 for more information about invoker’s rights and 
definer’s rights



CREATE PACKAGE Statement

14-38 Oracle Database PL/SQL Language Reference

   PROCEDURE increase_sal(employee_id NUMBER, salary_incr NUMBER); 
   PROCEDURE increase_comm(employee_id NUMBER, comm_incr NUMBER); 
   no_comm EXCEPTION; 
   no_sal EXCEPTION; 
END emp_mgmt; 
/ 

The specification for the emp_mgmt package declares the following public program 
objects: 

■ The functions hire and create_dept 

■ The procedures remove_emp, remove_dept, increase_sal, and increase_
comm 

■ The exceptions no_comm and no_sal 

All of these objects are available to users who have access to the package. After 
creating the package, you can develop applications that call any of these public 
procedures or functions or raise any of the public exceptions of the package. 

Before you can call this package's procedures and functions, you must define these 
procedures and functions in the package body. For an example of a CREATE PACKAGE 
BODY statement that creates the body of the emp_mgmt package, see CREATE 
PACKAGE BODY Statement on page 14-39. 

Related Topics
■ ALTER PACKAGE Statement on page 14-6

■ CREATE PACKAGE Statement on page 14-36

■ CREATE PACKAGE BODY Statement on page 14-39

■ DROP PACKAGE Statement on page 14-84

■ Function Declaration and Definition on page 13-66

■ Procedure Declaration and Definition on page 13-92

■ Chapter 10, "Using PL/SQL Packages"



CREATE PACKAGE BODY Statement

SQL Statements for Stored PL/SQL Units 14-39

CREATE PACKAGE BODY Statement 

The CREATE PACKAGE BODY statement creates or replaces the body of a stored 
package, which is an encapsulated collection of related procedures, stored functions, 
and other program objects stored together in the database. The package body defines 
these objects. The package specification, defined in an earlier CREATE PACKAGE 
statement, declares these objects.

Packages are an alternative to creating procedures and functions as standalone schema 
objects.

Prerequisites
To create or replace a package in your own schema, you must have the CREATE 
PROCEDURE system privilege. To create or replace a package in another user's schema, 
you must have the CREATE ANY PROCEDURE system privilege. In both cases, the 
package body must be created in the same schema as the package.

To embed a CREATE PACKAGE BODY statement inside an the database precompiler 
program, you must terminate the statement with the keyword END-EXEC followed by 
the embedded SQL statement terminator for the specific language.

Syntax

create_package_body ::=

(declare_section ::= on page 13-8, body ::= on page 13-10)

Keyword and Parameter Descriptions

OR REPLACE
Specify OR REPLACE to re-create the package body if it already exists. Use this clause 
to change the body of an existing package without dropping, re-creating, and 
regranting object privileges previously granted on it. If you change a package body, 
then the database recompiles it. 

Users who had previously been granted privileges on a redefined package can still 
access the package without being regranted the privileges.

schema
Specify the schema to contain the package. If you omit schema, then the database 
creates the package in your current schema. 

package_name
Specify the name of the package to be created. 

CREATE
OR REPLACE

PACKAGE BODY
schema .

package_name

IS

AS

declare_section body

END package_name ;



CREATE PACKAGE BODY Statement

14-40 Oracle Database PL/SQL Language Reference

declare_section
Declares package objects.

body
Defines package objects.

Examples

Creating a Package Body: Example This statement creates the body of the emp_
mgmt package created in Creating a Package: Example on page 14-37. 

CREATE OR REPLACE PACKAGE BODY emp_mgmt AS 
   tot_emps NUMBER; 
   tot_depts NUMBER; 
FUNCTION hire 
   (last_name VARCHAR2, job_id VARCHAR2, 
    manager_id NUMBER, salary NUMBER, 
    commission_pct NUMBER, department_id NUMBER) 
   RETURN NUMBER IS new_empno NUMBER; 
BEGIN 
   SELECT employees_seq.NEXTVAL 
      INTO new_empno 
      FROM DUAL; 
   INSERT INTO employees 
      VALUES (new_empno, 'First', 'Last','first.example@oracle.com', 
              '(415)555-0100','18-JUN-02','IT_PROG',90000000,00, 
              100,110); 
      tot_emps := tot_emps + 1; 
   RETURN(new_empno); 
END; 
FUNCTION create_dept(department_id NUMBER, location_id NUMBER) 
   RETURN NUMBER IS 
      new_deptno NUMBER; 
   BEGIN 
      SELECT departments_seq.NEXTVAL 
         INTO new_deptno 
         FROM dual; 
      INSERT INTO departments 
         VALUES (new_deptno, 'department name', 100, 1700); 
      tot_depts := tot_depts + 1; 
      RETURN(new_deptno); 
   END; 
PROCEDURE remove_emp (employee_id NUMBER) IS 
   BEGIN 
      DELETE FROM employees 
      WHERE employees.employee_id = remove_emp.employee_id; 
      tot_emps := tot_emps - 1; 
   END; 
PROCEDURE remove_dept(department_id NUMBER) IS 
   BEGIN 
      DELETE FROM departments 
      WHERE departments.department_id = remove_dept.department_id; 
      tot_depts := tot_depts - 1; 
      SELECT COUNT(*) INTO tot_emps FROM employees; 
   END; 
PROCEDURE increase_sal(employee_id NUMBER, salary_incr NUMBER) IS 
   curr_sal NUMBER; 
   BEGIN 
      SELECT salary INTO curr_sal FROM employees 



CREATE PACKAGE BODY Statement

SQL Statements for Stored PL/SQL Units 14-41

      WHERE employees.employee_id = increase_sal.employee_id; 
      IF curr_sal IS NULL 
         THEN RAISE no_sal; 
      ELSE 
         UPDATE employees 
         SET salary = salary + salary_incr 
         WHERE employee_id = employee_id; 
      END IF; 
   END; 
PROCEDURE increase_comm(employee_id NUMBER, comm_incr NUMBER) IS 
   curr_comm NUMBER; 
   BEGIN 
      SELECT commission_pct 
      INTO curr_comm 
      FROM employees 
      WHERE employees.employee_id = increase_comm.employee_id; 
      IF curr_comm IS NULL 
         THEN RAISE no_comm; 
      ELSE 
         UPDATE employees 
         SET commission_pct = commission_pct + comm_incr; 
      END IF; 
   END; 
END emp_mgmt; 
/ 

The package body defines the public program objects declared in the package 
specification: 

■ The functions hire and create_dept 

■ The procedures remove_emp, remove_dept, increase_sal, and increase_
comm

These objects are declared in the package specification, so they can be called by 
application programs, procedures, and functions outside the package. For example, if 
you have access to the package, you can create a procedure increase_all_comms 
separate from the emp_mgmt package that calls the increase_comm procedure. 

These objects are defined in the package body, so you can change their definitions 
without causing the database to invalidate dependent schema objects. For example, if 
you subsequently change the definition of hire, then the database need not recompile 
increase_all_comms before executing it. 

The package body in this example also declares private program objects, the variables 
tot_emps and tot_depts. These objects are declared in the package body rather 
than the package specification, so they are accessible to other objects in the package, 
but they are not accessible outside the package. For example, you cannot develop an 
application that explicitly changes the value of the variable tot_depts. However, the 
function create_dept is part of the package, so create_dept can change the value 
of tot_depts. 

Related Topics
■ CREATE PACKAGE Statement on page 14-36

■ Function Declaration and Definition on page 13-66

■ Procedure Declaration and Definition on page 13-92

■ Chapter 10, "Using PL/SQL Packages"



CREATE PROCEDURE Statement

14-42 Oracle Database PL/SQL Language Reference

CREATE PROCEDURE Statement

The CREATE PROCEDURE statement creates or replaces a standalone stored procedure 
or a call specification.

A standalone stored procedure is a procedure (a subprogram that performs a specific 
action) that is stored in the database.

A call specification declares a Java method or a third-generation language (3GL) 
routine so that it can be called from PL/SQL. You can also use the SQL CALL statement 
to call such a method or routine. The call specification tells the database which Java 
method, or which named procedure in which shared library, to invoke when a call is 
made. It also tells the database what type conversions to make for the arguments and 
return value.

Prerequisites
To create or replace a standalone stored procedure in your own schema, you must 
have the CREATE PROCEDURE system privilege. To create or replace a standalone 
stored procedure in another user's schema, you must have the CREATE ANY 
PROCEDURE system privilege. 

To invoke a call specification, you may need additional privileges, for example, the 
EXECUTE object privilege on the C library for a C call specification.

To embed a CREATE PROCEDURE statement inside an Oracle precompiler program, 
you must terminate the statement with the keyword END-EXEC followed by the 
embedded SQL statement terminator for the specific language. 

Note: A standalone stored procedure that you create with the 
CREATE PROCEDURE statement is different from a procedure that you 
declare and define in a PL/SQL block or package. For information 
about the latter, see Procedure Declaration and Definition on 
page 13-92.

See Also: For more information about such prerequisites:

■ Oracle Database Advanced Application Developer's Guide

■ Oracle Database Java Developer's Guide



CREATE PROCEDURE Statement

SQL Statements for Stored PL/SQL Units 14-43

Syntax

create_procedure ::=

(parameter_declaration ::= on page 13-90, declare_section ::= on page 13-8, body ::= on 
page 13-10)

invoker_rights_clause ::=

call_spec ::=

Java_declaration ::=

C_declaration ::=

Keyword and Parameter Descriptions

OR REPLACE
Specify OR REPLACE to re-create the procedure if it already exists. Use this clause to 
change the definition of an existing procedure without dropping, re-creating, and 

CREATE
OR REPLACE

PROCEDURE
schema .

procedure_name

( parameter_declaration

,

) invoker_rights_clause

IS

AS

declare_section
body

call_spec

EXTERNAL

;

AUTHID
CURRENT_USER

DEFINER

LANGUAGE
Java_declaration

C_declaration

JAVA NAME string

C
NAME name

LIBRARY lib_name
AGENT IN ( argument

,

)

WITH CONTEXT PARAMETERS ( parameter

,

)



CREATE PROCEDURE Statement

14-44 Oracle Database PL/SQL Language Reference

regranting object privileges previously granted on it. If you redefine a procedure, then 
the database recompiles it. 

Users who had previously been granted privileges on a redefined procedure can still 
access the procedure without being regranted the privileges. 

If any function-based indexes depend on the package, then the database marks the 
indexes DISABLED.

schema
Specify the schema to contain the procedure. If you omit schema, then the database 
creates the procedure in your current schema. 

procedure_name
Specify the name of the procedure to be created.

invoker_rights_clause
Specifies the AUTHID property of the member functions and procedures of the object 
type. For information about the AUTHID property, see "Using Invoker's Rights or 
Definer's Rights (AUTHID Clause)" on page 8-18.

AUTHID CURRENT_USER 
Specify CURRENT_USER to indicate that the procedure executes with the privileges of 
CURRENT_USER. This clause creates an invoker’s rights procedure.

This clause also specifies that external names in queries, DML operations, and 
dynamic SQL statements resolve in the schema of CURRENT_USER. External names in 
all other statements resolve in the schema in which the procedure resides. 

AUTHID DEFINER 
Specify DEFINER to indicate that the procedure executes with the privileges of the 
owner of the schema in which the procedure resides, and that external names resolve 
in the schema where the procedure resides. This is the default and creates a definer’s 
rights procedure.

body
The required executable part of the procedure and, optionally, the exception-handling 
part of the procedure.

declare_section
The optional declarative part of the procedure. Declarations are local to the procedure, 
can be referenced in body, and cease to exist when the procedure completes execution.

call_spec
Use the call_spec to map a Java or C method name, parameter types, and return 
type to their SQL counterparts.

In the Java_declaration, string identifies the Java implementation of the 
method. 

See Also: Using Invoker's Rights or Definer's Rights (AUTHID 
Clause) on page 8-18 for more information about invoker’s rights and 
definer’s rights



CREATE PROCEDURE Statement

SQL Statements for Stored PL/SQL Units 14-45

EXTERNAL The EXTERNAL clause is an alternative way of declaring a C method. In 
most cases, Oracle recommends that you use the LANGUAGE C syntax. However, 
EXTERNAL is required if a default argument is used as one of the parameters or if one 
of the parameters uses a PL/SQL data type that must be mapped (for example, 
Boolean). EXTERNAL causes the PL/SQL layer to be loaded so that the parameters can 
be properly evaluated. 

Examples

Creating a Procedure: Example The following statement creates the procedure 
remove_emp in the schema hr. 

CREATE PROCEDURE remove_emp (employee_id NUMBER) AS
   tot_emps NUMBER;
   BEGIN
      DELETE FROM employees
      WHERE employees.employee_id = remove_emp.employee_id;
   tot_emps := tot_emps - 1;
   END;
/

The remove_emp procedure removes a specified employee. When you call the 
procedure, you must specify the employee_id of the employee to be removed.

The procedure uses a DELETE statement to remove from the employees table the row 
of employee_id. 

In the following example, external procedure c_find_root expects a pointer as a 
parameter. Procedure find_root passes the parameter by reference using the BY 
REFERENCE phrase. 

CREATE PROCEDURE find_root
   ( x IN REAL ) 
   IS LANGUAGE C
      NAME c_find_root
      LIBRARY c_utils
      PARAMETERS ( x BY REFERENCE );

Related Topics
■ ALTER PROCEDURE Statement on page 14-9

■ CREATE FUNCTION Statement on page 14-27

■ DROP PROCEDURE Statement on page 14-86

■ Parameter Declaration on page 13-90

■ Procedure Declaration and Definition on page 13-92

See Also:

■ Oracle Database Java Developer's Guide for an explanation of the 
parameters and semantics of the Java_declaration

■ Oracle Database Advanced Application Developer's Guide for 
information about calling external procedures

See Also: Creating a Package Body: Example on page 14-40 to see 
how to incorporate this procedure into a package



CREATE PROCEDURE Statement

14-46 Oracle Database PL/SQL Language Reference

■ Chapter 8, "Using PL/SQL Subprograms"

See Also:

■ Oracle Database SQL Language Reference for information about  the 
CALL statement)

■ Oracle Database Advanced Application Developer's Guide for more 
information about call specifications



CREATE TRIGGER Statement

SQL Statements for Stored PL/SQL Units 14-47

CREATE TRIGGER Statement

The CREATE TRIGGER statement creates or replaces a database trigger, which is either 
of the following: 

■ A stored PL/SQL block associated with a table, a schema, or the database

■ An anonymous PL/SQL block or a call to a procedure implemented in PL/SQL or 
Java

the database automatically executes a trigger when specified conditions occur.

Order of Trigger Firing If  two or more triggers with different timing points (BEFORE, 
AFTER, INSTEAD OF) are defined for the same statement on the same table, then they 
fire in the following order:

■ All BEFORE statement triggers

■ All BEFORE row triggers

■ All AFTER row triggers

■ All AFTER statement triggers

If it is practical, replace the set of individual triggers with different timing points with 
a single compound trigger that explicitly codes the actions in the order you intend.

If two or more triggers are defined with the same timing point, and the order in which 
they fire is important, then you can control the firing order using the FOLLOWS clause 
(see FOLLOWS on page 14-56).

If multiple compound triggers are specified on a table, then all BEFORE statement 
sections will be executed at the BEFORE statement timing point, BEFORE row sections 
will be executed at the BEFORE row timing point, and so forth. If trigger execution 
order has been specified using the FOLLOWS clause, then order of execution of 
compound trigger sections will be determined by the FOLLOWS clause. If FOLLOWS is 
specified only for some triggers but not all triggers, then the order of execution of 
triggers is guaranteed only for those that are related using the FOLLOWS clause.

Prerequisites 
■ To create a trigger in your own schema on a table in your own schema or on your 

own schema (SCHEMA), you must have the CREATE TRIGGER system privilege. 

■ To create a trigger in any schema on a table in any schema, or on another user's 
schema (schema.SCHEMA), you must have the CREATE ANY TRIGGER system 
privilege. 

■ In addition to the preceding privileges, to create a trigger on DATABASE, you must 
have the ADMINISTER DATABASE TRIGGER system privilege.

If the trigger issues SQL statements or calls procedures or functions, then the owner of 
the trigger must have the privileges necessary to perform these operations. These 
privileges must be granted directly to the owner rather than acquired through roles. 



CREATE TRIGGER Statement

14-48 Oracle Database PL/SQL Language Reference

Syntax

create_trigger ::=

(non_dml_trigger ::= on page 14-48, trigger_body ::= on page 14-48)

simple_dml_trigger ::=

(dml_event_clause ::= on page 14-49, referencing_clause ::= on page 14-49)

compound_dml_trigger ::=

(dml_event_clause ::= on page 14-49, referencing_clause ::= on page 14-49)

non_dml_trigger ::=

trigger_body ::=

CREATE
OR REPLACE

TRIGGER
schema .

trigger

simple_dml_trigger

compound_dml_trigger

non_dml_trigger

FOLLOWS
schema .

trigger

,

ENABLE

DISABLE WHEN ( condition )
trigger_body

BEFORE

AFTER

INSTEAD OF

dml_event_clause
referencing_clause FOR EACH ROW

FOR dml_event_clause
referencing_clause

BEFORE

AFTER

ddl_event

OR

database_event

OR ON

schema .
SCHEMA

DATABASE

plsql_block

compound_trigger_block

CALL routine_clause



CREATE TRIGGER Statement

SQL Statements for Stored PL/SQL Units 14-49

(plsql_block ::= on page 13-8, compound_trigger_block ::= on page 14-49, CALL routine_
clause in Oracle Database SQL Language Reference)

dml_event_clause ::=

referencing_clause ::=

compound_trigger_block ::=

(declare_section ::= on page 13-8)

timing_point_section ::=

DELETE

INSERT

UPDATE
OF column

,

OR

ON

schema .
table

NESTED TABLE nested_table_column OF schema .
view

REFERENCING

OLD
AS

old

NEW
AS

new

PARENT
AS

parent

COMPOUND TRIGGER
declare_section

timing_point_section END
trigger

;

BEFORE STATEMENT IS tps_body END BEFORE STATEMENT

BEFORE EACH ROW IS tps_body END BEFORE EACH ROW

AFTER STATEMENT IS tps_body END AFTER STATEMENT

AFTER EACH ROW IS tps_body END AFTER EACH ROW



CREATE TRIGGER Statement

14-50 Oracle Database PL/SQL Language Reference

tps_body ::=

(declare_section ::= on page 13-8)

Keyword and Parameter Descriptions 

OR REPLACE 
Specify OR REPLACE to re-create the trigger if it already exists. Use this clause to 
change the definition of an existing trigger without first dropping it. 

schema
Specify the schema to contain the trigger. If you omit schema, then the database 
creates the trigger in your own schema. 

trigger
Specify the name of the trigger to be created. 

If a trigger produces compilation errors, then it is still created, but it fails on execution. 
This means it effectively blocks all triggering DML statements until it is disabled, 
replaced by a version without compilation errors, or dropped. You can see the 
associated compiler error messages with the SQL*Plus command SHOW ERRORS. 

simple_dml_trigger 
Use this clause to define a single trigger on a DML event.

BEFORE 
Specify BEFORE to cause the database to fire the trigger before executing the triggering 
event. For row triggers, the trigger is fired before each affected row is changed.

Restrictions on BEFORE Triggers BEFORE triggers are subject to the following 
restrictions:

■ You cannot specify a BEFORE trigger on a view.

■ In a BEFORE statement trigger, or in BEFORE statement section of a compound 
trigger, you cannot specify either :NEW or :OLD. A BEFORE row trigger  or a 
BEFORE row section of a compound trigger can read and write into the :OLD or 
:NEW fields.

Note: If you create a trigger on a base table of a materialized view, 
then you must ensure that the trigger does not fire during a refresh of 
the materialized view. During refresh, the DBMS_MVIEW procedure I_
AM_A_REFRESH returns TRUE.

statement

statement

pragma

EXCEPTION exception_handler



CREATE TRIGGER Statement

SQL Statements for Stored PL/SQL Units 14-51

AFTER 
Specify AFTER to cause the database to fire the trigger after executing the triggering 
event. For row triggers, the trigger is fired after each affected row is changed. 

Restrictions on AFTER Triggers AFTER triggers are subject to the following 
restrictions:

■ You cannot specify an AFTER trigger on a view.

■ In an AFTER statement trigger or in AFTER statement section of a compound 
trigger, you cannot specify either :NEW or :OLD. An AFTER row trigger or AFTER 
row section of a compound trigger can only read but not write into the :OLD or 
:NEW fields.

INSTEAD OF 
Specify INSTEAD OF to cause the database to fire the trigger instead of executing the 
triggering event. You can achieve the same effect when you specify an INSTEAD OF 
ROW section in a compound trigger.

■ INSTEAD OF triggers are valid for DML events on any views. They are not valid 
for DDL or database events, and you cannot specify an INSTEAD OF trigger on a 
table.

■ You can read both the :OLD and the :NEW value, but you cannot write either the 
:OLD or the :NEW value. 

■ If a view is inherently updatable and has INSTEAD OF triggers, then the triggers 
take preference. The database fires the triggers instead of performing DML on the 
view.

■ If the view belongs to a hierarchy, then the trigger is not inherited by subviews.

Note: When you create a materialized view log for a table, the 
database implicitly creates an AFTER ROW trigger on the table. This 
trigger inserts a row into the materialized view log whenever an 
INSERT, UPDATE, or DELETE statement modifies data in the master 
table. You cannot control the order in which multiple row triggers fire. 
Therefore, you should not write triggers intended to affect the content 
of the materialized view. 

See Also: Oracle Database SQL Language Reference for more 
information about materialized view logs

Note: the database fine-grained access control lets you define 
row-level security policies on views. These policies enforce specified 
rules in response to DML operations. If an INSTEAD OF trigger is also 
defined on the view, then the database will not enforce the row-level 
security policies, because the database fires the INSTEAD OF trigger 
instead of executing the DML on the view.

See Also: Creating an INSTEAD OF Trigger: Example on page 14-58



CREATE TRIGGER Statement

14-52 Oracle Database PL/SQL Language Reference

dml_event_clause 
The DML_event_clause lets you specify one of three DML statements that can cause 
the trigger to fire. the database fires the trigger in the existing user transaction.

You cannot specify the MERGE keyword in the DML_event_clause.  If you want a 
trigger to fire in relation to a MERGE operation, then you must create triggers on the 
INSERT and UPDATE operations to which the MERGE operation decomposes.

DELETE Specify DELETE if you want the database to fire the trigger whenever a 
DELETE statement removes a row from the table or removes an element from a nested 
table. 

INSERT Specify INSERT if you want the database to fire the trigger whenever an 
INSERT statement adds a row to a table or adds an element to a nested table.

UPDATE Specify UPDATE if you want the database to fire the trigger whenever an 
UPDATE statement changes a value in one of the columns specified after OF. If you 
omit OF, then the database fires the trigger whenever an UPDATE statement changes a 
value in any column of the table or nested table.

For an UPDATE trigger, you can specify object type, varray, and REF columns after OF 
to indicate that the trigger should be fired whenever an UPDATE statement changes a 
value in one of the columns. However, you cannot change the values of these columns 
in the body of the trigger itself.

Restrictions on Triggers on UPDATE Operations The UPDATE clause is subject to the 
following restrictions:

■ You cannot specify UPDATE OF for an INSTEAD OF trigger. the database fires 
INSTEAD OF triggers whenever an UPDATE changes a value in any column of the 
view.

■ You cannot specify a nested table or LOB column in the UPDATE OF clause.

Performing DML operations directly on nested table columns does not cause the 
database to fire triggers defined on the table containing the nested table column.

ON table | view The ON clause lets you determine the database object on which the 
trigger is to be created. Specify the schema and table or view name of one of the 
following on which the trigger is to be created:

■ Table or view

■ Object table or object view

■ A column of nested-table type

See Also: Creating a DML Trigger: Examples on page 14-57

Note: Using OCI functions or the DBMS_LOB package to update LOB 
values or LOB attributes of object columns does not cause the 
database to fire triggers defined on the table containing the columns 
or the attributes.

See Also: AS subquery clause of CREATE VIEW in Oracle Database 
SQL Language Reference for a list of constructs that prevent inserts, 
updates, or deletes on a view



CREATE TRIGGER Statement

SQL Statements for Stored PL/SQL Units 14-53

If you omit schema, then the database assumes the table is in your own schema.

Restriction on Schema You cannot create a trigger on a table in the schema SYS. 

NESTED TABLE Clause Specify the nested_table_column of a view upon which 
the trigger is being defined. Such a trigger will fire only if the DML operates on the 
elements of the nested table. 

Restriction on Triggers on Nested Tables You can specify NESTED TABLE only for 
INSTEAD OF triggers.

referencing_clause
The referencing_clause lets you specify correlation names. You can use 
correlation names in the trigger body and WHEN condition of a row trigger to refer 
specifically to old and new values of the current row. The default correlation names are 
OLD and NEW. If your row trigger is associated with a table named OLD or NEW, then 
use this clause to specify different correlation names to avoid confusion between the 
table name and the correlation name. 

■ If the trigger is defined on a nested table, then OLD and NEW refer to the row of the 
nested table, and PARENT refers to the current row of the parent table.

■ If the trigger is defined on an object table or view, then OLD and NEW refer to object 
instances.

Restriction on the referencing_clause The referencing_clause is not valid with 
INSTEAD OF triggers on CREATE DDL events.

FOR EACH ROW 
Specify FOR EACH ROW to designate the trigger as a row trigger. the database fires a 
row trigger once for each row that is affected by the triggering statement and meets 
the optional trigger constraint defined in the WHEN condition.

Except for INSTEAD OF triggers, if you omit this clause, then the trigger is a statement 
trigger. the database fires a statement trigger only once when the triggering statement 
is issued if the optional trigger constraint is met.

INSTEAD OF trigger statements are implicitly activated for each row.

Restriction on Row Triggers This clause is valid only for simple DML triggers, not 
for compound DML triggers or for DDL or database event triggers.

compound_dml_trigger 
Use this clause to define a compound trigger on a DML event. The body of a 
COMPOUND trigger can have up to four sections, so that you can specify a before 
statement, before row, after row, or after statement operation in one trigger. 

The dml_event_clause and the referencing_clause have the same semantics for compound 
DML triggers as for simple DML triggers. 

Restriction on Compound Triggers You cannot specify the FOR EACH ROW clause for 
a compound trigger.

See Also: Compound Trigger Restrictions on page 9-15 for 
additional restrictions



CREATE TRIGGER Statement

14-54 Oracle Database PL/SQL Language Reference

non_dml_trigger 
Use this clause to define a single trigger on a DDL or database event.

ddl_event 
Specify one or more types of DDL statements that can cause the trigger to fire. You can 
create triggers for these events on DATABASE or SCHEMA unless otherwise noted. You 
can create BEFORE and AFTER triggers for these events. the database fires the trigger 
in the existing user transaction. 

Restriction on Triggers on DDL Events You cannot specify as a triggering event any 
DDL operation performed through a PL/SQL procedure.

The following ddl_event values are valid:

ALTER Specify ALTER to fire the trigger whenever an ALTER statement modifies a 
database object in the data dictionary. The trigger will not be fired by an ALTER 
DATABASE statement.

ANALYZE Specify ANALYZE to fire the trigger whenever the database collects or 
deletes statistics or validates the structure of a database object.

ASSOCIATE STATISTICS Specify ASSOCIATE STATISTICS to fire the trigger 
whenever the database associates a statistics type with a database object.

AUDIT Specify AUDIT to fire the trigger whenever the database tracks the occurrence 
of a SQL statement or tracks operations on a schema object.

COMMENT Specify COMMENT to fire the trigger whenever a comment on a database 
object is added to the data dictionary.

CREATE Specify CREATE to fire the trigger whenever a CREATE statement adds a 
new database object to the data dictionary. The trigger will not be fired by a CREATE 
DATABASE or CREATE CONTROLFILE statement.

DISASSOCIATE STATISTICS Specify DISASSOCIATE STATISTICS to fire the trigger 
whenever the database disassociates a statistics type from a database object.

DROP Specify DROP to fire the trigger whenever a DROP statement removes a 
database object from the data dictionary.

GRANT Specify GRANT to fire the trigger whenever a user grants system privileges or 
roles or object privileges to another user or to a role.

NOAUDIT Specify NOAUDIT to fire the trigger whenever a NOAUDIT statement 
instructs the database to stop tracking a SQL statement or operations on a schema 
object.

RENAME Specify RENAME to fire the trigger whenever a RENAME statement changes 
the name of a database object.

See Also: Creating a DDL Trigger: Example on page 14-58

See Also: Oracle Database SQL Language Reference for information 
about using the SQL statement ANALYZE to collect statistics



CREATE TRIGGER Statement

SQL Statements for Stored PL/SQL Units 14-55

REVOKE Specify REVOKE to fire the trigger whenever a REVOKE statement removes 
system privileges or roles or object privileges from a user or role.

TRUNCATE Specify TRUNCATE to fire the trigger whenever a TRUNCATE statement 
removes the rows from a table or cluster and resets its storage characteristics.

DDL Specify DDL to fire the trigger whenever any of the preceding DDL statements is 
issued.

database_event 
Specify one or more particular states of the database that can cause the trigger to fire. 
You can create triggers for these events on DATABASE or SCHEMA unless otherwise 
noted. For each of these triggering events, the database opens an autonomous 
transaction scope, fires the trigger, and commits any separate transaction (regardless of 
any existing user transaction). 

Each database event is valid in either a BEFORE trigger or an AFTER trigger, but not 
both. The following database_event values are valid:

AFTER STARTUP Specify AFTER STARTUP to fire the trigger whenever the database 
is opened. This event is valid only with DATABASE, not with SCHEMA.

BEFORE SHUTDOWN Specify BEFORE SHUTDOWN to fire the trigger whenever an 
instance of the database is shut down. This event is valid only with DATABASE, not 
with SCHEMA.

AFTER DB_ROLE_CHANGE In a Data Guard configuration, specify AFTER DB_
ROLE_CHANGE to fire the trigger whenever a role change occurs from standby to 
primary or from primary to standby. This event is valid only with DATABASE, not with 
SCHEMA..

AFTER LOGON Specify AFTER LOGON to fire the trigger whenever a client 
application logs onto the database.

BEFORE LOGOFF Specify BEFORE LOGOFF to fire the trigger whenever a client 
application logs off the database.

AFTER SERVERERROR Specify AFTER SERVERERROR to fire the trigger whenever a 
server error message is logged.

The following errors do not cause a SERVERERROR trigger to fire:

■ ORA-01403: no data found

■ ORA-01422: exact fetch returns more than requested number of rows

■ ORA-01423: error encountered while checking for extra rows in exact fetch

■ ORA-01034: ORACLE not available

See Also:

■ Creating a Database Event Trigger: Example on page 14-58

■ Responding to Database Events Through Triggers on page 9-45 for 
more information about responding to database events through 
triggers



CREATE TRIGGER Statement

14-56 Oracle Database PL/SQL Language Reference

■ ORA-04030: out of process memory when trying to allocate string bytes (string, 
string)

AFTER SUSPEND Specify SUSPEND to fire the trigger whenever a server error causes 
a transaction to be suspended. 

DATABASE Specify DATABASE to define the trigger on the entire database. The 
trigger fires whenever any database user initiates the triggering event.

SCHEMA Specify SCHEMA to define the trigger on the current schema. The trigger 
fires whenever any user connected as schema initiates the triggering event.

FOLLOWS
This clause lets you specify the relative firing order of triggers of the same type. Use 
FOLLOWS to indicate that the trigger being created should fire after the specified 
triggers.

The specified triggers must already exist, they must be defined on the same table as 
the trigger being created, and they must have been successfully compiled. They need 
not be enabled.

You can specify FOLLOWS in the definition of a simple trigger with a compound trigger 
target, or in the definition of a compound trigger with a simple trigger target. In these 
cases, the FOLLOWS keyword applies only to the section of the compound trigger with 
the same timing point as the sample trigger. If the compound trigger has no such 
timing point, then FOLLOWS is quietly ignored.

ENABLE | DISABLE 
Use this clause to create the trigger in an enabled or disabled state. Creating a trigger 
in a disabled state lets you ensure that the trigger compiles without errors before you 
put into actual use. 

Specify DISABLE to create the trigger in disabled form. You can subsequently issue an 
ALTER TRIGGER ... ENABLE or ALTER TABLE ... ENABLE ALL TRIGGERS statement to 
enable the trigger. If you omit this clause, then the trigger is enabled when it is created.

WHEN Clause 
Specify the trigger condition, which is a SQL condition that must be satisfied for the 
database to fire the trigger. This condition must contain correlation names and cannot 
contain a query. 

See Also: Doing Independent Units of Work with Autonomous 
Transactions on page 6-40 for information about autonomous 
transactions

See Also: Creating a SCHEMA Trigger: Example on page 14-59

See Also: Order of Trigger Firing on page 14-47 for more 
information about the order in which the database fires triggers

See Also:

■ ALTER TRIGGER Statement on page 14-11 for information about 
is ENABLE clause

■ Oracle Database SQL Language Reference for information about 
using CREATE TABLE ... ENABLE ALL TRIGGERS



CREATE TRIGGER Statement

SQL Statements for Stored PL/SQL Units 14-57

The NEW and OLD keywords, when specified in the WHEN clause, are not considered 
bind variables, so are not preceded by a colon (:). However, you must precede NEW and 
OLD with a colon in all references other than the WHEN clause.

Restrictions on Trigger Conditions Trigger conditions are subject to the following 
restrictions:

■ If you specify this clause for a DML event trigger, then you must also specify FOR 
EACH ROW. the database evaluates this condition for each row affected by the 
triggering statement. 

■ You cannot specify trigger conditions for INSTEAD OF trigger statements.

■ You can reference object columns or their attributes, or varray, nested table, or LOB 
columns. You cannot invoke PL/SQL functions or methods in the trigger 
condition.

trigger_body 
Specify the PL/SQL block, PL/SQL compound trigger block, or call procedure that the 
database executes to fire the trigger.

compound_trigger_block
Timing point sections can be in any order, but no timing point section can be repeated. 
The declare_section of a compound trigger block cannot include PRAGMA 
AUTONOMOUS_TRANSACTION.

Examples 

Creating a DML Trigger: Examples This example shows the basic syntax for a 
BEFORE statement trigger. You would write such a trigger to place restrictions on DML 
statements issued on a table, for example, when such statements could be issued.

CREATE TRIGGER schema.trigger_name 
    BEFORE 
    DELETE OR INSERT OR UPDATE 
    ON schema.table_name 
       pl/sql_block

the database fires such a trigger whenever a DML statement affects the table. This 
trigger is a BEFORE statement trigger, so the database fires it once before executing the 
triggering statement. 

The next example shows a partial BEFORE row trigger. The PL/SQL block might 
specify, for example, that an employee's salary must fall within the established salary 
range for the employee's job:

CREATE TRIGGER hr.salary_check
      BEFORE INSERT OR UPDATE OF salary, job_id ON hr.employees
      FOR EACH ROW
         WHEN (new.job_id <> 'AD_VP')
      pl/sql_block

See Also:

■ Oracle Database SQL Language Reference for the syntax description 
of condition

■ Calling a Procedure in a Trigger Body: Example on page 14-58



CREATE TRIGGER Statement

14-58 Oracle Database PL/SQL Language Reference

the database fires this trigger whenever one of the following statements is issued: 

■ An INSERT statement that adds rows to the employees table 

■ An UPDATE statement that changes values of the salary or job_id columns of 
the employees table 

salary_check is a BEFORE row trigger, so the database fires it before changing each 
row that is updated by the UPDATE statement or before adding each row that is 
inserted by the INSERT statement. 

salary_check has a trigger condition that prevents it from checking the salary of the 
administrative vice president (AD_VP). 

Creating a DDL Trigger: Example    This example creates an AFTER statement trigger 
on any DDL statement CREATE. Such a trigger can be used to audit the creation of new 
data dictionary objects in your schema.

CREATE TRIGGER audit_db_object AFTER CREATE
   ON SCHEMA
      pl/sql_block

Calling a Procedure in a Trigger Body: Example You could create the salary_
check trigger described in the preceding example by calling a procedure instead of 
providing the trigger body in a PL/SQL block. Assume you have defined a procedure 
check_sal in the hr schema, which verifies that an employee's salary is in an 
appropriate range. Then you could create the trigger salary_check as follows:

CREATE TRIGGER salary_check
   BEFORE INSERT OR UPDATE OF salary, job_id ON employees
   FOR EACH ROW
   WHEN (new.job_id <> 'AD_VP')
   CALL check_sal(:new.job_id, :new.salary, :new.last_name)

The procedure check_sal could be implemented in PL/SQL, C, or Java. Also, you 
can specify :OLD values in the CALL clause instead of :NEW values.

Creating a Database Event Trigger: Example This example shows the basic syntax 
for a trigger to log all errors. The hypothetical PL/SQL block does some special 
processing for a particular error (invalid logon, error number 1017). This trigger is an 
AFTER statement trigger, so it is fired after an unsuccessful statement execution, such 
as unsuccessful logon.

CREATE TRIGGER log_errors AFTER SERVERERROR ON DATABASE 
   BEGIN
      IF (IS_SERVERERROR (1017)) THEN
         <special processing of logon error>
      ELSE
         <log error number>
      END IF;
   END;

Creating an INSTEAD OF Trigger: Example In this example, an oe.order_info 
view is created to display information about customers and their orders:

CREATE VIEW order_info AS
   SELECT c.customer_id, c.cust_last_name, c.cust_first_name,
          o.order_id, o.order_date, o.order_status
   FROM customers c, orders o 
   WHERE c.customer_id = o.customer_id;



CREATE TRIGGER Statement

SQL Statements for Stored PL/SQL Units 14-59

Normally this view would not be updatable, because the primary key of the orders 
table (order_id) is not unique in the result set of the join view. To make this view 
updatable, create an INSTEAD OF trigger on the view to process INSERT statements 
directed to the view. 

CREATE OR REPLACE TRIGGER order_info_insert
   INSTEAD OF INSERT ON order_info
   DECLARE
     duplicate_info EXCEPTION;
     PRAGMA EXCEPTION_INIT (duplicate_info, -00001);
   BEGIN
     INSERT INTO customers
       (customer_id, cust_last_name, cust_first_name) 
     VALUES (
     :new.customer_id, 
     :new.cust_last_name,
     :new.cust_first_name);
   INSERT INTO orders (order_id, order_date, customer_id)
   VALUES (
     :new.order_id,
     :new.order_date,
     :new.customer_id);
   EXCEPTION
     WHEN duplicate_info THEN
       RAISE_APPLICATION_ERROR (
         num=> -20107,
         msg=> 'Duplicate customer or order ID');
   END order_info_insert;
/

You can now insert into both base tables through the view (as long as all NOT NULL 
columns receive values):

INSERT INTO order_info VALUES
   (999, 'Smith', 'John', 2500, '13-MAR-2001', 0);

For more information about INSTEAD OF triggers, see Modifying Complex Views 
(INSTEAD OF Triggers) on page 9-8.

Creating a SCHEMA Trigger: Example The following example creates a BEFORE 
statement trigger on the sample schema hr. When a user connected as hr attempts to 
drop a database object, the database fires the trigger before dropping the object:

CREATE OR REPLACE TRIGGER drop_trigger 
   BEFORE DROP ON hr.SCHEMA 
   BEGIN
      RAISE_APPLICATION_ERROR (
         num => -20000,
         msg => 'Cannot drop object');
   END;
/

Related Topics
■ ALTER TRIGGER Statement on page 14-11

■ DROP TRIGGER Statement on page 14-87

■ Chapter 9, "Using Triggers"



CREATE TYPE Statement

14-60 Oracle Database PL/SQL Language Reference

CREATE TYPE Statement 

The CREATE TYPE statement creates or replaces the specification of an object type, a 
SQLJ object type, a named varying array (varray), a nested table type, or an 
incomplete object type. You create object types with the CREATE TYPE and the 
CREATE TYPE BODY statements. The CREATE TYPE statement specifies the name of the 
object type, its attributes, methods, and other properties. The CREATE TYPE BODY 
statement contains the code for the methods that implement the type.

An incomplete type is a type created by a forward type definition. It is called 
"incomplete" because it has a name but no attributes or methods. It can be referenced 
by other types, and so can be used to define types that refer to each other. However, 
you must fully specify the type before you can use it to create a table or an object 
column or a column of a nested table type. 

Prerequisites
To create a type in your own schema, you must have the CREATE TYPE system 
privilege. To create a type in another user's schema, you must have the CREATE ANY 
TYPE system privilege. You can acquire these privileges explicitly or be granted them 
through a role.

To create a subtype, you must have the UNDER ANY TYPE system privilege or the 
UNDER object privilege on the supertype.

The owner of the type must be explicitly granted the EXECUTE object privilege in 
order to access all other types referenced within the definition of the type, or the type 
owner must be granted the EXECUTE ANY TYPE system privilege. The owner cannot 
obtain these privileges through roles.

If the type owner intends to grant other users access to the type, then the owner must 
be granted the EXECUTE object privilege on the referenced types with the GRANT 
OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN OPTION. 
Otherwise, the type owner has insufficient privileges to grant access on the type to 
other users.

Notes:

■ If you create an object type for which the type specification 
declares only attributes but no methods, then you need not 
specify a type body.

■ If you create a SQLJ object type, then you cannot specify a type 
body. The implementation of the type is specified as a Java class.

Note: A standalone stored type that you create with the CREATE 
TYPE statement is different from a type that you define in a PL/SQL 
block or package. For information about the latter, see Collection on 
page 13-19.

With the CREATE TYPE statement, you can create nested table and 
varray types, but not associative arrays. In a PL/SQL block or 
package, you can define all three collection types.



CREATE TYPE Statement

SQL Statements for Stored PL/SQL Units 14-61

Syntax

create_type ::=

(varray_type_def ::= on page 13-20, nested_table_type_def ::= on page 13-19)

object_type ::=

(element_spec ::= on page 14-62)

invoker_rights_clause ::=

sqlj_object_type ::=

sqlj_object_type_attr ::=

CREATE
OR REPLACE

TYPE
schema .

type_name

OID ’ object_identifier ’

object_type_def

IS

AS

varray_type_def

nested_table_type_def

;

invoker_rights_clause

IS

AS
OBJECT

UNDER
schema .

supertype

sqlj_object_type

( attribute datatype
sqlj_object_type_attr

,

, element_spec

,

)

NOT
FINAL

NOT
INSTANTIABLE

AUTHID
CURRENT_USER

DEFINER

EXTERNAL NAME java_ext_name LANGUAGE JAVA USING

SQLData

CustomDatum

OraData

EXTERNAL NAME ’ field_name ’



CREATE TYPE Statement

14-62 Oracle Database PL/SQL Language Reference

element_spec ::=

(constructor_spec ::= on page 14-62, map_order_function_spec ::= on page 14-63, pragma_
clause ::= on page 14-63)

inheritance_clauses ::=

subprogram_spec ::=

procedure_spec ::=

(call_spec ::= on page 14-63)

function_spec ::=

(return_clause ::= on page 14-63)

constructor_spec ::=

inheritance_clauses
subprogram_spec

constructor_spec

map_order_function_spec

, pragma_clause

NOT
OVERRIDING

FINAL

INSTANTIABLE

MEMBER

STATIC

procedure_spec

function_spec

PROCEDURE procedure_name ( parameter datatype

,

)

IS

AS
call_spec

FUNCTION name ( parameter datatype

,

) return_clause

FINAL INSTANTIABLE
CONSTRUCTOR FUNCTION datatype

(
SELF IN OUT datatype ,

parameter datatype

,

)

RETURN SELF AS RESULT

IS

AS
call_spec



CREATE TYPE Statement

SQL Statements for Stored PL/SQL Units 14-63

(call_spec ::= on page 14-63)

map_order_function_spec ::=

(function_spec ::= on page 14-62)

return_clause ::=

(call_spec ::= on page 14-63)

sqlj_object_type_sig ::=

pragma_clause ::=

call_spec ::=

Java_declaration ::=

MAP

ORDER
MEMBER function_spec

RETURN datatype

IS

AS
call_spec

sqlj_object_type_sig

RETURN
datatype

SELF AS RESULT
EXTERNAL

VARIABLE NAME ’ java_static_field_name ’

NAME ’ java_method_sig ’

PRAGMA RESTRICT_REFERENCES (
method_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

)

LANGUAGE
Java_declaration

C_declaration

JAVA NAME string



CREATE TYPE Statement

14-64 Oracle Database PL/SQL Language Reference

C_declaration ::=

Keyword and Parameter Descriptions

OR REPLACE 
Specify OR REPLACE to re-create the type if it already exists. Use this clause to change 
the definition of an existing type without first dropping it.

Users previously granted privileges on the re-created object type can use and reference 
the object type without being granted privileges again.

If any function-based indexes depend on the type, then the database marks the indexes 
DISABLED.

schema 
Specify the schema to contain the type. If you omit schema, then the database creates 
the type in your current schema.

type_name
Specify the name of an object type, a nested table type, or a varray type.

If creating the type results in compilation errors, then the database returns an error. 
You can see the associated compiler error messages with the SQL*Plus command SHOW 
ERRORS.

The database implicitly defines a constructor method for each user-defined type that 
you create. A constructor is a system-supplied procedure that is used in SQL 
statements or in PL/SQL code to construct an instance of the type value. The name of 
the constructor method is the same as the name of the user-defined type. You can also 
create a user-defined constructor using the constructor_spec syntax.

The parameters of the object type constructor method are the data attributes of the 
object type. They occur in the same order as the attribute definition order for the object 
type. The parameters of a nested table or varray constructor are the elements of the 
nested table or the varray.

object_type
Use the object_type clause to create a user-defined object type. The variables that 
form the data structure are called attributes. The member subprograms that define the 
behavior of the object are called methods. The keywords AS OBJECT are required 
when creating an object type. 

See Also: Object Type Examples on page 14-71

C
NAME name

LIBRARY lib_name
AGENT IN ( argument

,

)

WITH CONTEXT PARAMETERS ( parameter

,

)



CREATE TYPE Statement

SQL Statements for Stored PL/SQL Units 14-65

OID 'object_identifier' 
The OID clause is useful for establishing type equivalence of identical objects in more 
than one database. (OID is short for Oracle Internet Directory.) See Oracle Database 
Object-Relational Developer's Guide for information about this clause.

invoker_rights_clause 
Specifies the AUTHID property of the member functions and procedures of the object 
type. For information about the AUTHID property, see "Using Invoker's Rights or 
Definer's Rights (AUTHID Clause)" on page 8-18.

Restrictions on Invoker’s Rights This clause is subject to the following restrictions:

■ You can specify this clause only for an object type, not for a nested table or varray 
type.

■ You can specify this clause for clarity if you are creating a subtype. However, 
subtypes inherit the rights model of their supertypes, so you cannot specify a 
different value than was specified for the supertype.

■ If the supertype was created with definer's rights, then you must create the 
subtype in the same schema as the supertype.

AS OBJECT Clause 
Specify AS OBJECT to create a top-level object type. Such object types are sometimes 
called root object types.

UNDER Clause 
Specify UNDER supertype to create a subtype of an existing type. The existing 
supertype must be an object type. The subtype you create in this statement inherits the 
properties of its supertype. It must either override some of those properties or add 
new properties to distinguish it from the supertype.

sqlj_object_type 
Specify this clause to create a SQLJ object type. In a SQLJ object type, you map a Java 
class to a SQL user-defined type. You can then define tables or columns on the SQLJ 
object type as you would with any other user-defined type.

You can map one Java class to multiple SQLJ object types. If there exists a subtype or 
supertype of a SQLJ object type, then it must also be a SQLJ object type. All types in 
the hierarchy must be SQLJ object types.

java_ext_name Specify the name of the Java class. If the class exists, then it must be 
public. The Java external name, including the schema, will be validated.

Multiple SQLJ object types can be mapped to the same class. However:

■ A subtype must be mapped to a class that is an immediate subclass of the class to 
which its supertype is mapped.

See Also: Using Invoker's Rights or Definer's Rights (AUTHID 
Clause) on page 8-18 for more information about the AUTHID clause

See Also: Subtype Example on page 14-72 and Type Hierarchy 
Example on page 14-73

See Also: Oracle Database Object-Relational Developer's Guide for more 
information about creating SQLJ object types



CREATE TYPE Statement

14-66 Oracle Database PL/SQL Language Reference

■ Two subtypes of a common supertype cannot be mapped to the same class.

SQLData | CustomDatum | OraData Choose the mechanism for creating the Java 
instance of the type. SQLData, CustomDatum, and OraData are the interfaces that 
determine which mechanism will be used.

element_spec 
The element_spec lets you specify each attribute of the object type.

attribute
For attribute, specify the name of an object attribute. Attributes are data items with 
a name and a type specifier that form the structure of the object. You must specify at 
least one attribute for each object type. 

If you are creating a subtype, then the attribute name cannot be the same as any 
attribute or method name declared in the supertype chain. 

datatype
For datatype, specify the database built-in data type or user-defined type of the 
attribute.

Restrictions on Attribute Data Types Attribute data types are subject to the 
following restrictions:

■ You cannot specify attributes of type ROWID, LONG, or LONG RAW.

■ You cannot specify a data type of UROWID for a user-defined object type. 

■ If you specify an object of type REF, then the target object must have an object 
identifier.

■ If you are creating a collection type for use as a nested table or varray column of a 
table, then you cannot specify attributes of type ANYTYPE, ANYDATA, or 
ANYDATASET.

sqlj_object_type_attr 
This clause is valid only if you have specified the sqlj_object_type clause to map  
a Java class to a SQLJ object type. Specify the external name of the Java field that 
corresponds to the attribute of the SQLJ object type. The Java field_name must 
already exist in the class. You cannot map a Java field_name to more than one SQLJ 
object type attribute in the same type hierarchy.

This clause is optional when you create a SQLJ object type.

subprogram_spec
The subprogram_spec lets you associate a procedure subprogram with the object 
type.

See Also: Oracle Database JDBC Developer's Guide and Reference for 
information about these three interfaces and SQLJ Object Type 
Example on page 14-72

See Also: Chapter 3, "PL/SQL Data Types," for a list of valid data 
types



CREATE TYPE Statement

SQL Statements for Stored PL/SQL Units 14-67

MEMBER Clause 
Specify a function or procedure subprogram associated with the object type that is 
referenced as an attribute. Typically, you invoke MEMBER methods in a selfish style, 
such as object_expression.method(). This class of method has an implicit first 
argument referenced as SELF in the method body, which represents the object on 
which the method has been invoked. 

Restriction on Member Methods You cannot specify a MEMBER method if you are 
mapping a Java class to a SQLJ object type.

STATIC Clause 
Specify a function or procedure subprogram associated with the object type. Unlike 
MEMBER methods, STATIC methods do not have any implicit parameters. You cannot 
reference SELF in their body. They are typically invoked as type_name.method().

Restrictions on Static Methods Static methods are subject to the following 
restrictions:

■ You cannot map a MEMBER method in a Java class to a STATIC method in a SQLJ 
object type.

■ For both MEMBER and STATIC methods, you must specify a corresponding 
method body in the object type body for each procedure or function specification. 

[NOT] FINAL, [NOT] INSTANTIABLE 
At the top level of the syntax, these clauses specify the inheritance attributes of the 
type.

Use the [NOT] FINAL clause to indicate whether any further subtypes can be created 
for this type:

■ Specify FINAL if no further subtypes can be created for this type. This is the 
default.

■ Specify NOT FINAL if further subtypes can be created under this type.

Use the [NOT] INSTANTIABLE clause to indicate whether any object instances of this 
type can be constructed:

■ Specify INSTANTIABLE if object instances of this type can be constructed. This is 
the default.

■ Specify NOT INSTANTIABLE if no default or user-defined constructor exists for 
this object type. You must specify these keywords for any type with 
noninstantiable methods and for any type that has no attributes, either inherited 
or specified in this statement.

inheritance_clauses 
As part of the element_spec, the inheritance_clauses let you specify the 
relationship between supertypes and subtypes.

OVERRIDING This clause is valid only for MEMBER methods. Specify OVERRIDING to 
indicate that this method overrides a MEMBER method defined in the supertype. This 

See Also: Creating a Member Method: Example on page 14-74

See Also: Creating a Static Method: Example on page 14-75



CREATE TYPE Statement

14-68 Oracle Database PL/SQL Language Reference

keyword is required if the method redefines a supertype method. NOT OVERRIDING is 
the default.

Restriction on OVERRIDING The OVERRIDING clause is not valid for a STATIC 
method or for a SQLJ object type.

FINAL Specify FINAL to indicate that this method cannot be overridden by any 
subtype of this type. The default is NOT FINAL.

NOT INSTANTIABLE Specify NOT INSTANTIABLE if the type does not provide an 
implementation for this method. By default all methods are INSTANTIABLE.

Restriction on NOT INSTANTIABLE If you specify NOT INSTANTIABLE, then you 
cannot specify FINAL or STATIC.

procedure_spec or function_spec
Use these clauses to specify the parameters and data types of the procedure or 
function. If this subprogram does not include the declaration of the procedure or 
function, then you must issue a corresponding CREATE TYPE BODY statement. 

Restriction on Procedure and Function Specification If you are creating a subtype, 
then the name of the procedure or function cannot be the same as the name of any 
attribute, whether inherited or not, declared in the supertype chain.

return_clause The first form of the return_clause is valid only for a function. The 
syntax shown is an abbreviated form. 

sqlj_object_type_sig Use this form of the return_clause if you intend to create 
SQLJ object type functions or procedures. 

■ If you are mapping a Java class to a SQLJ object type and you specify EXTERNAL 
NAME, then the value of the Java method returned must be compatible with the 
SQL returned value, and the Java method must be public. Also, the method 
signature (method name plus parameter types) must be unique within the type 
hierarchy.

■ If you specify EXTERNAL VARIABLE NAME, then the type of the Java static field 
must be compatible with the return type.

call_spec 
Specify the call specification that maps a Java or C method name, parameter types, and 
return type to their SQL counterparts. If all the member methods in the type have been 

See Also:  constructor_spec on page 14-69

See Also:

■ CREATE TYPE Statement on page 14-60 for more information 
about declaring object types

■ Collection Method Call on page 13-23 for information about 
method invocation and methods

■ CREATE PROCEDURE Statement on page 14-42 and CREATE 
FUNCTION Statement on page 14-27 for the full syntax with all 
possible clauses



CREATE TYPE Statement

SQL Statements for Stored PL/SQL Units 14-69

defined in this clause, then you need not issue a corresponding CREATE TYPE BODY 
statement.

The Java_declaration string identifies the Java implementation of the method.

pragma_clause 
The pragma_clause lets you specify a compiler directive. The PRAGMA RESTRICT_
REFERENCES compiler directive denies member functions read/write access to 
database tables, packaged variables, or both, and thereby helps to avoid side effects. 

method Specify the name of the MEMBER function or procedure to which the pragma 
is being applied.

DEFAULT Specify DEFAULT if you want the database to apply the pragma to all 
methods in the type for which a pragma has not been explicitly specified.

WNDS Specify WNDS to enforce the constraint writes no database state, which means 
that the method does not modify database tables.

WNPS Specify WNPS to enforce the constraint writes no package state, which means 
that the method does not modify packaged variables.

RNDS Specify RNDS to enforce the constraint reads no database state, which means 
that the method does not query database tables.

RNPS Specify RNPS to enforce the constraint reads no package state, which means 
that the method does not reference package variables.

TRUST Specify TRUST to indicate that the restrictions listed in the pragma are not 
actually to be enforced but are simply trusted to be true.

constructor_spec 
Use this clause to create a user-defined constructor, which is a function that returns an 
initialized instance of a user-defined object type. You can declare multiple constructors 
for a single object type, as long as the parameters of each constructor differ in number, 
order, or data type. 

■ User-defined constructor functions are always FINAL and INSTANTIABLE, so 
these keywords are optional.

See Also:

■ Oracle Database Java Developer's Guide for an explanation of the 
parameters and semantics of the Java_declaration

■ Oracle Database Advanced Application Developer's Guide for 
information about calling external procedures

Note: Oracle recommends that you avoid using this clause unless 
you must do so for backward compatibility of your applications. This 
clause has been deprecated, because the database now runs purity 
checks at run time.

See Also: RESTRICT_REFERENCES Pragma on page 13-98 for more 
information about this pragma



CREATE TYPE Statement

14-70 Oracle Database PL/SQL Language Reference

■ The parameter-passing mode of user-defined constructors is always SELF IN OUT. 
Therefore you need not specify this clause unless you want to do so for clarity.

■ RETURN SELF AS RESULT specifies that the run-time type of the value returned by 
the constructor is the same as the run-time type of the SELF argument.

map_order_function_spec 
You can define either one MAP method or one ORDER method in a type specification, 
regardless of how many MEMBER or STATIC methods you define. If you declare either 
method, then you can compare object instances in SQL.

You cannot define either MAP or ORDER methods for subtypes. However, a subtype can 
override a MAP method if the supertype defines a nonfinal MAP method. A subtype 
cannot override an ORDER method at all. 

You can specify either MAP or ORDER when mapping a Java class to a SQL type. 
However, the MAP or ORDER methods must map to MEMBER functions in the Java class.

If neither a MAP nor an ORDER method is specified, then only comparisons for equality 
or inequality can be performed. Therefore object instances cannot be ordered. 
Instances of the same type definition are equal only if each pair of their corresponding 
attributes is equal. No comparison method must be specified to determine the equality 
of two object types. 

Use MAP if you are performing extensive sorting or hash join operations on object 
instances. MAP is applied once to map the objects to scalar values, and then the 
database uses the scalars during sorting and merging. A MAP method is more efficient 
than an ORDER method, which must invoke the method for each object comparison. 
You must use a MAP method for hash joins. You cannot use an ORDER method because 
the hash mechanism hashes on the object value. 

MAP MEMBER This clause lets you specify a MAP member function that returns the 
relative position of a given instance in the ordering of all instances of the object. A MAP 
method is called implicitly and induces an ordering of object instances by mapping 
them to values of a predefined scalar type. PL/SQL uses the ordering to evaluate 
Boolean expressions and to perform comparisons. 

If the argument to the MAP method is null, then the MAP method returns null and the 
method is not invoked.

An object specification can contain only one MAP method, which must be a function. 
The result type must be a predefined SQL scalar type, and the MAP method can have 
no arguments other than the implicit SELF argument.

See Also: Oracle Database Object-Relational Developer's Guide for more 
information about and examples of user-defined constructors and 
Constructor Example on page 14-74

See Also: Oracle Database Object-Relational Developer's Guide for more 
information about object value comparisons

Note: If type_name will be referenced in queries containing sorts 
(through an ORDER BY, GROUP BY, DISTINCT, or UNION clause) or 
containing joins, and you want those queries to be parallelized, then 
you must specify a MAP member function.



CREATE TYPE Statement

SQL Statements for Stored PL/SQL Units 14-71

A subtype cannot define a new MAP method. However it can override an inherited MAP 
method.

ORDER MEMBER This clause lets you specify an ORDER member function that takes 
an instance of an object as an explicit argument and the implicit SELF argument and 
returns either a negative, zero, or positive integer. The negative, positive, or zero 
indicates that the implicit SELF argument is less than, equal to, or greater than the 
explicit argument.

If either argument to the ORDER method is null, then the ORDER method returns null 
and the method is not invoked.

When instances of the same object type definition are compared in an ORDER BY 
clause, the ORDER method map_order_function_spec is invoked. 

An object specification can contain only one ORDER method, which must be a function 
having the return type NUMBER.

A subtype can neither define nor override an ORDER method.

varray_type_def
The varray_type_def clause lets you create the type as an ordered set of elements, 
each of which has the same data type.

Restrictions on Varray Types You can create a VARRAY type of XMLType or of a LOB 
type for procedural purposes, for example, in PL/SQL or in view queries. However, 
database storage of such a varray is not supported, so you cannot create an object table 
or an object type column of such a varray type.

nested_table_type_def
The nested_table_type_def clause lets you create a named nested table of type 
datatype.

Examples 

Object Type Examples The following example shows how the sample type 
customer_typ was created for the sample Order Entry (oe) schema. A hypothetical 
name is given to the table so that you can duplicate this example in your test database:

CREATE TYPE customer_typ_demo AS OBJECT
    ( customer_id        NUMBER(6)
    , cust_first_name    VARCHAR2(20)
    , cust_last_name     VARCHAR2(20)
    , cust_address       CUST_ADDRESS_TYP
    , phone_numbers      PHONE_LIST_TYP
    , nls_language       VARCHAR2(3)
    , nls_territory      VARCHAR2(30)
    , credit_limit       NUMBER(9,2)
    , cust_email         VARCHAR2(30)
    , cust_orders        ORDER_LIST_TYP
    ) ;

See Also: Varray Type Example on page 14-74

See Also:

■ Nested Table Type Example on page 14-74

■ Nested Table Type Containing a Varray on page 14-74



CREATE TYPE Statement

14-72 Oracle Database PL/SQL Language Reference

/

In the following example, the data_typ1 object type is created with one member 
function prod, which is implemented in the CREATE TYPE BODY statement:

CREATE TYPE data_typ1 AS OBJECT 
   ( year NUMBER, 
     MEMBER FUNCTION prod(invent NUMBER) RETURN NUMBER 
   ); 
/
 
CREATE TYPE BODY data_typ1 IS   
      MEMBER FUNCTION prod (invent NUMBER) RETURN NUMBER IS 
         BEGIN 
             RETURN (year + invent);
         END; 
      END; 
/

Subtype Example The following statement shows how the subtype corporate_
customer_typ in the sample oe schema was created. It is based on the customer_
typ supertype created in the preceding example and adds the account_mgr_id 
attribute. A hypothetical name is given to the table so that you can duplicate this 
example in your test database: 

CREATE TYPE corporate_customer_typ_demo UNDER customer_typ
    ( account_mgr_id     NUMBER(6)
    );

SQLJ Object Type Example The following examples create a SQLJ object type and 
subtype. The address_t type maps to the Java class Examples.Address. The 
subtype long_address_t maps to the Java class Examples.LongAddress. The 
examples specify SQLData as the mechanism used to create the Java instance of these 
types. Each of the functions in these type specifications has a corresponding 
implementation in the Java class.

CREATE TYPE address_t AS OBJECT
  EXTERNAL NAME 'Examples.Address' LANGUAGE JAVA 
  USING SQLData(
    street_attr varchar(250) EXTERNAL NAME 'street',
    city_attr varchar(50) EXTERNAL NAME 'city',
    state varchar(50) EXTERNAL NAME 'state',
    zip_code_attr number EXTERNAL NAME 'zipCode',
    STATIC FUNCTION recom_width RETURN NUMBER
      EXTERNAL VARIABLE NAME 'recommendedWidth',
    STATIC FUNCTION create_address RETURN address_t
      EXTERNAL NAME 'create() return Examples.Address',
    STATIC FUNCTION construct RETURN address_t
      EXTERNAL NAME 'create() return Examples.Address',
    STATIC FUNCTION create_address (street VARCHAR, city VARCHAR, 
        state VARCHAR, zip NUMBER) RETURN address_t
      EXTERNAL NAME 'create (java.lang.String, java.lang.String, java.lang.String, 
int) return Examples.Address',
    STATIC FUNCTION construct (street VARCHAR, city VARCHAR, 
        state VARCHAR, zip NUMBER) RETURN address_t

See Also: Oracle Database Object-Relational Developer's Guide for the 
Java implementation of the functions in these type specifications



CREATE TYPE Statement

SQL Statements for Stored PL/SQL Units 14-73

      EXTERNAL NAME 
        'create (java.lang.String, java.lang.String, java.lang.String, int) return 
Examples.Address',
    MEMBER FUNCTION to_string RETURN VARCHAR
      EXTERNAL NAME 'tojava.lang.String() return java.lang.String',
    MEMBER FUNCTION strip RETURN SELF AS RESULT 
      EXTERNAL NAME 'removeLeadingBlanks () return Examples.Address'
  ) NOT FINAL;
/

CREATE OR REPLACE TYPE long_address_t
UNDER address_t
EXTERNAL NAME 'Examples.LongAddress' LANGUAGE JAVA 
USING SQLData(
    street2_attr VARCHAR(250) EXTERNAL NAME 'street2',
    country_attr VARCHAR (200) EXTERNAL NAME 'country',
    address_code_attr VARCHAR (50) EXTERNAL NAME 'addrCode',    
    STATIC FUNCTION create_address RETURN long_address_t 
      EXTERNAL NAME 'create() return Examples.LongAddress',
    STATIC FUNCTION  construct (street VARCHAR, city VARCHAR, 
        state VARCHAR, country VARCHAR, addrs_cd VARCHAR) 
      RETURN long_address_t 
      EXTERNAL NAME 
        'create(java.lang.String, java.lang.String,
        java.lang.String, java.lang.String, java.lang.String) 
          return Examples.LongAddress',
    STATIC FUNCTION construct RETURN long_address_t
      EXTERNAL NAME 'Examples.LongAddress() 
        return Examples.LongAddress',
    STATIC FUNCTION create_longaddress (
      street VARCHAR, city VARCHAR, state VARCHAR, country VARCHAR, 
      addrs_cd VARCHAR) return long_address_t
      EXTERNAL NAME 
        'Examples.LongAddress (java.lang.String, java.lang.String,
         java.lang.String, java.lang.String, java.lang.String)
           return Examples.LongAddress',
    MEMBER FUNCTION get_country RETURN VARCHAR
      EXTERNAL NAME 'country_with_code () return java.lang.String'
  );
/

Type Hierarchy Example The following statements create a type hierarchy. Type 
employee_t inherits the name and ssn attributes from type person_t and in 
addition has department_id and salary attributes. Type part_time_emp_t 
inherits all of the attributes from employee_t and, through employee_t, those of 
person_t and in addition has a num_hrs attribute. Type part_time_emp_t is final 
by default, so no further subtypes can be created under it.

CREATE TYPE person_t AS OBJECT (name VARCHAR2(100), ssn NUMBER) 
   NOT FINAL;
/

CREATE TYPE employee_t UNDER person_t 
   (department_id NUMBER, salary NUMBER) NOT FINAL;
/

CREATE TYPE part_time_emp_t UNDER employee_t (num_hrs NUMBER);
/



CREATE TYPE Statement

14-74 Oracle Database PL/SQL Language Reference

You can use type hierarchies to create substitutable tables and tables with substitutable 
columns.

Varray Type Example The following statement shows how the phone_list_typ 
varray type with five elements in the sample oe schema was created. A hypothetical 
name is given to the table so that you can duplicate this example in your test database:

CREATE TYPE phone_list_typ_demo AS VARRAY(5) OF VARCHAR2(25);

Nested Table Type Example The following example from the sample schema pm 
creates the table type textdoc_tab of object type textdoc_typ:

CREATE TYPE textdoc_typ AS OBJECT
    ( document_typ      VARCHAR2(32)
    , formatted_doc     BLOB
    ) ;

CREATE TYPE textdoc_tab AS TABLE OF textdoc_typ;

Nested Table Type Containing a Varray The following example of multilevel 
collections is a variation of the sample table oe.customers. In this example, the 
cust_address object column becomes a nested table column with the phone_list_
typ varray column embedded in it. The phone_list_typ type was created in Varray 
Type Example on page 14-74.

CREATE TYPE cust_address_typ2 AS OBJECT
       ( street_address     VARCHAR2(40)
       , postal_code        VARCHAR2(10)
       , city               VARCHAR2(30)
       , state_province     VARCHAR2(10)
       , country_id         CHAR(2)
       , phone              phone_list_typ_demo
       );

CREATE TYPE cust_nt_address_typ
   AS TABLE OF cust_address_typ2;

Constructor Example This example invokes the system-defined constructor to 
construct the demo_typ object and insert it into the demo_tab table:

CREATE TYPE demo_typ1 AS OBJECT (a1 NUMBER, a2 NUMBER);

CREATE TABLE demo_tab1 (b1 NUMBER, b2 demo_typ1);

INSERT INTO demo_tab1 VALUES (1, demo_typ1(2,3));

Creating a Member Method: Example The following example invokes method 
constructor col.get_square. First the type is created:

CREATE TYPE demo_typ2 AS OBJECT (a1 NUMBER,  
   MEMBER FUNCTION get_square RETURN NUMBER); 

Next a table is created with an object type column and some data is inserted into the 
table:

CREATE TABLE demo_tab2(col demo_typ2); 

INSERT INTO demo_tab2 VALUES (demo_typ2(2));

See Also: Oracle Database Object-Relational Developer's Guide for more 
information about constructors



CREATE TYPE Statement

SQL Statements for Stored PL/SQL Units 14-75

The type body is created to define the member function, and the member method is 
invoked:

CREATE TYPE BODY demo_typ2 IS
   MEMBER FUNCTION get_square
   RETURN NUMBER
   IS x NUMBER;
   BEGIN
      SELECT c.col.a1*c.col.a1 INTO x
      FROM demo_tab2 c;
      RETURN (x);
   END;
END;
/
 
SELECT t.col.get_square() FROM demo_tab2 t;

T.COL.GET_SQUARE()
------------------
                 4

Unlike function invocations, method invocations require parentheses, even when the 
methods do not have additional arguments.

Creating a Static Method: Example The following example changes the definition of 
the employee_t type to associate it with the construct_emp function. The example 
first creates an object type department_t and then an object type employee_t 
containing an attribute of type department_t:

CREATE OR REPLACE TYPE department_t AS OBJECT (
   deptno number(10),
   dname CHAR(30));

CREATE OR REPLACE TYPE employee_t AS OBJECT(
   empid RAW(16),
   ename CHAR(31),
   dept REF department_t,
      STATIC function construct_emp
      (name VARCHAR2, dept REF department_t)
      RETURN employee_t
);

This statement requires the following type body statement. 

CREATE OR REPLACE TYPE BODY employee_t IS
   STATIC FUNCTION construct_emp
   (name varchar2, dept REF department_t)
   RETURN employee_t IS
      BEGIN
         return employee_t(SYS_GUID(),name,dept);
      END;
END;

Next create an object table and insert into the table:

CREATE TABLE emptab OF employee_t;
INSERT INTO emptab
   VALUES (employee_t.construct_emp('John Smith', NULL));



CREATE TYPE Statement

14-76 Oracle Database PL/SQL Language Reference

Related Topics
■ ALTER TYPE Statement on page 14-14

■ Collection on page 13-19

■ CREATE TYPE BODY Statement on page 14-77

■ DROP TYPE Statement on page 14-88

■ Defining Collection Types on page 5-6

See Also: Oracle Database Object-Relational Developer's Guide for more 
information about objects, incomplete types, varrays, and nested 
tables



CREATE TYPE BODY Statement

SQL Statements for Stored PL/SQL Units 14-77

CREATE TYPE BODY Statement 

The CREATE TYPE BODY defines or implements the member methods defined in the 
object type specification. You create object types with the CREATE TYPE and the 
CREATE TYPE BODY statements. The CREATE TYPE Statement on page 14-60 specifies 
the name of the object type, its attributes, methods, and other properties. The CREATE 
TYPE BODY statement contains the code for the methods that implement the type.

For each method specified in an object type specification for which you did not specify 
the call_spec, you must specify a corresponding method body in the object type 
body. 

Prerequisites
Every member declaration in the CREATE TYPE specification for object types must 
have a corresponding construct in the CREATE TYPE or CREATE TYPE BODY statement.

To create or replace a type body in your own schema, you must have the CREATE 
TYPE or the CREATE ANY TYPE system privilege. To create an object type in another 
user's schema, you must have the CREATE ANY TYPE system privilege. To replace an 
object type in another user's schema, you must have the DROP ANY TYPE system 
privilege.

Syntax

create_type_body ::=

(subprog_decl_in_type ::= on page 14-77, map_order_func_declaration ::= on page 14-78)

subprog_decl_in_type ::=

proc_decl_in_type ::=

Note: If you create a SQLJ object type, then specify it as a Java class.

CREATE
OR REPLACE

TYPE BODY
schema .

type_name

IS

AS

subprog_decl_in_type

map_order_func_declaration

,

END ;

MEMBER

STATIC

proc_decl_in_type

func_decl_in_type

constructor_declaration

PROCEDURE name ( parameter datatype

,

)
IS

AS

declare_section
body

call_spec



CREATE TYPE BODY Statement

14-78 Oracle Database PL/SQL Language Reference

(declare_section ::= on page 13-8, body ::= on page 13-10, call_spec ::= on page 14-78)

func_decl_in_type ::=

(declare_section ::= on page 13-8, body ::= on page 13-10, call_spec ::= on page 14-78)

constructor_declaration ::=

map_order_func_declaration ::=

call_spec ::=

Java_declaration ::=

FUNCTION name ( parameter datatype

,

) RETURN datatype

IS

AS

declare_section
body

call_spec

FINAL INSTANTIABLE
CONSTRUCTOR FUNCTION datatype

(
SELF IN OUT datatype ,

parameter datatype

,

)

RETURN SELF AS RESULT
IS

AS

declare_section
body

call_spec

MAP

ORDER
MEMBER function_declaration

LANGUAGE
Java_declaration

C_declaration

JAVA NAME string



CREATE TYPE BODY Statement

SQL Statements for Stored PL/SQL Units 14-79

C_declaration ::=

Keyword and Parameter Descriptions

OR REPLACE 
Specify OR REPLACE to re-create the type body if it already exists. Use this clause to 
change the definition of an existing type body without first dropping it.

Users previously granted privileges on the re-created object type body can use and 
reference the object type body without being granted privileges again.

You can use this clause to add new member subprogram definitions to specifications 
added with the ALTER TYPE ... REPLACE statement.

schema 
Specify the schema to contain the type body. If you omit schema, then the database 
creates the type body in your current schema.

type_name
Specify the name of an object type.

subprog_decl_in_type
Specify the type of function or procedure subprogram associated with the object type 
specification. 

You must define a corresponding method name and optional parameter list in the 
object type specification for each procedure or function declaration. For functions, you 
also must specify a return type.

proc_decl_in_type, func_decl_in_type Declare a procedure or function subprogram. 

constructor_declaration Declare a user-defined constructor subprogram. The 
RETURN clause of a constructor function must be RETURN SELF AS RESULT. This 
setting indicates that the most specific type of the value returned by the constructor 
function is the same as the most specific type of the SELF argument that was passed in 
to the constructor function.

See Also:

■ CREATE TYPE Statement on page 14-60 for a list of restrictions on 
user-defined functions

■ Overloading PL/SQL Subprogram Names on page 8-12 for 
information about overloading subprogram names

■ Oracle Database Object-Relational Developer's Guide for information 
about and examples of user-defined constructors

C
NAME name

LIBRARY lib_name
AGENT IN ( argument

,

)

WITH CONTEXT PARAMETERS ( parameter

,

)



CREATE TYPE BODY Statement

14-80 Oracle Database PL/SQL Language Reference

declare_section
Declares items that are local to the procedure or function.

body
Procedure or function statements.

call_spec Specify the call specification that maps a Java or C method name, 
parameter types, and return type to their SQL counterparts. 

The Java_declaration string identifies the Java implementation of the method.

map_order_func_declaration
You can declare either one MAP method or one ORDER method, regardless of how 
many MEMBER or STATIC methods you declare. If you declare either a MAP or ORDER 
method, then you can compare object instances in SQL. 

If you do not declare either method, then you can compare object instances only for 
equality or inequality. Instances of the same type definition are equal only if each pair 
of their corresponding attributes is equal.

MAP MEMBER Clause 
Specify MAP MEMBER to declare or implement a MAP member function that returns the 
relative position of a given instance in the ordering of all instances of the object. A MAP 
method is called implicitly and specifies an ordering of object instances by mapping 
them to values of a predefined scalar type. PL/SQL uses the ordering to evaluate 
Boolean expressions and to perform comparisons. 

If the argument to the MAP method is null, then the MAP method returns null and the 
method is not invoked.

An object type body can contain only one MAP method, which must be a function. The 
MAP function can have no arguments other than the implicit SELF argument.

ORDER MEMBER Clause 
Specify ORDER MEMBER to specify an ORDER member function that takes an instance of 
an object as an explicit argument and the implicit SELF argument and returns either a 
negative integer, zero, or a positive integer, indicating that the implicit SELF argument 
is less than, equal to, or greater than the explicit argument, respectively.

If either argument to the ORDER method is null, then the ORDER method returns null 
and the method is not invoked.

When instances of the same object type definition are compared in an ORDER BY 
clause, the database invokes the ORDER MEMBER func_decl_in_type. 

An object specification can contain only one ORDER method, which must be a function 
having the return type NUMBER.

See Also:

■ Oracle Database Java Developer's Guide for an explanation of the 
parameters and semantics of the Java_declaration

■ Oracle Database Advanced Application Developer's Guide for 
information about calling external procedures



CREATE TYPE BODY Statement

SQL Statements for Stored PL/SQL Units 14-81

func_decl_in_type Declare a function subprogram. See CREATE PROCEDURE 
Statement on page 14-42 and CREATE FUNCTION Statement on page 14-27 for the 
full syntax with all possible clauses.

AS EXTERNAL AS EXTERNAL is an alternative way of declaring a C method. This 
clause has been deprecated and is supported for backward compatibility only. Oracle 
recommends that you use the call_spec syntax with the C_declaration.

Examples 
Several examples of creating type bodies appear in the Examples section of CREATE 
TYPE Statement on page 14-60. For an example of re-creating a type body, see Adding 
a Member Function: Example on page 14-24.

Related Topics
■ CREATE TYPE Statement on page 14-60

■ DROP TYPE BODY Statement on page 14-90

■ CREATE FUNCTION Statement on page 14-27

■ CREATE PROCEDURE Statement on page 14-42



DROP FUNCTION Statement

14-82 Oracle Database PL/SQL Language Reference

DROP FUNCTION Statement

The DROP FUNCTION statement drops a standalone stored function from the database.

Prerequisites 
The function must be in your own schema or you must have the DROP ANY 
PROCEDURE system privilege. 

Syntax

drop_function::=

Keyword and Parameter Descriptions

schema 
Specify the schema containing the function. If you omit schema, then the database 
assumes the function is in your own schema. 

function_name
Specify the name of the function to be dropped. 

The database invalidates any local objects that depend on, or call, the dropped 
function. If you subsequently reference one of these objects, then the database tries to 
recompile the object and returns an error if you have not re-created the dropped 
function. 

If any statistics types are associated with the function, then the database disassociates 
the statistics types with the FORCE option and drops any user-defined statistics 
collected with the statistics type.

Example

Dropping a Function: Example The following statement drops the function 
SecondMax in the sample schema oe and invalidates all objects that depend upon 
SecondMax:

Note: Do not use this statement to drop a function that is part of a 
package. Instead, either drop the entire package using the DROP 
PACKAGE Statement on page 14-84 or redefine the package without 
the function using the CREATE PACKAGE Statement on page 14-36 
with the OR REPLACE clause.

See Also:

■ Oracle Database SQL Language Reference for information about the 
ASSOCIATE STATISTICS statement

■ Oracle Database SQL Language Reference for information about the 
DISASSOCIATE STATISTICS statement

DROP FUNCTION
schema .

function_name ;



DROP FUNCTION Statement

SQL Statements for Stored PL/SQL Units 14-83

DROP FUNCTION oe.SecondMax; 

Related Topics
■ ALTER FUNCTION Statement on page 14-3

■ CREATE FUNCTION Statement on page 14-27

See Also: Creating Aggregate Functions: Example on page 14-34 for 
information about creating the SecondMax function



DROP PACKAGE Statement

14-84 Oracle Database PL/SQL Language Reference

DROP PACKAGE Statement

The DROP PACKAGE statement drops a stored package from the database. This 
statement drops the body and specification of a package. 

Prerequisites 
The package must be in your own schema or you must have the DROP ANY 
PROCEDURE system privilege. 

Syntax

drop_package::=

Keyword and Parameter Descriptions

BODY
Specify BODY to drop only the body of the package. If you omit this clause, then the 
database drops both the body and specification of the package. 

When you drop only the body of a package but not its specification, the database does 
not invalidate dependent objects. However, you cannot call one of the procedures or 
stored functions declared in the package specification until you re-create the package 
body. 

schema 
Specify the schema containing the package. If you omit schema, then the database 
assumes the package is in your own schema. 

package
Specify the name of the package to be dropped. 

The database invalidates any local objects that depend on the package specification. If 
you subsequently reference one of these objects, then the database tries to recompile 
the object and returns an error if you have not re-created the dropped package.

If any statistics types are associated with the package, then the database disassociates 
the statistics types with the FORCE clause and drops any user-defined statistics 
collected with the statistics types. 

Note: Do not use this statement to drop a single object from a 
package. Instead, re-create the package without the object using the 
CREATE PACKAGE Statement on page 14-36 and CREATE 
PACKAGE BODY Statement on page 14-39 with the OR REPLACE 
clause.

DROP PACKAGE
BODY schema .

package ;



DROP PACKAGE Statement

SQL Statements for Stored PL/SQL Units 14-85

Example

Dropping a Package: Example The following statement drops the specification and 
body of the emp_mgmt package, which was created in Creating a Package Body: 
Example on page 14-40, invalidating all objects that depend on the specification:

DROP PACKAGE emp_mgmt; 

Related Topics
■ ALTER PACKAGE Statement on page 14-6

■ CREATE PACKAGE Statement on page 14-36

■ CREATE PACKAGE BODY Statement on page 14-39

See Also:

■ Oracle Database SQL Language Reference for information about the 
ASSOCIATE STATISTICS statement

■ Oracle Database SQL Language Reference for information about the 
DISASSOCIATE STATISTICS statement



DROP PROCEDURE Statement

14-86 Oracle Database PL/SQL Language Reference

DROP PROCEDURE Statement

The DROP PROCEDURE statement drops a standalone stored procedure from the 
database.

Prerequisites 
The procedure must be in your own schema or you must have the DROP ANY 
PROCEDURE system privilege. 

Syntax

drop_procedure::=

Keyword and Parameter Descriptions 

schema 
Specify the schema containing the procedure. If you omit schema, then the database 
assumes the procedure is in your own schema. 

procedure 
Specify the name of the procedure to be dropped. 

When you drop a procedure, the database invalidates any local objects that depend 
upon the dropped procedure. If you subsequently reference one of these objects, then 
the database tries to recompile the object and returns an error message if you have not 
re-created the dropped procedure. 

Example

Dropping a Procedure: Example The following statement drops the procedure 
remove_emp owned by the user hr and invalidates all objects that depend upon 
remove_emp:

DROP PROCEDURE hr.remove_emp; 

Related Topics
■ ALTER PROCEDURE Statement on page 14-9

■ CREATE PROCEDURE Statement on page 14-42

Note: Do not use this statement to remove a procedure that is part of 
a package. Instead, either drop the entire package using the DROP 
PACKAGE Statement on page 14-84, or redefine the package without 
the procedure using the CREATE PACKAGE Statement on page 14-36 
with the OR REPLACE clause.

DROP PR0CEDURE
schema .

procedure ;



DROP TRIGGER Statement

SQL Statements for Stored PL/SQL Units 14-87

DROP TRIGGER Statement

The DROP TRIGGER statement drops a database trigger from the database. 

Prerequisites 
The trigger must be in your own schema or you must have the DROP ANY TRIGGER 
system privilege. To drop a trigger on DATABASE in another user's schema, you must 
also have the ADMINISTER DATABASE TRIGGER system privilege.

Syntax

drop_trigger::=

Keyword and Parameter Descriptions 

schema
Specify the schema containing the trigger. If you omit schema, then the database 
assumes the trigger is in your own schema. 

trigger 
Specify the name of the trigger to be dropped. the database removes it from the 
database and does not fire it again.

Example

Dropping a Trigger: Example The following statement drops the salary_check 
trigger in the schema hr:

DROP TRIGGER hr.salary_check; 

Related Topics
■ ALTER TRIGGER Statement on page 14-11

■ CREATE TRIGGER Statement on page 14-47

DROP TRIGGER
schema .

trigger ;



DROP TYPE Statement

14-88 Oracle Database PL/SQL Language Reference

DROP TYPE Statement

The DROP TYPE statement drops the specification and body of an object type, a varray, 
or a nested table type.

Prerequisites
The object type, varray, or nested table type must be in your own schema or you must 
have the DROP ANY TYPE system privilege.

Syntax

drop_type::=

Keyword and Parameter Descriptions

schema
Specify the schema containing the type. If you omit schema, then the database 
assumes the type is in your own schema. 

type_name 
Specify the name of the object, varray, or nested table type to be dropped. You can 
drop only types with no type or table dependencies.

If type_name is a supertype, then this statement will fail unless you also specify 
FORCE. If you specify FORCE, then the database invalidates all subtypes depending on 
this supertype.

If type_name is a statistics type, then this statement will fail unless you also specify 
FORCE. If you specify FORCE, then the database first disassociates all objects that are 
associated with type_name and then drops type_name. 

If type_name is an object type that has been associated with a statistics type, then the 
database first attempts to disassociate type_name from the statistics type and then 
drops type_name. However, if statistics have been collected using the statistics type, 
then the database will be unable to disassociate type_name from the statistics type, 
and this statement will fail.

If type_name is an implementation type for an indextype, then the indextype will be 
marked INVALID.

See Also:

■ Oracle Database SQL Language Reference for information about the 
ASSOCIATE STATISTICS statement

■ Oracle Database SQL Language Reference for information about the 
DISASSOCIATE STATISTICS statement

DROP TYPE
schema .

type_name

FORCE

VALIDATE
;



DROP TYPE Statement

SQL Statements for Stored PL/SQL Units 14-89

If type_name has a public synonym defined on it, then the database will also drop the 
synonym.

Unless you specify FORCE, you can drop only object types, nested tables, or varray 
types that are standalone schema objects with no dependencies. This is the default 
behavior.

FORCE 
Specify FORCE to drop the type even if it has dependent database objects. the database 
marks UNUSED all columns dependent on the type to be dropped, and those columns 
become inaccessible.

VALIDATE 
If you specify VALIDATE when dropping a type, then the database checks for stored 
instances of this type within substitutable columns of any of its supertypes. If no such 
instances are found, then the database completes the drop operation.

This clause is meaningful only for subtypes. Oracle recommends the use of this option 
to safely drop subtypes that do not have any explicit type or table dependencies.

Example

Dropping an Object Type: Example The following statement removes object type 
person_t. See Type Hierarchy Example on page 14-73 for the example that creates 
this object type. Any columns that are dependent on person_t are marked UNUSED and 
become inaccessible.

DROP TYPE person_t FORCE;

Related Topics
■ ALTER TYPE Statement on page 14-14

■ CREATE TYPE Statement on page 14-60

■ CREATE TYPE BODY Statement on page 14-77

See Also: Oracle Database SQL Language Reference for information 
about the CREATE INDEXTYPE statement

Caution: Oracle does not recommend that you specify FORCE to 
drop object types with dependencies. This operation is not recoverable 
and could cause the data in the dependent tables or columns to 
become inaccessible. 



DROP TYPE BODY Statement

14-90 Oracle Database PL/SQL Language Reference

DROP TYPE BODY Statement

The DROP TYPE BODY statement drops the body of an object type, varray, or nested 
table type. When you drop a type body, the object type specification still exists, and 
you can re-create the type body. Prior to re-creating the body, you can still use the 
object type, although you cannot call the member functions.

Prerequisites
The object type body must be in your own schema or you must have the DROP ANY 
TYPE system privilege.

Syntax

drop_type_body::=

Keyword and Parameter Descriptions

schema
Specify the schema containing the object type. If you omit schema, then the database 
assumes the object type is in your own schema. 

type_name
Specify the name of the object type body to be dropped. 

Restriction on Dropping Type Bodies You can drop a type body only if it has no type 
or table dependencies.

Example

Dropping an Object Type Body: Example The following statement removes object 
type body data_typ1. See Object Type Examples on page 14-71 for the example that 
creates this object type. 

DROP TYPE BODY data_typ1;

Related Topics
■ ALTER TYPE Statement on page 14-14

■ CREATE TYPE Statement on page 14-60

■ CREATE TYPE BODY Statement on page 14-77

DROP TYPE BODY
schema .

type_name ;



A

Wrapping PL/SQL Source Code A-1

A Wrapping PL/SQL Source Code

This appendix explains what wrapping is, why you wrap PL/SQL code, and how to 
do it.

Topics:

■ Overview of Wrapping

■ Guidelines for Wrapping

■ Limitations of Wrapping

■ Wrapping PL/SQL Code with wrap Utility

■ Wrapping PL/QL Code with DBMS_DDL Subprograms

Overview of Wrapping
Wrapping is the process of hiding PL/SQL source code. Wrapping helps to protect 
your source code from business competitors and others who might misuse it.

You can wrap PL/SQL source code with either the wrap utility or DBMS_DDL 
subprograms. The wrap utility wraps a single source file, such as a SQL*Plus script. 
The DBMS_DDL subprograms wrap a single dynamically generated PL/SQL unit, such 
as a single CREATE PROCEDURE statement.

Wrapped source files can be moved, backed up, and processed by SQL*Plus and the 
Import and Export utilities, but they are not visible through the static data dictionary 
views *_SOURCE.

Guidelines for Wrapping
■ Wrap only the body of a package or object type, not the specification.

This allows other developers to see the information they must use the package or 
type, but prevents them from seeing its implementation.

■ Wrap code only after you have finished editing it.

You cannot edit PL/SQL source code inside wrapped files. Either wrap your code 
after it is ready to ship to users or include the wrapping operation as part of your 
build environment.

Note: Wrapping a file that is already wrapped has no effect on the 
file.



Limitations of Wrapping

A-2 Oracle Database PL/SQL Language Reference

To change wrapped PL/SQL code, edit the original source file and then wrap it 
again.

■ Before distributing a wrapped file, view it in a text editor to be sure that all 
important parts are wrapped.

Limitations of Wrapping
■ Wrapping is not a secure method for hiding passwords or table names.

Wrapping a PL/SQL unit prevents most users from examining the source code, 
but might not stop all of them.

■ Wrapping does not hide the source code for triggers.

To hide the workings of a trigger, write a one-line trigger that invokes a wrapped 
subprogram.

■ Wrapping does not detect syntax or semantic errors.

Wrapping detects only tokenization errors (for example, runaway strings), not 
syntax or semantic errors (for example, nonexistent tables or views). Syntax or 
semantic errors are detected during PL/SQL compilation or when executing the 
output file in SQL*Plus.

■ Wrapped PL/SQL units are not downward-compatible.

Wrapped PL/SQL units are upward-compatible between Oracle Database releases, 
but are not downward-compatible. For example, you can load files processed by 
the V8.1.5 wrap utility into a V8.1.6 Oracle Database, but you cannot load files 
processed by the V8.1.6 wrap utility into a V8.1.5 Oracle Database.

Wrapping PL/SQL Code with wrap Utility
The wrap utility processes an input SQL file and wraps only the PL/SQL units in the 
file, such as a package specification, package body, function, procedure, type 
specification, or type body. It does not wrap PL/SQL content in anonymous blocks or 
triggers or non-PL/SQL code.

To run the wrap utility, enter the wrap command at your operating system prompt 
using the following syntax (with no spaces around the equal signs):

wrap iname=input_file [ oname=output_file ]

input_file is the name of a file containing SQL statements, that you typically run 
using SQL*Plus. If you omit the file extension, an extension of .sql is assumed. For 
example, the following commands are equivalent:

wrap iname=/mydir/myfile
wrap iname=/mydir/myfile.sql

You can also specify a different file extension:

wrap iname=/mydir/myfile.src

See Also:

■ Limitations of the wrap Utility on page A-4

■ Limitation of the DBMS_DDL.WRAP Function on page A-6



Wrapping PL/SQL Code with wrap Utility

Wrapping PL/SQL Source Code A-3

output_file is the name of the wrapped file that is created. The defaults to that of 
the input file and its extension default is .plb. For example, the following commands 
are equivalent:

wrap iname=/mydir/myfile
wrap iname=/mydir/myfile.sql oname=/mydir/myfile.plb

You can use the option oname to specify a different file name and extension:

wrap iname=/mydir/myfile oname=/yourdir/yourfile.out

Topics:

■ Input and Output Files for the PL/SQL wrap Utility

■ Running the wrap Utility

■ Limitations of the wrap Utility

Input and Output Files for the PL/SQL wrap Utility
The input file can contain any combination of SQL statements. Most statements are 
passed through unchanged. CREATE statements that define subprograms, packages, or 
object types are wrapped; their bodies are replaced by a scrambled form that the 
PL/SQL compiler understands.

The following CREATE statements are wrapped:

CREATE [OR REPLACE] FUNCTION function_name
CREATE [OR REPLACE] PROCEDURE procedure_name
CREATE [OR REPLACE] PACKAGE package_name
CREATE [OR REPLACE] PACKAGE BODY package_name
CREATE [OR REPLACE] TYPE type_name AS OBJECT
CREATE [OR REPLACE] TYPE type_name UNDER type_name
CREATE [OR REPLACE] TYPE BODY type_name

The CREATE [OR REPLACE] TRIGGER statement, and [DECLARE] BEGIN-END 
anonymous blocks, are not wrapped. All other SQL statements are passed unchanged 
to the output file.

All comment lines in the unit being wrapped are deleted, except for those in a CREATE 
OR REPLACE header and C-style comments (delimited by /* */).

The output file is a text file, which you can run as a script in SQL*Plus to set up your 
PL/SQL subprograms and packages. Run a wrapped file as follows:

SQL> @wrapped_file_name.plb;

Running the wrap Utility
For example, assume that the wrap_test.sql file contains the following:

CREATE PROCEDURE wraptest IS
  TYPE emp_tab IS TABLE OF employees%ROWTYPE INDEX BY PLS_INTEGER;
  all_emps      emp_tab;
BEGIN
  SELECT * BULK COLLECT INTO all_emps FROM employees;

Note: If input_file is already wrapped, output_file will be 
identical to input_file.



Wrapping PL/QL Code with DBMS_DDL Subprograms

A-4 Oracle Database PL/SQL Language Reference

  FOR i IN 1..10 LOOP
    DBMS_OUTPUT.PUT_LINE('Emp Id: ' || all_emps(i).employee_id);
  END LOOP;
END;
/

To wrap the file, run the following from the operating system prompt:

wrap iname=wrap_test.sql

The output of the wrap utility is similar to the following:

PL/SQL Wrapper: Release 10.2.0.0.0 on Tue Apr 26 16:47:39 2005
Copyright (c) 1993, 2005, Oracle.  All rights reserved.
Processing wrap_test.sql to wrap_test.plb

If you view the contents of the wrap_test.plb text file, the first line is CREATE 
PROCEDURE wraptest wrapped and the rest of the file contents is hidden.

You can run wrap_test.plb in SQL*Plus to execute the SQL statements in the file:

SQL> @wrap_test.plb

After the wrap_test.plb is run, you can execute the procedure that was created:

SQL> CALL wraptest();

Limitations of the wrap Utility
■ The PL/SQL code to be wrapped cannot include substitution variables using the 

SQL*Plus DEFINE notation.

Wrapped source code is parsed by the PL/SQL compiler, not by SQL*Plus.

■ The wrap utility removes most comments from wrapped files.

See Input and Output Files for the PL/SQL wrap Utility on page A-3.

Wrapping PL/QL Code with DBMS_DDL Subprograms
The DBMS_DDL package contains procedures for wrapping a single PL/SQL unit, such 
as a package specification, package body, function, procedure, type specification, or 
type body. These overloaded subprograms provide a mechanism for wrapping 
dynamically generated PL/SQL units that are created in a database.

The DBMS_DDL package contains the WRAP functions and the CREATE_WRAPPED 
procedures. The CREATE_WRAPPED both wraps the text and creates the PL/SQL unit. 
When invoking the wrap procedures, use the fully qualified package name, 
SYS.DBMS_DDL, to avoid any naming conflicts and the possibility that someone might 
create a local package called DBMS_DDL or define the DBMS_DDL public synonym. The 
input CREATE OR REPLACE statement executes with the privileges of the user who 
invokes DBMS_DDL.WRAP or DBMS_DDL.CREATE_WRAPPED.

The DBMS_DDL package also provides the MALFORMED_WRAP_INPUT exception 
(ORA-24230) which is raised if the input to the wrap procedures is not a valid PL/SQL 
unit.

Note: Wrapping a PL/SQL unit that is already wrapped has no effect 
on the unit.



Wrapping PL/QL Code with DBMS_DDL Subprograms

Wrapping PL/SQL Source Code A-5

Topics:

■ Using DBMS_DDL.CREATE_WRAPPED Procedure

■ Limitation of the DBMS_DDL.WRAP Function

Using DBMS_DDL.CREATE_WRAPPED Procedure
In Example A–1 CREATE_WRAPPED is used to dynamically create and wrap a package 
specification and a package body in a database.

Example A–1 Using DBMS_DDL.CREATE_WRAPPED Procedure to Wrap a Package

DECLARE
  package_text VARCHAR2(32767); -- text for creating package spec & body

  FUNCTION generate_spec (pkgname VARCHAR2) RETURN VARCHAR2 AS
  BEGIN
    RETURN 'CREATE PACKAGE ' || pkgname || ' AS
      PROCEDURE raise_salary (emp_id NUMBER, amount NUMBER);
      PROCEDURE fire_employee (emp_id NUMBER);
      END ' || pkgname || ';';
  END generate_spec;

  FUNCTION generate_body (pkgname VARCHAR2) RETURN VARCHAR2 AS
  BEGIN
    RETURN 'CREATE PACKAGE BODY ' || pkgname || ' AS
      PROCEDURE raise_salary (emp_id NUMBER, amount NUMBER) IS
      BEGIN
        UPDATE employees
          SET salary = salary + amount WHERE employee_id = emp_id;
      END raise_salary;
      PROCEDURE fire_employee (emp_id NUMBER) IS
      BEGIN
        DELETE FROM employees WHERE employee_id = emp_id;
      END fire_employee;
    END ' || pkgname || ';';
  END generate_body;

BEGIN
  -- Generate package spec
  package_text := generate_spec('emp_actions')

  -- Create wrapped package spec
  DBMS_DDL.CREATE_WRAPPED(package_text);

  -- Generate package body
  package_text := generate_body('emp_actions');

  -- Create wrapped package body
  DBMS_DDL.CREATE_WRAPPED(package_text);
END;
/

-- Invoke procedure from wrapped package
CALL emp_actions.raise_salary(120, 100);

See Also: Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_DDL package



Wrapping PL/QL Code with DBMS_DDL Subprograms

A-6 Oracle Database PL/SQL Language Reference

When you check the static data dictionary views *_SOURCE, the source is wrapped, or 
hidden, so that others cannot view the code details. For example:

SELECT text FROM USER_SOURCE WHERE name = 'EMP_ACTIONS';

The resulting output is similar to the following:

TEXT
--------------------------------------------------------------------
PACKAGE emp_actions WRAPPED
a000000
1f
abcd
...

Limitation of the DBMS_DDL.WRAP Function
If you invoke DBMS_SQL.PARSE (when using an overload where the statement formal 
has data type VARCHAR2A or VARCHAR2S for text which exceeds 32767 bytes) on the 
output of DBMS_DDL.WRAP, then you must set the LFFLG parameter to FALSE. 
Otherwise DBMS_SQL.PARSE adds newlines to the wrapped unit which corrupts the 
unit.



B

How PL/SQL Resolves Identifier Names B-1

B How PL/SQL Resolves Identifier Names

This appendix explains how PL/SQL resolves references to names in potentially 
ambiguous SQL and procedural statements.

Topics:

■ What is Name Resolution?

■ Examples of Qualified Names and Dot Notation

■ How Name Resolution Differs in PL/SQL and SQL

■ What is Capture?

■ Avoiding Inner Capture in DML Statements

What is Name Resolution?
During compilation, the PL/SQL compiler determines which objects are associated 
with each name in a PL/SQL subprogram. A name might refer to a local variable, a 
table, a package, a subprogram, a schema, and so on. When a subprogram is 
recompiled, that association might change if objects were created or deleted. 

A declaration or definition in an inner scope can hide another in an outer scope. In 
Example B–1, the declaration of variable client hides the definition of data type 
Client because PL/SQL names are not case sensitive.

Example B–1 Resolving Global and Local Variable Names

BEGIN 
<<block1>>
DECLARE
TYPE Client IS RECORD ( 
first_name VARCHAR2(20), last_name VARCHAR2(25));
TYPE Customer IS RECORD (

first_name VARCHAR2(20), last_name VARCHAR2(25));
BEGIN
DECLARE
client Customer;
-- hides definition of type Client in outer scope
-- lead1  Client;
-- not allowed; Client resolves to the variable client
lead2  block1.Client; 
-- OK; refers to type Client

BEGIN
-- no processing, just an example of name resolution
NULL;

END;



Examples of Qualified Names and Dot Notation

B-2 Oracle Database PL/SQL Language Reference

END;
END;
/

You can refer to data type Client by qualifying the reference with block label 
block1.

In the following set of CREATE TYPE statements, the second statement generates a 
warning. Creating an attribute named manager hides the type named manager, so 
the declaration of the second attribute does not execute correctly. 

CREATE TYPE manager AS OBJECT (dept NUMBER);
/
CREATE TYPE person AS OBJECT (manager NUMBER, mgr manager)

-- raises a warning;
/

Examples of Qualified Names and Dot Notation
During name resolution, the compiler can encounter various forms of references 
including simple unqualified names, dot-separated chains of identifiers, indexed 
components of a collection, and so on. This is shown in Example B–2.

Example B–2 Using the Dot Notation to Qualify Names

CREATE OR REPLACE PACKAGE pkg1 AS
   m NUMBER;
   TYPE t1 IS RECORD (a NUMBER);
   v1 t1;
   TYPE t2 IS TABLE OF t1 INDEX BY PLS_INTEGER;
   v2 t2; 
   FUNCTION f1 (p1 NUMBER) RETURN t1;
   FUNCTION f2 (q1 NUMBER) RETURN t2;
END pkg1;
/

CREATE OR REPLACE PACKAGE BODY pkg1 AS
   FUNCTION f1 (p1 NUMBER) RETURN t1 IS
     n NUMBER;
   BEGIN
-- (1) unqualified name
     n := m;
-- (2) dot-separated chain of identifiers
-- (package name used as scope qualifier
-- followed by variable name)
     n := pkg1.m;
-- (3) dot-separated chain of identifiers
-- (package name used as scope
-- qualifier followed by function name
-- also used as scope qualifier
-- followed by parameter name)
     n := pkg1.f1.p1;
-- (4) dot-separated chain of identifiers
-- (variable name followed by
-- component selector)
     n := v1.a;
-- (5) dot-separated chain of identifiers
-- (package name used as scope
-- qualifier followed by variable name
-- followed by component selector)



Examples of Qualified Names and Dot Notation

How PL/SQL Resolves Identifier Names B-3

     n := pkg1.v1.a;
-- (6) indexed name followed by component selector
     n := v2(10).a;
-- (7) function call followed by component selector
     n := f1(10).a;
-- (8) function call followed by indexing followed by
-- component selector
     n := f2(10)(10).a;
-- (9) function call (which is a dot-separated
-- chain of identifiers, including schema name used
-- as scope qualifier followed by package name used
-- as scope qualifier followed by function name)
-- followed by component selector of the returned
-- result followed by indexing followed by component selector
     n := hr.pkg1.f2(10)(10).a;
-- (10) variable name followed by component selector
     v1.a := p1;
     RETURN v1;
   END f1;

   FUNCTION f2 (q1 NUMBER) RETURN t2 IS
   v_t1 t1;
   v_t2 t2;
   BEGIN
     v_t1.a := q1;
     v_t2(1) := v_t1;
     RETURN v_t2;
   END f2;
END pkg1;
/
An outside reference to a private variable declared in a function body is not legal. For 
example, an outside reference to the variable n declared in function f1, such as 
hr.pkg1.f1.n from function f2, raises an exception. See Private and Public Items in 
PL/SQL Packages on page 10-9.

Dot notation is used for identifying record fields, object attributes, and items inside 
packages or other schemas. When you combine these items, you might need to use 
expressions with multiple levels of dots, where it is not always clear what each dot 
refers to. Some of the combinations are:

■ Field or attribute of a function return value, for example:

func_name().field_name
func_name().attribute_name

■ Schema object owned by another schema, for example:

schema_name.table_name
schema_name.procedure_name()
schema_name.type_name.member_name()

■ Package object owned by another user, for example:

schema_name.package_name.procedure_name()
schema_name.package_name.record_name.field_name

■ Record containing object type, for example:

record_name.field_name.attribute_name
record_name.field_name.member_name()



How Name Resolution Differs in PL/SQL and SQL

B-4 Oracle Database PL/SQL Language Reference

How Name Resolution Differs in PL/SQL and SQL
The name resolution rules for PL/SQL and SQL are similar. You can avoid the few 
differences if you follow the capture avoidance rules. For compatibility, the SQL rules 
are more permissive than the PL/SQL rules. SQL rules, which are mostly context 
sensitive, recognize as legal more situations and DML statements than the PL/SQL 
rules.

■ PL/SQL uses the same name-resolution rules as SQL when the PL/SQL compiler 
processes a SQL statement, such as a DML statement. For example, for a name 
such as HR.JOBS, SQL matches objects in the HR schema first, then packages, types, 
tables, and views in the current schema.

■ PL/SQL uses a different order to resolve names in PL/SQL statements such as 
assignments and subprogram calls. In the case of a name HR.JOBS, PL/SQL 
searches first for packages, types, tables, and views named HR in the current 
schema, then for objects in the HR schema.

For information about SQL naming rules, see Oracle Database SQL Language Reference.

What is Capture?
When a declaration or type definition in another scope prevents the compiler from 
resolving a reference correctly, that declaration or definition is said to capture the 
reference. Capture is usually the result of migration or schema evolution. There are 
three kinds of capture: inner, same-scope, and outer. Inner and same-scope capture 
apply only in SQL scope.

Topics:

■ Inner Capture

■ Same-Scope Capture

■ Outer Capture

Inner Capture
An inner capture occurs when a name in an inner scope no longer refers to an entity in 
an outer scope:

■ The name might now resolve to an entity in an inner scope. 

■ The program might cause an error, if some part of the identifier is captured in an 
inner scope and the complete reference cannot be resolved.

If the reference points to a different but valid name, you might not know why the 
program is acting differently.

In the following example, the reference to col2 in the inner SELECT statement binds 
to column col2 in table tab1 because table tab2 has no column named col2:

CREATE TABLE tab1 (col1 NUMBER, col2 NUMBER);
INSERT INTO tab1 VALUES (100, 10);
CREATE TABLE tab2 (col1 NUMBER);
INSERT INTO tab2 VALUES (100);

CREATE OR REPLACE PROCEDURE proc AS
   CURSOR c1 IS SELECT * FROM tab1
      WHERE EXISTS (SELECT * FROM tab2 WHERE col2 = 10);
BEGIN
   NULL;



Avoiding Inner Capture in DML Statements

How PL/SQL Resolves Identifier Names B-5

END;
/

In the preceding example, if you add a column named col2 to table tab2:

ALTER TABLE tab2 ADD (col2 NUMBER);

then procedure proc is invalidated and recompiled automatically upon next use. 
However, upon recompilation, the col2 in the inner SELECT statement binds to 
column col2 in table tab2 because tab2 is in the inner scope. Thus, the reference to 
col2 is captured by the addition of column col2 to table tab2. 

Using collections and object types can cause more inner capture situations. In the 
following example, the reference to hr.tab2.a resolves to attribute a of column tab2 
in table tab1 through table alias hr, which is visible in the outer scope of the query:

CREATE TYPE type1 AS OBJECT (a NUMBER);
/
CREATE TABLE tab1 (tab2 type1);
INSERT INTO tab1 VALUES ( type1(10) );
CREATE TABLE tab2 (x NUMBER);
INSERT INTO tab2 VALUES ( 10 );

-- in the following,
-- alias tab1 with same name as schema name,
-- which is not a good practice
-- but is used here for illustration purpose
-- note lack of alias in second SELECT
SELECT * FROM tab1 hr
   WHERE EXISTS (SELECT * FROM hr.tab2 WHERE x = hr.tab2.a);

In the preceding example, you might add a column named a to table hr.tab2, which 
appears in the inner subquery. When the query is processed, an inner capture occurs 
because the reference to hr.tab2.a resolves to column a of table tab2 in schema hr. 
You can avoid inner captures by following the rules given in Avoiding Inner Capture 
in DML Statements on page B-5. According to those rules, revise the query as follows:

SELECT * FROM hr.tab1 p1
WHERE EXISTS (SELECT * FROM hr.tab2 p2 WHERE p2.x = p1.tab2.a);

Same-Scope Capture
In SQL scope, a same-scope capture occurs when a column is added to one of two 
tables used in a join, so that the same column name exists in both tables. Previously, 
you could refer to that column name in a join query. To avoid an error, now you must 
qualify the column name with the table name.

Outer Capture
An outer capture occurs when a name in an inner scope, which once resolved to an 
entity in an inner scope, is resolved to an entity in an outer scope. SQL and PL/SQL 
are designed to prevent outer captures. You need not take any action to avoid this 
condition. 

Avoiding Inner Capture in DML Statements
You can avoid inner capture in DML statements by following these rules:



Avoiding Inner Capture in DML Statements

B-6 Oracle Database PL/SQL Language Reference

■ Specify an alias for each table in the DML statement.

■ Keep table aliases unique throughout the DML statement.

■ Avoid table aliases that match schema names used in the query.

■ Qualify each column reference with the table alias.

Qualifying a reference with schema_name.table_name does not prevent inner 
capture if the statement refers to tables with columns of a user-defined object type. 

Columns of a user-defined object type allow for more inner capture situations. To 
minimize problems, the name-resolution algorithm includes the following rules for the 
use of table aliases.

Topics:

■ Qualifying References to Attributes and Methods

■ Qualifying References to Row Expressions

Qualifying References to Attributes and Methods
All references to attributes and methods must be qualified by a table alias. When 
referencing a table, if you reference the attributes or methods of an object stored in that 
table, the table name must be accompanied by an alias. As the following examples 
show, column-qualified references to an attribute or method are not allowed if they are 
prefixed with a table name:

CREATE TYPE t1 AS OBJECT (x NUMBER);
/
CREATE TABLE tb1 (col1 t1); 

BEGIN
-- following inserts are allowed without an alias 
-- because there is no column list
  INSERT INTO tb1 VALUES ( t1(10) );
  INSERT INTO tb1 VALUES ( t1(20) );
  INSERT INTO tb1 VALUES ( t1(30) );
END;
/
BEGIN
  UPDATE tb1 SET col1.x = 10 
  WHERE col1.x = 20; -- error, not allowed
END;
/
BEGIN
  UPDATE tb1 SET tb1.col1.x = 10 
  WHERE tb1.col1.x = 20; -- not allowed
END;
/
BEGIN
  UPDATE hr.tb1 SET hr.tb1.col1.x = 10 
WHERE hr.tb1.col1.x = 20; -- not allowed

END;
/
BEGIN -- following allowed with table alias
  UPDATE hr.tb1 t set t.col1.x = 10 
  WHERE t.col1.x = 20;
END;
/
DECLARE
  y NUMBER;



Avoiding Inner Capture in DML Statements

How PL/SQL Resolves Identifier Names B-7

BEGIN -- following allowed with table alias
  SELECT t.col1.x INTO y FROM tb1 t 
  WHERE t.col1.x = 30;
END;
/
BEGIN
  DELETE FROM tb1 
  WHERE tb1.col1.x = 10; -- not allowed
END;
/
BEGIN -- following allowed with table alias
  DELETE FROM tb1 t 
  WHERE t.col1.x = 10;
END;
/

Qualifying References to Row Expressions
Row expressions must resolve as references to table aliases. You can pass row 
expressions to operators REF and VALUE, and you can use row expressions in the SET 
clause of an UPDATE statement. For  example: 

CREATE TYPE t1 AS OBJECT (x number);
/
CREATE TABLE ot1 OF t1;

BEGIN
-- following inserts are allowed without an alias 
-- because there is no column list
  INSERT INTO ot1 VALUES ( t1(10) );
  INSERT INTO ot1 VALUES ( 20 );
  INSERT INTO ot1 VALUES ( 30 );
END;
/
BEGIN
  UPDATE ot1 SET VALUE(ot1.x) = t1(20) 
WHERE VALUE(ot1.x) = t1(10); -- not allowed

END;
/
BEGIN -- following allowed with table alias
  UPDATE ot1 o SET o = (t1(20)) WHERE o.x = 10;
END;
/
DECLARE
  n_ref REF t1;
BEGIN -- following allowed with table alias
  SELECT REF(o) INTO n_ref FROM ot1 o 
  WHERE VALUE(o) = t1(30); 
END;
/
DECLARE
  n t1;
BEGIN -- following allowed with table alias
  SELECT VALUE(o) INTO n FROM ot1 o 
  WHERE VALUE(o) = t1(30); 
END;
/
DECLARE
  n NUMBER;
BEGIN -- following allowed with table alias



Avoiding Inner Capture in DML Statements

B-8 Oracle Database PL/SQL Language Reference

  SELECT o.x INTO n FROM ot1 o WHERE o.x = 30; 
END;
/
BEGIN
  DELETE FROM ot1 
  WHERE VALUE(ot1) = (t1(10)); -- not allowed
END;
/
BEGIN -- folowing allowed with table alias 
  DELETE FROM ot1 o 
  WHERE VALUE(o) = (t1(20));
END;
/



C

PL/SQL Program Limits C-1

C PL/SQL Program Limits

This appendix describes the program limits that are imposed by the PL/SQL 
language. PL/SQL is based on the programming language Ada. As a result, PL/SQL 
uses a variant of Descriptive Intermediate Attributed Notation for Ada (DIANA), a 
tree-structured intermediate language. It is defined using a meta-notation called 
Interface Definition Language (IDL). DIANA is used internally by compilers and other 
tools.

At compile time, PL/SQL source code is translated into system code. Both the DIANA 
and system code for a subprogram or package are stored in the database. At run time, 
they are loaded into the shared memory pool. The DIANA is used to compile 
dependent subprograms; the system code is simply executed.

In the shared memory pool, a package spec, object type spec, standalone subprogram, 
or anonymous block is limited to 67108864 (2**26) DIANA nodes which correspond to 
tokens such as identifiers, keywords, operators, and so on. This allows for ~6,000,000 
lines of code unless you exceed limits imposed by the PL/SQL compiler, some of 
which are given in Table C–1. 

Table C–1 PL/SQL Compiler Limits

Item Limit

bind variables passed to a program unit 32768

exception handlers in a program unit 65536

fields in a record 65536

levels of block nesting 255

levels of record nesting 32

levels of subquery nesting 254

levels of label nesting 98

levels of nested collections no predefined limit

magnitude of a PLS_INTEGER or  BINARY_
INTEGERvalue

-2147483648..2147483647

number of formal parameters in an explicit 
cursor, function, or procedure

65536

objects referenced by a program unit 65536

precision of a FLOAT value (binary digits) 126

precision of a NUMBER value (decimal digits) 38

precision of a REAL value (binary digits) 63



C-2 Oracle Database PL/SQL Language Reference

To estimate how much memory a program unit requires, you can query the static data 
dictionary view USER_OBJECT_SIZE. The column PARSED_SIZE returns the size (in 
bytes) of the "flattened" DIANA. For example:

SQL> SELECT * FROM user_object_size WHERE name = 'PKG1';

NAME TYPE        SOURCE_SIZE  PARSED_SIZE  CODE_SIZE  ERROR_SIZE
----------------------------------------------------------------
PKG1 PACKAGE              46          165        119           0
PKG1 PACKAGE BODY         82            0        139           0

Unfortunately, you cannot estimate the number of DIANA nodes from the parsed size. 
Two program units with the same parsed size might require 1500 and 2000 DIANA 
nodes, respectively because, for example, the second unit contains more complex SQL 
statements. 

When a PL/SQL block, subprogram, package, or object type exceeds a size limit, you 
get an error such as PLS-00123: program too large. Typically, this problem occurs 
with packages or anonymous blocks. With a package, the best solution is to divide it 
into smaller packages. With an anonymous block, the best solution is to redefine it as a 
group of subprograms, which can be stored in the database.

For more information about the limits on data types, see Chapter 3, "PL/SQL Data 
Types." For limits on collection subscripts, see Referencing Collection Elements on 
page 5-12.

size of an identifier (characters) 30

size of a string literal (bytes) 32767

size of a CHAR value (bytes) 32767

size of a LONG value (bytes) 32760

size of a LONG RAW value (bytes) 32760

size of a RAW value (bytes) 32767

size of a VARCHAR2 value (bytes) 32767

size of an NCHAR value (bytes) 32767

size of an NVARCHAR2 value (bytes) 32767

size of a BFILE value (bytes) 4G * value of DB_BLOCK_SIZE parameter

size of a BLOB value (bytes) 4G * value of DB_BLOCK_SIZE parameter

size of a CLOB value (bytes) 4G * value of DB_BLOCK_SIZE parameter

size of an NCLOB value (bytes) 4G * value of DB_BLOCK_SIZE parameter

Table C–1 (Cont.) PL/SQL Compiler Limits

Item Limit



D

PL/SQL Reserved Words and Keywords D-1

D PL/SQL Reserved Words and Keywords

Both reserved words and keywords have special meaning in PL/SQL. The difference 
between reserved words and keywords is that you cannot use reserved words as 
identifiers. You can use keywords as as identifiers, but it is not recommended.

Table D–1 lists the PL/SQL reserved words.

Table D–2 lists the PL/SQL keywords.

Some of the words in this appendix are also reserved by SQL. You can display them 
with the dynamic performance view V$RESERVED_WORDS, which is described in 
Oracle Database Reference.

Table D–1 PL/SQL Reserved Words

Begins with: Reserved Words

A ALL, ALTER, AND, ANY, AS, ASC, AT

B BEGIN, BETWEEN, BY

C CASE, CHECK, CLUSTER, CLUSTERS, COLAUTH, COLUMNS, COMPRESS, CONNECT, CRASH, CREATE, 
CURRENT

D DECLARE, DEFAULT, DELETE, DESC, DISTINCT, DROP

E ELSE, END, EXCEPTION, EXCLUSIVE, EXISTS

F FETCH, FOR, FROM

G GOTO, GRANT, GROUP

H HAVING

I IDENTIFIED, IF, IN, INDEX, INDEXES, INSERT, INTERSECT, INTO, IS

L LIKE, LOCK

M MINUS, MODE

N NOCOMPRESS, NOT, NOWAIT, NULL

O OF, ON, OPTION, OR, ORDER, OVERLAPS

P PRIOR, PROCEDURE, PUBLIC

R RESOURCE, REVOKE

S SELECT, SHARE, SIZE, SQL, START

T TABAUTH, TABLE, THEN, TO

U UNION, UNIQUE, UPDATE

V VALUES, VIEW, VIEWS

W WHEN, WHERE, WITH



D-2 Oracle Database PL/SQL Language Reference

Table D–2 PL/SQL Keywords

Begins with: Keywords

A A, ADD, AGENT, AGGREGATE, ARRAY, ATTRIBUTE, AUTHID, AVG

B BFILE_BASE, BINARY, BLOB_BASE, BLOCK, BODY, BOTH, BOUND, BULK, BYTE

C C, CALL, CALLING, CASCADE, CHAR, CHAR_BASE, CHARACTER, CHARSETFORM, CHARSETID, 
CHARSET, CLOB_BASE, CLOSE, COLLECT, COMMENT, COMMIT, COMMITTED, COMPILED, 
CONSTANT, CONSTRUCTOR, CONTEXT, CONTINUE, CONVERT, COUNT, CURSOR, CUSTOMDATUM

D DANGLING, DATA, DATE, DATE_BASE, DAY, DEFINE, DETERMINISTIC, DOUBLE, DURATION

E ELEMENT, ELSIF, EMPTY, ESCAPE, EXCEPT, EXCEPTIONS, EXECUTE, EXIT, EXTERNAL

F FINAL, FIXED, FLOAT, FORALL, FORCE, FUNCTION

G GENERAL

H HASH, HEAP, HIDDEN, HOUR

I IMMEDIATE, INCLUDING, INDICATOR, INDICES, INFINITE, INSTANTIABLE, INT, INTERFACE, 
INTERVAL, INVALIDATE, ISOLATION

J JAVA

L LANGUAGE, LARGE, LEADING, LENGTH, LEVEL, LIBRARY, LIKE2, LIKE4, LIKEC, LIMIT, LIMITED, 
LOCAL, LONG, LOOP

M MAP, MAX, MAXLEN, MEMBER, MERGE, MIN, MINUTE, MOD, MODIFY, MONTH, MULTISET

N NAME, NAN, NATIONAL, NATIVE, NCHAR, NEW, NOCOPY, NUMBER_BASE

O OBJECT, OCICOLL, OCIDATETIME, OCIDATE, OCIDURATION, OCIINTERVAL, OCILOBLOCATOR, 
OCINUMBER, OCIRAW, OCIREFCURSOR, OCIREF, OCIROWID, OCISTRING, OCITYPE, ONLY, OPAQUE, 
OPEN, OPERATOR, ORACLE, ORADATA, ORGANIZATION, ORLANY, ORLVARY, OTHERS, OUT, 
OVERRIDING

P PACKAGE, PARALLEL_ENABLE, PARAMETER, PARAMETERS, PARTITION, PASCAL, PIPE, PIPELINED, 
PRAGMA, PRECISION, PRIVATE

R RAISE, RANGE, RAW, READ, RECORD, REF, REFERENCE, RELIES_ON, REM, REMAINDER, RENAME, 
RESULT, RESULT_CACHE, RETURN, RETURNING, REVERSE, ROLLBACK, ROW

S SAMPLE, SAVE, SAVEPOINT, SB1, SB2, SB4, SECOND, SEGMENT, SELF, SEPARATE, SEQUENCE, 
SERIALIZABLE, SET, SHORT, SIZE_T, SOME, SPARSE, SQLCODE, SQLDATA, SQLNAME, SQLSTATE, 
STANDARD, STATIC, STDDEV, STORED, STRING, STRUCT, STYLE, SUBMULTISET, SUBPARTITION, 
SUBSTITUTABLE, SUBTYPE, SUM, SYNONYM

T TDO, THE, TIME, TIMESTAMP, TIMEZONE_ABBR, TIMEZONE_HOUR, TIMEZONE_MINUTE, 
TIMEZONE_REGION, TRAILING, TRANSACTION, TRANSACTIONAL, TRUSTED, TYPE

U UB1, UB2, UB4, UNDER, UNSIGNED, UNTRUSTED, USE, USING

V VALIST, VALUE, VARIABLE, VARIANCE, VARRAY, VARYING, VOID

W WHILE, WORK, WRAPPED, WRITE

Y YEAR

Z ZONE



Index-1

Index

Symbols
%BULK_EXCEPTIONS. See BULK_EXCEPTIONS 

cursor attribute
%BULK_ROWCOUNT. See BULK_ROWCOUNT 

cursor attribute
%FOUND. See FOUND cursor attribute
%ISOPEN. See ISOPEN cursor attribute
%NOTFOUND. See NOTFOUND cursor attribute
%ROWCOUNT. See ROWCOUNT cursor attribute
%ROWTYPE. See ROWTYPE attribute
%TYPE See TYPE attribute
|| concatenation operator, 2-28
. item separator, 2-3
<< label delimiter, 2-3
.. range operator, 2-3, 4-13
@ remote access indicator, 2-3, 2-19
-- single-line comment delimiter, 2-3
; statement terminator, 2-3, 13-13
- subtraction/negation operator, 2-3

A
ACCESS_INTO_NULL exception, 11-4
actual parameters, 6-22
address

REF CURSOR, 6-23
advantages

PL/SQL, 1-1
AFTER clause

of CREATE TRIGGER, 14-51
AFTER triggers, 14-51

auditing and, 9-32, 9-34
correlation names and, 9-20
specifying, 9-7

aggregate assignment, 2-16
aggregate functions

and PL/SQL, 6-3
user-defined, 14-32

aliases
using with a select list, 2-17

aliasing
bulk binds and, 12-22
for expression values in a cursor FOR loop, 6-19
subprogram parameters and, 8-25

ALL row operator, 6-3, 6-7

ALTER FUNCTION statement, 14-3
ALTER PACKAGE statement, 14-6
ALTER PROCEDURE statement, 14-9
ALTER statements, 14-1

triggers on, 14-54
ALTER TABLE statement

DISABLE ALL TRIGGERS clause, 9-29
ENABLE ALL TRIGGERS clause, 9-29

ALTER TRIGGER statement, 14-11
DISABLE clause, 9-29
ENABLE clause, 9-29

ALTER TYPE statement, 14-14
analytic functions

user-defined, 14-32
anonymous block

definition of, 1-5
ANSI/ISO SQL standard, 6-1
apostrophes, 2-8
architecture

PL/SQL, 1-24
ARRAY

VARYING, 5-7
arrays

associative, 5-2
characteristic of, 5-2
globalization and, 5-3

in other languages
simulating with varrays, 5-5

multidimensional, 5-19
variable-size (varrays)

characteristics of, 5-2
AS EXTERNAL clause

of CREATE FUNCTION, 14-45
of CREATE TYPE BODY, 14-81

AS OBJECT clause
of CREATE TYPE, 14-64

AS TABLE clause
of CREATE TYPE, 14-71

AS VARRAY clause
of CREATE TYPE, 14-71

assignment operator, 1-7
assignment statement

links to examples, 13-5
syntax, 13-3

assignments
aggregate, 2-16



Index-2

collection, 5-13
field, 5-34
IN OUT parameters, 1-8
records, 5-34
variables, 1-7

associative arrays, 5-2
characteristic of, 5-2
compared to nested tables, 5-5
globalization and, 5-3
syntax, 13-19

asynchronous operations, 10-10
attributes

%ROWTYPE, 1-10, 2-15
%TYPE, 1-10
explicit cursors, 6-13
of user-defined types

mapping to Java fields, 14-66
auditing

triggers and, 9-31
AUTHID clause

of ALTER TYPE, 14-20
AUTHID CURRENT_USER clause

of CREATE FUNCTION, 14-30
of CREATE PACKAGE, 14-37
of CREATE PROCEDURE, 14-44
of CREATE TYPE, 14-20, 14-65

AUTHID DEFINER clause
of CREATE FUNCTION, 14-30
of CREATE PACKAGE, 14-37
of CREATE PROCEDURE, 14-44
of CREATE TYPE, 14-20, 14-65

AUTHID property, 8-18
autonomous functions

invoking from SQL, 6-46
RESTRICT_REFERENCES pragma, 6-46

autonomous transactions
advantages, 6-41
avoiding errors, 6-45
comparison with nested transactions, 6-43
controlling, 6-44
in PL/SQL, 6-40
SQL%ROWCOUNT attribute, 6-9

autonomous triggers
using, 6-45

AUTONOMOUS_TRANSACTION pragma
defining, 6-41
links to examples, 13-7
syntax, 13-6

avoiding SQL injection, 7-9

B
bags

simulating with nested tables, 5-5
basic loops, 4-9
BEFORE clause

of CREATE TRIGGER, 14-50
BEFORE triggers, 14-50

complex security authorizations, 9-41
correlation names and, 9-20

derived column values, 9-42
specifying, 9-7

BEGIN
start of executable PL/SQL block, 13-12
syntax, 13-12

BETWEEN clause
FORALL, 13-63

BETWEEN comparison operator, 2-37
expressions, 13-54

BFILE data type, 3-23
BINARY_DOUBLE data type, 3-5
BINARY_FLOAT and BINARY_DOUBLE data types

for computation-intensive programs, 12-27
BINARY_FLOAT data type, 3-5
BINARY_INTEGER data type

See PLS_INTEGER data type
bind arguments

avoiding SQL injection with, 7-14
bind variables, 1-9
binding

bulk, 12-10
variables, 12-9

BLOB data type, 3-23
block

anonymous
definition of, 1-5

blocks
links to examples, 13-14
PL/SQL

syntax, 13-8
BODY

with SQL CREATE PACKAGE statement, 10-1
body

cursor, 10-12
package, 10-5

BODY clause
of ALTER PACKAGE, 14-7

Boolean
assigning values, 2-27
expressions, 2-38
literals, 2-8

BOOLEAN data type, 3-15
bounded collections, 5-2
bulk

fetches, 12-19
returns, 12-21

bulk binding, 12-10
limitations, 12-10

BULK clause
with COLLECT, 12-17

BULK COLLECT clause, 12-17
checking whether no results are returned, 12-18
FETCH, 13-60
retrieving DML results, 12-21
retrieving query results with, 12-17
returning multiple rows, 6-17
SELECT INTO, 13-108
using LIMIT clause, 12-18, 12-20
using ROWNUM pseudocolumn, 12-18
using SAMPLE clause, 12-18



Index-3

using with FORALL statement, 12-21
BULK COLLECT INTO clause

in EXECUTE IMMEDIATE statement, 13-43
in RETURNING INTO clause, 13-102

bulk SQL
using to reduce loop overhead, 12-9

BULK_EXCEPTIONS cursor attribute
ERROR_CODE field, 12-16
ERROR_INDEX field, 12-16
example, 12-17
handling FORALL exceptions, 12-16
using ERROR_CODE field with SQLERRM, 12-16

BULK_ROWCOUNT cursor attribute
affected by FORALL, 12-14

by-reference parameter passing, 8-25
by-value parameter passing, 8-25

C
C clause

of CREATE TYPE, 14-68
of CREATE TYPE BODY, 14-80

C method
mapping to an object type, 14-68

call spec. See call specifications
call specification, 10-2
call specifications

in procedures, 14-42
of CREATE PROCEDURE, 14-44
of CREATE TYPE, 14-68
of CREATE TYPE BODY, 14-80

call stack
AUTHID property and, 8-18
DR and IR units and, 8-18

calls
inter-language, 8-23
resolving subprogram, 8-16
subprograms, 8-11

carriage returns, 2-2
CASE expressions, 2-40

overview, 1-14
case sensitivity

in identifiers, 2-4
string literal, 2-8

CASE statement
links to examples, 13-16
searched, 4-6
syntax, 13-15
using, 4-5

CASE_NOT_FOUND exception, 11-4
CHAR data type, 3-8

differences with VARCHAR2, 3-9
character literals, 2-7
character sets

PL/SQL, 2-1
CHARACTER subtype, 3-9
character values

comparing, 3-10
CHECK constraint

triggers and, 9-36, 9-40

clauses
BULK COLLECT, 12-17
LIMIT, 12-20

CLOB data type, 3-23
CLOSE statement

disables cursor, 6-13
disabling cursor variable

closing, 6-29
links to examples, 13-18
syntax, 13-18

collating sequence, 2-39
COLLECT clause

with BULK, 12-17
collection exceptions

when raised, 5-29
collection methods, 5-20

syntax, 13-23
COLLECTION_IS_NULL exception, 11-4
collections, 5-1

allowed subscript ranges, 5-12
applying methods to parameters, 5-28
assigning, 5-13
avoiding exceptions, 5-28
bounded, 5-2
bulk binding, 5-38, 12-9
choosing the type to use, 5-5
comparing, 5-17
constructors, 5-10
declaring variables, 5-8
defining types, 5-6
DELETE method, 5-27
dense, 5-2
element types, 5-7
EXISTS method, 5-21
EXTEND method, 5-24
initializing, 5-10
links to examples, 13-22, 13-26
multidimensional, 5-19
NEXT method, 5-23
operators to transform nested tables, 5-13
overview, 1-11
PRIOR method, 5-23
referencing, 5-10
referencing elements, 5-12
scope, 5-7
sparse, 5-2
syntax, 13-19
testing for null, 5-17
three types of, 5-1
TRIM method, 5-26
unbounded, 5-2

column aliases
expression values in a cursor loop, 6-19
when needed, 2-17

columns
accessing in triggers, 9-20
generating derived values with triggers, 9-42
listing in an UPDATE trigger, 9-7, 9-22

COMMENT clause
using with transactions, 6-34



Index-4

comments
in PL/SQL, 2-9
links to examples, 13-27
syntax, 13-27

COMMIT statement, 6-33
comparison functions

MAP, 14-80
ORDER, 14-80

comparison operators, 6-6
comparisons

of character values, 3-10
of expressions, 2-38
of null collections, 5-17
operators, 2-34
PL/SQL, 2-28
with NULLs, 2-42

COMPILE clause
of ALTER PACKAGE, 14-7
of ALTER PROCEDURE, 14-9
of ALTER TRIGGER, 14-12
of ALTER TYPE, 14-17

compiler parameters
and REUSE SETTINGS clause, 1-26
PL/SQL, 1-25

compiler switches
dropping and preserving, 14-4, 14-8, 14-10, 14-12, 

14-18
compiling

conditional, 2-48
composite types, 5-1
composite variables, 5-1
Compound triggers, 9-13
compound triggers

creating, 14-53
concatenation operator, 2-28

treatment of nulls, 2-44
conditional compilation, 2-48

availability for previous Oracle database 
releases, 2-48

control tokens, 2-48
examples, 2-54
inquiry directives, 2-49
limitations, 2-55
PLSQL_LINE flag, 2-50
PLSQL_UNIT flag, 2-50
restrictions, 2-55
static constants, 2-52
using static expressions with, 2-50
using with DBMS_DB_VERSION, 2-53
using with DBMS_PREPROCESSOR, 2-55

conditional control, 4-2
conditional predicates

trigger bodies, 9-18, 9-22
conditional statement

guidelines, 4-7
CONSTANT

for declaring constants, 1-9, 2-11
constants

declaring, 1-9, 2-10, 2-11
links to examples, 13-30, 13-123

static, 2-52
syntax, 13-28, 13-121
understanding PL/SQL, 1-6

constraining tables, 9-25
constraints

NOT NULL, 2-12
triggers and, 9-3, 9-35

constructor methods
and object types, 14-64

constructors
collection, 5-10
defining for an object type, 14-69
user-defined, 14-69

context
transactions, 6-43

CONTINUE statement
links to examples, 13-31
syntax, 13-31

CONTINUE-WHEN statement, 1-16
control structures

conditional, 4-2
overview of PL/SQL, 4-1
sequential, 4-20
understanding, 1-13

conventions
PL/SQL naming, 2-19

conversions
data type, 3-28

correlated subqueries, 6-20
correlation names, 9-13

NEW, 9-20
OLD, 9-20
when preceded by a colon, 9-20

COUNT collection method, 5-21
COUNT method

collections, 13-23
CREATE

with PROCEDURE statement, 1-18
CREATE FUNCTION statement, 14-27
CREATE PACKAGE BODY statement, 14-39
CREATE PACKAGE statement, 14-36
CREATE PROCEDURE statement, 1-18, 14-42
CREATE statement

packages, 10-1
CREATE statements, 14-1

triggers on, 14-54
CREATE TRIGGER statement, 9-5, 14-47

REFERENCING option, 9-21
CREATE TYPE BODY statement, 14-77
CREATE TYPE statement, 14-60
creating

packages, 10-1
procedures, 1-18

CURRENT OF clause
with UPDATE, 6-38

CURRENT_USER
value of AUTHID property, 8-18

CURRVAL
pseudocolumn, 6-4

cursor attributes



Index-5

%BULK_EXCEPTIONS, 12-16
%BULK_ROWCOUNT, 12-14
%FOUND, 6-8, 6-13
%ISOPEN, 6-8, 6-14
%NOTFOUND, 6-8, 6-14
%ROWCOUNT, 6-8, 6-15
DBMS_SQL package and, 7-6
explicit, 6-13

syntax, 13-32
links to examples, 13-33
native dynamic SQL and, 7-2
SQL, 6-8
values of, 6-15

cursor declarations
links to examples, 13-49
syntax, 13-47

cursor expressions
REF CURSORs, 6-32
restrictions, 6-32
using, 6-31

cursor FOR loops
passing parameters to, 6-21

cursor subqueries
using, 6-31

cursor variables, 6-22
advantages of, 6-23
as parameters to table functions, 12-38
avoiding errors with, 6-30
closing, 6-29
declaring, 6-23
defining, 6-23
fetching from, 6-28
links to examples, 13-36
opening, 6-25
passing as parameters, 6-24
reducing network traffic, 6-29
restrictions, 6-30
syntax, 13-34
using as a host variable, 6-27

CURSOR_ALREADY_OPEN exception, 11-4
cursors

advantages of using cursor variables, 6-23
attributes of explicit, 6-13
attributes of SQL, 6-8
closing explicit, 6-13
declaring explicit, 6-10
definition, 1-10
explicit, 1-10, 6-9
explicit FOR loops, 6-18
expressions, 6-31
fetching from, 6-11
guidelines for implicit, 6-9
implicit, 1-10
opening explicit, 6-11
packaged, 10-12
parameterized, 6-21
REF CURSOR variables, 6-22
RETURN clause, 10-12
scope rules for explicit, 6-10
SYS_REFCURSOR type, 12-38

variables, 6-22
CustomDatum Java storage format, 14-66

D
data abstraction

understanding PL/SQL, 1-9
data definition language (DDL)

events and triggers, 14-54
data manipulation language

triggers and, 9-2
data manipulation language (DML)

operations
and triggers, 14-52

data type conversion
SQL injection and, 7-12

data types
BFILE, 3-23
BLOB, 3-23
BOOLEAN, 3-15
CHAR, 3-8
CLOB, 3-23
DATE, 3-16
explicit conversion, 3-28
implicit conversion, 3-29
INTERVAL DAY TO SECOND, 3-20
INTERVAL YEAR TO MONTH, 3-20
LONG, 3-14
national character, 3-12
NCHAR, 3-13, 3-14
NCLOB, 3-23
NUMBER, 3-6
PL/SQL

See PL/SQL data types
RAW, 3-12
REF CURSOR, 6-23
ROWID, 3-14
TABLE, 5-7
TIMESTAMP, 3-17
TIMESTAMP WITH LOCAL TIME ZONE, 3-19
TIMESTAMP WITH TIME ZONE, 3-18
UROWID, 3-14
VARRAY, 5-7

database character set, 2-1
database events

attributes, 9-46
tracking, 9-44

Database Resident Connection Pool, 10-11
database triggers, 1-19

autonomous, 6-45
database triggers. See triggers
databases

events
and triggers, 14-55
auditing, 14-55
transparent logging of, 14-55

DATE data type, 3-16
datetime

arithmetic, 3-21
data types, 3-15



Index-6

literals, 2-8
DAY

data type field, 3-16
DB_ROLE_CHANGE system manager event, 9-50
DBMS_ALERT package, 10-10
DBMS_ASSERT package, 7-15
DBMS_CONNECTION_CLASS package, 10-11
DBMS_DB_VERSION package

using with conditional compilation, 2-53
DBMS_OUTPUT package

displaying output, 1-6
displaying output from PL/SQL, 10-10

DBMS_PIPE package, 10-11
DBMS_PREPROCESSOR package

using with conditional compilation, 2-55
DBMS_PROFILE package

gathering statistics for tuning, 12-8
DBMS_SQL package, 7-6

upgrade to dynamic SQL, 12-28
DBMS_SQL.TO_NUMBER function, 7-6
DBMS_SQL.TO_REFCURSOR function, 7-6
DBMS_TRACE package

tracing code for tuning, 12-9
DBMS_WARNING package

controlling warning messages in PL/SQL, 11-20
dbmsupbin.sql script

interpreted compilation, 12-32
dbmsupgnv.sql script

for PL/SQL native compilation, 12-33
deadlocks

how handled by PL/SQL, 6-36
DEBUG clause

of ALTER FUNCTION, 14-4
of ALTER PACKAGE, 14-7
of ALTER PROCEDURE, 14-10
of ALTER TRIGGER, 14-12
of ALTER TYPE, 14-18

debugging
triggers, 9-29

DEC
NUMBER subtype, 3-7

DECIMAL
NUMBER subtype, 3-7

declarations
collection, 5-8
constants, 1-9, 2-11
cursor variables, 6-23
exceptions in PL/SQL, 11-6
explicit cursor, 6-10
PL/SQL functions, 1-17
PL/SQL procedures, 1-17
PL/SQL subprograms, 1-17
restrictions, 2-18
using %ROWTYPE, 2-15
using DEFAULT, 2-11
using NOT NULL constraint, 2-12
variables, 1-6, 2-10

DECLARE
start of declarative part of a PL/SQL block, 13-12
syntax, 13-12

DECODE function
treatment of nulls, 2-45

DEFAULT keyword
for assignments, 2-11

DEFAULT option
RESTRICT_REFERENCES, 13-98

default parameter values, 8-9
DEFINE

limitations of use with wrap utility, A-4
DEFINER value of AUTHID property, 8-18
definer’s rights functions, 14-30
definer’s rights units

See DR units
DELETE method

collections, 5-27, 13-23
DELETE statement

column values and triggers, 9-20
triggers for referential integrity, 9-37, 9-38
triggers on, 14-52

delimiters, 2-3
dense collections, 5-2
dense nested tables, 5-4
dependencies

in stored triggers, 9-28
schema objects

trigger management, 9-25
DETERMINISTIC clause

of CREATE FUNCTION, 14-30
DETERMINISTIC option

function syntax, 13-67
dictionary_obj_owner event attribute, 9-47
dictionary_obj_owner_list event attribute, 9-47
dictionary_obj_type event attribute, 9-47
digits of precision, 3-7
disabled trigger

definition, 9-2
disabling

triggers, 9-2
displaying output

DBMS_OUTPUT package, 1-6
setting SERVEROUTPUT, 10-10

DISTINCT row operator, 6-3, 6-7
distributed databases

triggers and, 9-25
dot notation, 1-10, B-3

for collection methods, 5-20
for global variables, 4-18
for package contents, 10-4

DOUBLE PRECISION
NUMBER subtype, 3-7

DR units
call stack and, 8-18
dynamic SQL statements and, 8-19
name resolution and, 8-18
privilege checking and, 8-18
static SQL statements and, 8-19

DROP PACKAGE BODY statement, 14-84
DROP statements, 14-2

triggers on, 14-54
DROP TRIGGER statement, 9-29



Index-7

dropping
triggers, 9-29

DUP_VAL_ON_INDEX exception, 11-5
dynamic multiple-row queries, 7-4
dynamic SQL, 7-1

DBMS_SQL package, 7-6
native, 7-2
switching between native dynamic SQL and 

DBMS_SQL package, 7-6
tuning, 12-27

dynamic SQL statements
AUTHID property and, 8-19

E
element types

collection, 5-7
ELSE clause

using, 4-2
ELSIF clause

using, 4-4
ENABLE clause

of ALTER TRIGGER, 14-12
enabled trigger

definition, 9-2
enabling

triggers, 9-2
END

end of a PL/SQL block, 13-12
syntax, 13-12

END IF
end of IF statement, 4-2

END LOOP
end of LOOP statement, 4-13

error handling
in PL/SQL, 11-1
overview, 1-5

error messages
maximum length, 11-15

ERROR_CODE
BULK_EXCEPTIONS cursor attribute field, 12-16
using with SQLERRM, 12-16

ERROR_INDEX
BULK_EXCEPTIONS cursor attribute field, 12-16

evaluation
short-circuit, 2-34

event attribute functions, 9-46
event publication, 9-45 to 9-46

triggering, 9-45
events

attribute, 9-46
tracking, 9-44

EXCEPTION
exception-handling part of a block, 13-12
syntax in PL/SQL block, 13-12

exception definition
syntax, 13-39, 13-40

exception handlers
OTHERS handler, 11-2
overview, 1-5

using RAISE statement in, 11-12, 11-13
WHEN clause, 11-13

EXCEPTION_INIT pragma
links to examples, 13-38
syntax, 13-38
using with RAISE_APPLICATION_ERROR, 11-9
with exceptions, 11-7

exceptions
advantages of PL/SQL, 11-3
branching with GOTO, 11-15
catching unhandled in PL/SQL, 11-16
continuing after an exception is raised, 11-16
controlling warning messages, 11-20
declaring in PL/SQL, 11-6
definition, 13-39, 13-40
during trigger execution, 9-22
handling in PL/SQL, 11-1
links to examples, 13-39, 13-41
list of predefined in PL/SQL, 11-4
locator variables to identify exception 

locations, 11-18
OTHERS handler in PL/SQL, 11-13
PL/SQL compile-time warnings, 11-19
PL/SQL error condition, 11-1
PL/SQL warning messages, 11-19
predefined in PL/SQL, 11-4
propagation in PL/SQL, 11-10
raise_application_error procedure, 11-8
raised in a PL/SQL declaration, 11-14
raised in handlers, 11-14
raising in PL/SQL, 11-9
raising predefined explicitly, 11-10
raising with RAISE statement, 11-9
redeclaring predefined in PL/SQL, 11-9
reraising in PL/SQL, 11-12
retrying a transaction after, 11-17
scope rules in PL/SQL, 11-6
tips for handling PL/SQL errors, 11-16
user-defined in PL/SQL, 11-6
using EXCEPTION_INIT pragma, 11-7
using the DBMS_WARNING package, 11-20
using WHEN and OR, 11-14
WHEN clause, 11-13

EXECUTE IMMEDIATE statement, 7-2
links to examples, 13-44
syntax, 13-42

EXISTS method
collections, 5-21, 13-24

EXIT statement
early exit of LOOP, 4-19
links to examples, 13-45
syntax, 13-45
using, 4-9, 4-10

EXIT-WHEN statement, 1-16
using, 4-10, 4-11

explicit cursors, 6-9
explicit data type conversion, 3-28
explicit declarations

cursor FOR loop record, 6-18
explicit format modelsavoiding SQL injection 



Index-8

with, 7-17
expressions

as default parameter values, 8-10
in cursors, 6-22

Boolean, 2-38
CASE, 2-40
examples, 13-59
PL/SQL, 2-28
static, 2-50
syntax, 13-51

EXTEND method
collections, 5-24, 13-24

external
routines, 8-23
subprograms, 8-23

external functions, 14-27, 14-42
external procedures, 14-42

F
FALSE value, 2-8
FETCH statement

links to examples, 13-62
syntax, 13-60
using explicit cursors, 6-11
with cursor variable, 6-28

fetching
across commits, 6-39
bulk, 12-19

file I/O, 10-11
FINAL clause

of CREATE TYPE, 14-67
FIRST collection method, 5-22, 13-24
FIRST method

collections, 13-24
FLOAT

NUMBER subtype, 3-7
FOR EACH ROW clause, 9-12

of CREATE TRIGGER, 14-53
FOR loops

explicit cursors, 6-18
nested, 4-18

FOR UPDATE clause, 6-11
when to use, 6-38

FORALL statement
links to examples, 13-65
syntax, 13-63
using, 12-10
using to improve performance, 12-10
using with BULK COLLECT clause, 12-21
with rollbacks, 12-14

FORCE clause
of DROP TYPE, 14-89

FOR-LOOP statement
syntax, 13-80
using, 4-13

formal parameters, 6-22
format models

explicitavoiding SQL injection with, 7-17
forward

references, 2-18
forward declaration of subprograms, 8-5
FOUND cursor attribute

explicit, 6-13
implicit, 6-8

function declaration
syntax, 13-66

function result cache, 8-27
functions

analytic
user-defined, 14-32

avoiding run-time compilation, 14-3
changing the declaration of, 14-29
changing the definition of, 14-29
data type of return value, 13-68, 14-29
declaration, 13-66
examples, 14-33
executing

from parallel query processes, 14-31
external, 14-27, 14-42
in PL/SQL, 8-1
invoking, 8-2
links to examples, 13-69
partitioning

among parallel query processes, 14-31
pipelined, 12-34
privileges executed with, 14-20, 14-65
recompiling invalid, 14-3
re-creating, 14-29
removing from the database, 14-82
RETURN statement, 8-4
returning collections, 14-32
returning results iteratively, 14-32
schema executed in, 14-20, 14-65
specifying schema and user privileges for, 14-30
SQL in PL/SQL, 2-47
stored, 14-27
table, 12-34, 14-32
user-defined

aggregate, 14-32
using a saved copy, 14-30

G
global identifiers, 2-23
globalization

associative arrays and, 5-3
GOTO statement

branching into or out of exception handler, 11-15
label, 4-20
links to examples, 13-70
overview, 1-17
syntax, 13-70
using, 4-20

grantee event attribute, 9-47
GROUP BY clause, 6-3

H
handlers



Index-9

exception in PL/SQL, 11-2
handling errors

PL/SQL, 11-1
handling exceptions

PL/SQL, 11-1
raised in as PL/SQL declaration, 11-14
raised in handler, 11-14
using OTHERS handler, 11-13

handling of nulls, 2-42
hash tables

simulating with associative arrays, 5-5
hiding PL/SQL source code

PL/SQL source code
host arrays

bulk binds, 12-22
HOUR

data type field, 3-16
HTF package, 10-11
HTP package, 10-11
hypertext markup language (HTML), 10-11
hypertext transfer protocol (HTTP), 1-3

UTL_HTTP package, 10-11

I
identifiers

global, 2-23
local, 2-23
quoted, 2-5
scope and visibility of, 2-22
syntax and semantics of, 2-4

IF statement, 4-2
ELSE clause, 4-2
links to examples, 13-72, 13-74
syntax, 13-71
using, 4-2

IF-THEN statement
using, 4-2

IF-THEN-ELSE statement
overview, 1-13
using, 4-2

IF-THEN-ELSIF statement
using, 4-4

implicit cursors
guidelines, 6-9
See SQL cursors

implicit data type conversion, 3-29
implicit data type conversions

performance, 12-5
implicit declarations

FOR loop counter, 4-18
IN comparison operator, 2-37
IN OUT parameter mode

subprograms, 8-9
IN parameter mode

subprograms, 8-8
incomplete object types, 14-60

creating, 14-60
INDEX BY

collection definition, 13-20

index-by tables
See associative arrays

INDICES OF clause
FORALL, 13-63
with FORALL, 12-10

infinite loops, 4-9
initialization

collections, 5-10
package, 10-6
using DEFAULT, 2-11
variable, 2-26

initialization parameters
PL/SQL compilation, 1-25

injection, SQL, 7-11
inline LOB locators, 3-22
INLINE pragma

syntax, 13-73
Inlining subprograms, 12-1
input, 1-6
input-output packages, 1-6
INSERT statement

column values and triggers, 9-20
triggers on, 14-52
with a record variable, 5-36

instance_num event attribute, 9-47
INSTANTIABLE clause

of CREATE TYPE, 14-67
INSTEAD OF clause

of CREATE TRIGGER, 14-51
INSTEAD OF triggers, 9-8, 14-51

on nested table view columns, 9-21
INT

NUMBER subtype, 3-7
INTEGER

NUMBER subtype, 3-7
inter-language calls, 8-23
interpreted compilation

dbmsupbin.sql script, 12-32
recompiling all PL/SQL modules, 12-32

INTERSECT set operator, 6-7
interval

arithmetic, 3-21
INTERVAL DAY TO SECOND data type, 3-20
INTERVAL YEAR TO MONTH data type, 3-20
intervals

data types, 3-15
INTO

SELECT INTO statement, 13-107
INTO clause

with FETCH statement, 6-29
INTO list

using with explicit cursors, 6-11
INVALID_CURSOR exception, 11-5
INVALID_NUMBER exception, 11-5
invoker’s rights

altering for an object type, 14-20
defining for a function, 14-30
defining for a package, 14-36
defining for a procedure, 14-43
defining for an object type, 14-65



Index-10

invoker’s rights functions
defining, 14-30

invoker’s rights subprograms
name resolution in, 8-20

invoker’s rights units
See IR units

invoking Java stored procedures, 8-23
IR units

call stack and, 8-18
dynamic SQL statements and, 8-19
name resolution and, 8-18
privilege checking and, 8-18
static SQL statements and, 8-19

IS NULL comparison operator, 2-35
expressions, 13-56

is_alter_column event attribute, 9-47
ISOPEN cursor attribute

explicit, 6-14
implicit, 6-8

J
JAVA

use for invoking external subprograms, 8-24
Java

call specs, 8-24
methods

return type of, 14-68
storage formats

CustomDatum, 14-66
SQLData, 14-66

JAVA clause
of CREATE TYPE, 14-68
of CREATE TYPE BODY, 14-80

Java methods
mapping to an object type, 14-68

Java stored procedures
invoking from PL/SQL, 8-23

K
keywords, 2-5

use in PL/SQL, 2-5
keywords in PL/SQL, D-1

L
labels

block structure, 13-13
exiting loops, 4-12
GOTO statement, 4-20
loops, 4-12
syntax, 13-13

LANGUAGE
use for invoking external subprograms, 8-24

LANGUAGE clause
of CREATE PROCEDURE, 14-44
of CREATE TYPE, 14-68
of CREATE TYPE BODY, 14-80

language elements
of PL/SQL, 13-1

large object (LOB) data types, 3-22
LAST collection method, 5-22, 13-24
LAST method

collections, 13-25
LEVEL

pseudocolumn, 6-5
lexical units

PL/SQL, 2-1
LIKE comparison operator, 2-35

expressions, 13-57
LIMIT clause

FETCH, 13-61
using to limit rows for a Bulk FETCH 

operation, 12-20
LIMIT collection method, 5-22
LIMIT method

collections, 13-25
limitations

bulk binding, 12-10
of PL/SQL programs, C-1
PL/SQL compiler, C-1

limits
on PL/SQL programs, C-1

literals
Boolean, 2-8
character, 2-7
datetime, 2-8
examples, 13-77
NCHAR string, 2-8
NUMBER data type, 2-6
numeric, 2-6
numeric data types, 2-6
string, 2-7
syntax, 13-76
types of PL/SQL, 2-6

LOB (large object) data types, 3-22
use in triggers, 9-20

LOB locators, 3-22
local identifiers, 2-23
locator variables

used with exceptions, 11-18
LOCK TABLE statement

locking a table, 6-39
locks

modes, 6-33
overriding, 6-37
transaction processing, 6-32
using FOR UPDATE clause, 6-38

logical operators, 2-30
logical rowids, 3-14
LOGIN_DENIED exception, 11-5
LOGOFF database event

triggers on, 14-55
LOGON database event

triggers on, 14-55
LONG data type, 3-14

maximum length, 3-14
use in triggers, 9-25

LOOP statement, 4-8
links to examples, 13-83



Index-11

overview, 1-15
syntax, 13-79
using, 4-9

loops
dynamic ranges, 4-16
exiting using labels, 4-12
implicit declaration of counter, 4-18
iteration, 4-15
labels, 4-12
reversing the counter, 4-14
scope of counter, 4-17

M
MAP MEMBER clause

of ALTER TYPE, 14-19
of CREATE TYPE, 14-80

MAP methods
defining for a type, 14-70
specifying, 14-19

maximum precision, 3-7
maximum size

CHAR value, 3-8
LONG value, 3-14
Oracle error message, 11-15
RAW value, 3-12

MEMBER clause
of ALTER TYPE, 14-18
of CREATE TYPE, 14-67

membership test, 2-37
memory

avoid excessive overhead, 12-7
Method 4, 7-6
methods

collection, 5-20
overriding a method a supertype, 14-67
preventing overriding in subtypes, 14-67
static, 14-67
without implementation, 14-67

MINUS set operator, 6-7
MINUTE

data type field, 3-16
modularity

packages, 10-3
MONTH

data type field, 3-16
multidimensional collections, 5-19
multiline comments, 2-10
multiple-row queries

dynamic, 7-4
MULTISET EXCEPT operator, 5-13
MULTISET INTERSECT operator, 5-13
MULTISET UNION operator, 5-13
mutating table

definition, 9-25
mutating tables

trigger restrictions, 9-25

N
NAME

for invoking external subprograms, 8-24
NAME parameter

transactions, 6-37
name resolution, 2-20

AUTHID property and, 8-18
differences between PL/SQL and SQL, B-4
DR units and, 8-18
global and local variables, B-1
inner capture in DML statements, B-5
IR units and, 8-18
overriding in IR subprograms, 8-20
qualified names and dot notation, B-2
qualifying references to attributes and 

methods, B-6
understanding, B-1
understanding capture, B-4

names
explicit cursor, 6-10
qualified, 2-19
savepoint, 6-35
variable, 2-19

naming conventions
PL/SQL, 2-19

national character data types, 3-12
national character set, 2-1
native compilation

dbmsupgnv.sql script, 12-33
dependencies, 12-31
how it works, 12-31
invalidation, 12-31
modifying databases for, 12-32
revalidation, 12-31
setting up databases, 12-31
utlrp.sql script, 12-33

native dynamic SQL, 7-2
NATURAL

BINARY_INTEGER subtype, 3-3
NATURALN

BINARY_INTEGER subtype, 3-3
NCHAR data type, 3-13, 3-14
NCLOB data type, 3-23
nested cursors

using, 6-31
NESTED TABLE clause

of CREATE TRIGGER, 14-53
nested tables, 5-4

characteristics of, 5-2
compared to associative arrays, 5-5
compared to varrays, 5-6
creating, 14-60
dropping the body of, 14-90
dropping the specification of, 14-88
modifying, 14-22
of scalar types, 14-22
syntax, 13-19
transforming with operators, 5-13
update in a view, 14-51

nesting



Index-12

FOR loops, 4-18
record, 5-32

NEW correlation name, 9-20
new features, xxxv
NEXT method

collections, 5-23, 13-25
NEXTVAL

pseudocolumn, 6-4
NLS parameters

SQL injection and, 7-12
NLS_COMP initialization parameter

associative arrays and, 5-3
NLS_LENGTH_SEMANTICS initialization parameter

setting with ALTER SYSTEM, 14-4
NLS_SORT initialization parameter

associative arrays and, 5-3
NO_DATA_FOUND exception, 11-5
NOCOPY compiler hint

for tuning, 12-28
restrictions on, 12-29

NOT FINAL clause
of CREATE TYPE, 14-67

NOT INSTANTIABLE clause
of CREATE TYPE, 14-67

NOT logical operator
treatment of nulls, 2-43

NOT NULL
declaration, 13-29, 13-122

NOT NULL constraint
restriction on explicit cursors, 6-10
using in collection declaration, 5-10
using in variable declaration, 2-12

NOT NULL option
record definition, 13-95

NOT_LOGGED_ON exception, 11-5
notation

positional and named, 8-11
NOTFOUND cursor attribute

explicit, 6-14
implicit, 6-8

NOWAIT parameter
using with FOR UPDATE, 6-38

NVL function
treatment of nulls, 2-45

null handling, 2-42
NULL statement

links to examples, 13-84
syntax, 13-84
using, 4-23

NULL value, 2-8
dynamic SQL and, 7-3

NUMBER data type, 3-6
range of literals, 2-6
range of values, 3-6

NUMERIC
NUMBER subtype, 3-7

numeric literals, 2-6
PL/SQL data types, 2-6

O
obfuscating PL/SQL source code

See wrapping PL/SQL source code
object identifiers

specifying, 14-65
object types

adding methods to, 14-20
adding new member subprograms, 14-18
allowing object instances of, 14-67
allowing subtypes, 14-67
and subtypes, 14-18
and supertypes, 14-18
bodies

creating, 14-77
re-creating, 14-79
SQL examples, 14-81

compiling the specification and body, 14-17
creating, 14-60, 14-61
defining member methods of, 14-77
disassociating statistics types from, 14-88
dropping methods from, 14-20
dropping the body of, 14-90
dropping the specification of, 14-88
function subprogram

declaring, 14-81
function subprograms, 14-18, 14-67
handling dependent types, 14-23
incomplete, 14-60
inheritance, 14-67
invalidating dependent types, 14-23
MAP methods, 14-70
ORDER methods, 14-70
overview, 1-12
privileges, 14-20
procedure subprogram

declaring, 14-81
procedure subprograms, 14-18, 14-67
root, 14-65
SQL examples, 14-71
static methods of, 14-67
subtypes, 14-65
top-level, 14-65
user-defined

creating, 14-64
using with invoker’s-rights subprograms, 8-21
values

comparing, 14-80
OBJECT_VALUE pseudocolumn, 9-22
objects. See object types or database objects
OLD correlation name, 9-20
ON DATABASE clause

of CREATE TRIGGER, 14-52
ON NESTED TABLE clause

of CREATE TRIGGER, 14-52
ON SCHEMA clause

of CREATE TRIGGER, 14-52
OPEN statement

explicit cursors, 6-11
links to examples, 13-86
syntax, 13-85



Index-13

OPEN-FOR statement, 6-25
links to examples, 13-88
syntax, 13-87

OPEN-FOR-USING statement
syntax, 13-87

operators
comparison, 2-34
logical, 2-30
precedence, 2-28
relational, 2-35

optimizing
PL/SQL programs, 12-1

OR keyword
using with EXCEPTION, 11-14

OR REPLACE clause
of CREATE FUNCTION, 14-29
of CREATE PACKAGE, 14-36
of CREATE PACKAGE BODY, 14-39
of CREATE PROCEDURE, 14-43
of CREATE TRIGGER, 14-50
of CREATE TYPE, 14-64
of CREATE TYPE BODY, 14-79

ora_dictionary_obj_owner event attribute, 9-47
ora_dictionary_obj_owner_list event attribute, 9-47
ora_dictionary_obj_type event attribute, 9-47
ora_grantee event attribute, 9-47
ora_instance_num event attribute, 9-47
ora_is_alter_column event, 9-47
ora_is_creating_nested_table event attribute, 9-48
ora_is_drop_column event attribute, 9-48
ora_is_servererror event attribute, 9-48
ora_login_user event attribute, 9-48
ora_privileges event attribute, 9-48
ora_revokee event attribute, 9-48
ora_server_error event attribute, 9-48
ora_sysevent event attribute, 9-48
ora_with_grant_option event attribute, 9-50
ORDER MEMBER clause

of ALTER TYPE, 14-19
of CREATE TYPE BODY, 14-80

ORDER methods
defining for a type, 14-70
specifying, 14-19

order of evaluation, 2-28
OTHERS clause

exception handling, 13-40
OTHERS exception handler, 11-2, 11-13
OUT parameter mode

subprograms, 8-8
outlines

assigning to a different category, 14-6
rebuilding, 14-6
renaming, 14-6

out-of-line LOB locators, 3-22
output, 1-6
overloading

guidelines, 8-13
packaged subprograms, 10-9
restrictions, 8-14
subprogram names, 8-12

OVERRIDING clause
of ALTER TYPE, 14-18
of CREATE TYPE, 14-67

P
PACKAGE

with SQL CREATE statement, 10-1
package bodies

creating, 14-39
re-creating, 14-39
removing from the database, 14-84

PACKAGE BODY
with SQL CREATE statement, 10-1

packaged cursors, 10-12
packaged procedures

dropping, 14-86
packages

advantages, 10-3
avoiding run-time compilation, 14-7
bodiless, 10-4
body, 10-1, 10-5
call specification, 10-2
contents of, 10-2
creating, 10-1, 14-36
cursor specifications, 10-12
cursors, 10-12
disassociating statistics types from, 14-84
dot notation, 10-4
examples of features, 10-6
global variables, 10-8
guidelines for writing, 10-12
hidden declarations, 10-1
initializing, 10-6
invoker’s rights, 14-37
invoking subprograms, 10-5
modularity, 10-3
overloading subprograms, 10-9
overview, 1-20
overview of Oracle supplied, 10-10
private and public objects, 10-9
product-specific, 10-10
product-specific for use with PL/SQL, 1-3
recompiling explicitly, 14-7
redefining, 14-36
referencing, 10-4
removing from the database, 14-84
restrictions on referencing, 10-5
scope, 10-3
specification, 10-1
specifications, 10-3
specifying schema and privileges of, 14-37
STANDARD package, 10-9
understanding, 10-1
visibility of contents, 10-1

PARALLEL_ENABLE clause
of CREATE FUNCTION, 14-31

parameter passing
by reference, 8-25
by value, 8-25



Index-14

parameters
actual, 6-22
actual and formal, 8-6
aliasing, 8-25
cursor, 6-21
default values, 8-9
formal, 6-22
IN mode, 8-8
IN OUT mode, 8-9
modes, 8-7
OUT mode, 8-8
summary of modes, 8-9

parentheses, 2-29
parse tree, 9-27
pattern matching, 2-36
performance

avoid memory overhead, 12-7
avoiding problems, 12-3

physical rowids, 3-14
pipe, 10-11
PIPE ROW statement

for returning rows incrementally, 12-37
PIPELINED

function option, 12-35, 13-68
PIPELINED clause

of CREATE FUNCTION, 14-32
pipelined functions

exception handling, 12-42
fetching from results of, 12-38
for querying a table, 12-34
overview, 12-34
passing data with cursor variables, 12-38
performing DML operations inside, 12-41
performing DML operations on, 12-41
returning results from, 12-37
transformation of data, 12-34
transformations, 12-36
writing, 12-35

pipelines
between table functions, 12-37
returning results from table functions, 12-37
support collection types, 12-35
using table functions, 12-36
writing table functions, 12-35

pipelining
definition, 12-35

PLS_INTEGER data type, 3-2
overflow condition, 3-3

PL/SQL
advantages, 1-1
architecture, 1-24
assigning Boolean values, 2-27
assigning query result to variable, 2-27
assigning values to variables, 2-26
blocks

syntax, 13-8
CASE expressions, 2-40
character sets, 2-1
collections

overview, 1-11

comments, 2-9
comparisons, 2-28
compiler limitations, C-1
compiler parameters, 1-25
compile-time warnings, 11-19
conditional compilation, 2-48
constants, 1-6
control structures, 1-13, 4-1
data abstraction, 1-9
declarations

constants, 2-10
displaying output, 10-10
engine, 1-24
environment, 10-9
error handling

overview, 1-5
errors, 11-1
exceptions, 11-1
expressions, 2-28
functions, 8-1
lexical units, 2-1
limitations of programs, C-1
limits on programs, C-1
literals, 2-6
logical operators, 2-30
name resolution, B-1
naming conventions, 2-19
new features, xxxv
performance problems, 12-3
portability, 1-3
procedural aspects, 1-4
procedures, 8-1
profiling and tracing programs, 12-8
querying data, 6-16
records

overview, 1-12
Server Pages (PSPs), 2-57
statements, 13-1
subprograms, 8-1
syntax of language elements, 13-1
transaction processing, 6-32
trigger bodies, 9-18, 9-20
tuning code, 12-2
tuning computation-intensive programs, 12-27
tuning dynamic SQL programs, 12-27
using NOCOPY for tuning, 12-28
using transformation pipelines, 12-34
variables, 1-6
warning messages, 11-19
Web applications, 2-56

PL/SQL compiler
parameters, 14-4, 14-7, 14-10, 14-12, 14-18

PL/SQL data types, 3-1
predefined, 3-1

PLSQL data types
numeric literals, 2-6

PL/SQL function result cache, 8-27
PL/SQL units

stored
SQL statements for, 14-1



Index-15

what they are, 1-25
PLSQL_LINE flag

use with conditional compilation, 2-50
PLSQL_OPTIMIZE_LEVEL compilation 

parameter, 12-2
optimizing PL/SQL programs, 12-1

PLSQL_UNIT flag
use with conditional compilation, 2-50

PLSQL_WARNINGS initialization parameter, 11-19
pointers

REF CIRSOR, 6-23
portability, 1-3
POSITIVE

BINARY_INTEGER subtype, 3-3
POSITIVEN

BINARY_INTEGER subtype, 3-3
PRAGMA

compiler directive with SERIALLY_
REUSABLE, 13-111

PRAGMA clause
of ALTER TYPE, 14-19
of CREATE TYPE, 14-63, 14-69

PRAGMA RESTRICT_REFERENCES, 14-19
pragmas

AUTONOMOUS_TRANSACTION, 6-41, 13-6
compiler directives, 11-7
EXCEPTION_INIT, 11-7, 13-38
INLINE, 13-73
RESTRICT_REFERENCES, 6-46, 8-25, 13-98
SERIALLY_REUSABLE, 13-111

precedence of operators, 2-28
precision of digits

specifying, 3-7
predefined exceptions

raising explicitly, 11-10
redeclaring, 11-9

predefined PL/SQL data types, 3-1
predicates, 6-6
PRIOR method

collections, 5-23, 13-25
PRIOR row operator, 6-5
private objects

packages, 10-9
privilege checking

AUTHID property and, 8-18
DR units and, 8-18
IR units and, 8-18

privileges
creating triggers, 9-4
dropping triggers, 9-29
recompiling triggers, 9-28
See also privilege checking

PROCEDURE
with CREATE statement, 1-18

procedure declaration
syntax, 13-92

procedures
avoid run-time compilation, 14-9
compile explicitly, 14-9
creating, 1-18, 14-42

declaration, 13-92
declaring

as a Java method, 14-44
as C functions, 14-44

external, 14-42
in PL/SQL, 8-1
invalidating local objects dependent on, 14-86
invoked by triggers, 9-25
invoking, 8-2
links to examples, 13-93
privileges executed with, 14-20, 14-65
recompiling, 14-9
re-creating, 14-43
removing from the database, 14-86
schema executed in, 14-20, 14-65
specifying schema and privileges for, 14-44

productivity, 1-2
Profiler API

gathering statistics for tuning, 12-8
PROGRAM_ERROR exception, 11-5
propagation

exceptions in PL/SQL, 11-10
pseudocolumns

CURRVAL, 6-4
LEVEL, 6-5
modifying views, 9-9
NEXTVAL, 6-4
ROWID, 6-5
ROWNUM, 6-6
SQL, 6-4
UROWID, 6-5
use in PL/SQL, 6-4

public objects
packages, 10-9

purity rules, 8-25

Q
qualifiers

using subprogram names as, 2-21
queries

multiple-row
dynamic, 7-4

triggers use of, 9-2
query work areas, 6-23
querying data

BULK COLLECT clause, 6-17
cursor FOR loop, 6-17
implicit cursor FOR loop, 6-18
looping through multiple rows, 6-17
maintaining, 6-21
performing complicated processing, 6-17
SELECT INTO, 6-16
using explicit cursors, 6-17
using implicit cursors, 6-18
with PL/SQL, 6-16
work areas, 6-23

quoted identifiers, 2-5



Index-16

R
RAISE statement

exceptions in PL/SQL, 11-9
links to examples, 13-94
syntax, 13-94
using in exception handler, 11-12, 11-13

raise_application_error procedure
for raising PL/SQL exceptions, 11-8

raising an exception
in PL/SQL, 11-9

raising exceptions
triggers, 9-22

range operator, 4-13
RAW data type, 3-12

maximum length, 3-12
read consistency

triggers and, 9-2
READ ONLY parameter

transactions, 6-37
readability

with NULL statement, 4-23
read-only transaction, 6-37
REAL

NUMBER subtype, 3-7
record definition

syntax, 13-95
records, 5-1

%ROWTYPE, 6-18
assigning values, 5-34
bulk-binding collections of, 5-38
comparing, 5-36
declaring, 5-31
defining, 5-31
definition, 1-10, 13-95
implicit declaration, 6-18
inserting, 5-36
links to examples, 13-96
manipulating, 5-33
nesting, 5-32
overview, 1-12
passing as parameters, 5-33
restriction on assignments, 5-34
restrictions on inserts and updates of, 5-38
returning into, 5-37
updating, 5-36
using as function return values, 5-33

recursion
using with PL/SQL subprograms, 8-23

REF CURSOR data type, 6-23
cursor variables, 6-22
defining, 6-23
using with cursor subqueries, 6-32

REF CURSOR variables
as parameters to table functions, 12-38
predefined SYS_REFCURSOR type, 12-38

referencing
collections, 5-10

REFERENCING clause
of CREATE TRIGGER, 14-48, 14-49, 14-53

referencing elements

allowed subscript ranges, 5-12
REFERENCING option, 9-21
referential integrity

self-referential constraints, 9-38
triggers and, 9-36 to 9-39

regular expression functions
REGEXP_LIKE, 6-11

relational operators, 2-35
RELIES ON clause, 13-68
remote access indicator, 2-19
remote exception handling, 9-23
RENAME clause

of ALTER TRIGGER, 14-12
REPEAT UNTIL structure

PL/SQL equivalent, 4-13
REPLACE AS OBJECT clause

of ALTER TYPE, 14-18
REPLACE function

treatment of nulls, 2-46
reraising an exception, 11-12
reserved words, 2-5
reserved words in PL/SQL, D-1
resolution

name, 2-20
references to names, B-1

RESTRICT_REFERENCES pragma, 8-25
links to examples, 13-99
of ALTER TYPE, 14-19
syntax, 13-98
using with autonomous functions, 6-46

restrictions
cursor expressions, 6-32
cursor variables, 6-30
overloading subprograms, 8-14
system triggers, 9-27

result cache, 8-27
result sets, 6-11
RESULT_CACHE clause, 13-68
RETURN clause, 13-68

cursor, 10-12
cursor declaration, 13-35
of CREATE FUNCTION, 14-29
of CREATE TYPE, 14-68
of CREATE TYPE BODY, 14-81

RETURN statement
functions, 8-4
links to examples, 13-100
syntax, 13-100

return types
REF CURSOR, 6-23

RETURNING clause
links to examples, 13-103
with a record variable, 5-37

RETURNING INTO clause
syntax, 13-102

returns
bulk, 12-21

REUSE SETTINGS clause
of ALTER FUNCTION, 14-4
of ALTER PACKAGE, 14-8



Index-17

of ALTER PROCEDURE, 14-10
of ALTER TRIGGER, 14-12
of ALTER TYPE, 14-18
with compiler parameters, 1-26

REVERSE
with LOOP counter, 4-14

REVERSE option
LOOP, 13-82

RNDS attribute
of PRAGMA RESTRICT_REFERENCES, 14-69

RNDS option
RESTRICT_REFERENCES, 13-98

RNPS attribute
of PRAGMA RESTRICT_REFERENCES, 14-69

RNPS option
RESTRICT_REFERENCES, 13-99

ROLLBACK statement, 6-34
effect on savepoints, 6-35

rollbacks
implicit, 6-36
of FORALL statement, 12-14

routines
external, 8-23

row locks
with FOR UPDATE, 6-38

row operators, 6-7
row triggers

defining, 9-12
REFERENCING option, 9-21
timing, 9-7
UPDATE statements and, 9-7, 9-22

ROWCOUNT cursor attribute
explicit, 6-15
implicit, 6-8

ROWID
pseudocolumn, 6-5

ROWID data type, 3-14
rowids, 3-14
ROWIDTOCHAR function, 6-5
ROWNUM

pseudocolumn, 6-6
ROWTYPE attribute

declaring, 1-10
links to examples, 13-105
records, 5-31
syntax, 13-105
using, 2-15
with SUBTYPE, 3-24

ROWTYPE_MISMATCH exception, 11-5
RPC (remote procedure call)

and exceptions, 11-10
rules

purity, 8-25
run-time compilation

avoiding, 14-9
run-time errors

PL/SQL, 11-1

S
SAVE EXCEPTIONS clause

FORALL, 13-64
SAVEPOINT statement, 6-35
savepoints

reusing names, 6-35
scalar data types, 3-1
scale

specifying, 3-7
scientific notation, 2-6
scope

collection, 5-7
exceptions in PL/SQL, 11-6
explicit cursor, 6-10
explicit cursor parameter, 6-10
loop counter, 4-17
package, 10-3

scope of identifier, 2-22
searched CASE expression, 2-41
searched CASE statement, 4-6
SECOND

data type field, 3-16
security

enforcing, 14-47
security risks, 7-9
SELECT INTO statement

links to examples, 13-110
returning one row, 6-16
syntax, 13-107

selector, 2-41
SELF_IS_NULL exception, 11-5
semantics

string comparison, 3-10
separators, 2-3
sequences

CURRVAL and NEXTVAL, 6-4
SERIALLY_REUSABLE pragma

examples, 13-111
syntax, 13-111

Server Pages (PSPs)
PL/SQL, 2-57

SERVERERROR event
triggers on, 14-55

SERVEROUTPUT
setting ON to display output, 10-10

set operators, 6-7
SET TRANSACTION statement, 6-37
sets

simulating with nested tables, 5-5
short-circuit evaluation, 2-34
SHUTDOWN event

triggers on, 14-55
side effects, 8-8

controlling, 8-24
SIGNTYPE

BINARY_INTEGER subtype, 3-3
simple CASE expression, 2-41
SIMPLE_DOUBLE data type, 3-6
SIMPLE_FLOAT data type, 3-6
SIMPLE_INTEGER data type, 3-3



Index-18

single-line comments, 2-9
size limit

varrays, 5-7
SMALLINT

NUMBER subtype, 3-7
sparse collections, 5-2
sparse nested tables, 5-4
specification

call, 10-2
cursor, 10-12
package, 10-3

SPECIFICATION clause
of ALTER PACKAGE, 14-7

SQL
comparisons operators, 6-6
data manipulation operations, 6-1
define variables and data manipulation 

statements, 6-3
DML operations, 6-1
dynamic, 7-1
exceptions raised by data manipulation 

statements, 6-3
no rows returned with data manipulation 

statements, 6-3
pseudocolumns, 6-4
static, 6-1

SQL cursor
dynamic SQL and, 7-6
links to examples, 13-114
syntax, 13-113

SQL cursors
attributes, 6-8

SQL functions in PL/SQL, 2-47
SQL injection, 7-9
SQL reserved words, D-1
SQL statements

ALTER, 14-1
CREATE, 14-1
DROP, 14-2
for stored PL/SQL units, 14-1
in trigger bodies, 9-20, 9-25
not allowed in triggers, 9-25

SQLCODE function
links to examples, 13-116
syntax, 13-116

SQLData Java storage format, 14-66
SQLERRM function

links to examples, 13-118
syntax, 13-117
using with BULK_EXCEPTIONS ERROR_CODE 

field, 12-16
SQLJ object types

creating, 14-65
mapping a Java class to, 14-66

standalone procedures
dropping, 14-86

STANDARD package
defining PL/SQL environment, 10-9

START WITH clause, 6-5
STARTUP event

triggers on, 14-55
statement injection (SQL injection), 7-11
statement modification (SQL injection), 7-9
statement terminator, 13-13
statement triggers

conditional code for statements, 9-22
row evaluation order, 9-8
specifying SQL statement, 9-6
timing, 9-7
UPDATE statements and, 9-7, 9-22
valid SQL statements, 9-25

statements
assignment, 13-3
CASE, 13-15
CLOSE, 6-13, 6-29, 13-18
CONTINUE, 13-31
EXECUTE IMMEDIATE, 13-42
EXIT, 13-45
FETCH, 6-11, 6-28, 13-60
FORALL, 12-10, 13-63
FOR-LOOP, 13-80
GOTO, 13-70
IF, 13-71
LOOP, 4-8, 13-79
NULL, 13-84
OPEN, 6-11, 13-85
OPEN-FOR, 6-25, 13-87
OPEN-FOR-USING, 13-87
PL/SQL, 13-1
RAISE, 13-94
RETURN, 13-100
SELECT INTO, 13-107
WHILE-LOOP, 13-82

STATIC clause
of ALTER TYPE, 14-18
of CREATE TYPE, 14-67

static constants
conditional compilation, 2-52

static expressions
boolean, 2-50
PLS_INTEGER, 2-50
use with conditional compilation, 2-50
VARCHAR2, 2-50

static SQL, 6-1
static SQL statements

AUTHID property and, 8-19
statistics

user-defined
dropping, 14-84, 14-88

STEP clause
equivalent in PL/SQL, 4-16

STORAGE_ERROR exception, 11-5
raised with recursion, 8-23

store tables, 5-6
stored functions, 14-27
string comparison semantics, 3-10
string literals, 2-7

NCHAR, 2-8
STRING subtype, 3-9
Subprogram inlining, 12-1



Index-19

subprograms
actual and formal parameters, 8-6
advantages in PL/SQL, 8-2
controlling side effects, 8-24
declaring PL/SQL, 1-17
default parameter modes, 8-9
forward declaration of, 8-5
guidelines for overloading, 8-13
how calls are resolved, 8-16
IN OUT parameter mode, 8-9
IN parameter mode, 8-8
in PL/SQL, 8-1
invoking external, 8-23
invoking from SQL*Plus, 1-19
invoking with parameters, 8-11
mixed notation parameters, 8-11
named parameters, 8-11
OUT parameter mode, 8-8
overloading names, 8-12
parameter aliasing, 8-25
parameter modes, 8-7, 8-9
passing parameter by value, 8-25
passing parameters by reference, 8-25
positional parameters, 8-11
recursive, 8-23
restrictions on overloading, 8-14
using database links with invoker’s-rights, 8-20
using recursion, 8-23
using triggers with invoker’s-rights, 8-20
using views with invoker’s-rights, 8-20

subqueries
correlated, 6-20
using in PL/SQL, 6-19

SUBSCRIPT_BEYOND_COUNT exception, 11-5
SUBSCRIPT_OUTSIDE_LIMIT exception, 11-5
subtypes, 14-18

CHARACTER, 3-9
compatibility, 3-25
constrained and unconstrained, 3-24
defining, 3-24
dropping safely, 14-89
STRING, 3-9
using, 3-24
VARCHAR, 3-9

supertypes, 14-18
syntax

BEGIN, 13-12
collection method, 13-23
exception definition, 13-39, 13-40
FETCH statement, 13-60
literal declaration, 13-76
LOOP statement, 13-79
NULL statement, 13-84
reading diagrams, 13-1, 14-1
WHILE-LOOP statement, 13-82

syntax of PL/SQL language elements, 13-1
SYS_INVALID_ROWID exception, 11-5
SYS_REFCURSOR type, 12-38
system events

triggers on, 14-55

T
table

mutating, 9-25
TABLE data type, 5-7
table functions

creating, 14-32
exception handling, 12-42
fetching from results of, 12-38
for querying, 12-34
organizing multiple calls to, 12-38
passing data with cursor variables, 12-38
performing DML operations inside, 12-41
performing DML operations on, 12-41
pipelining data between, 12-37
returning results from, 12-37
setting up transformation pipelines, 12-34
using transformation pipelines, 12-36
writing transformation pipelines, 12-35

tables
constraining, 9-25
hash

simulating with associative arrays, 5-5
index-by

See associative arrays
mutating, 9-25
nested, 5-4

characteristics of, 5-2
creating, 14-71

store, 5-6
tabs, 2-2
terminators, 2-3
THEN clause

using, 4-2
with IF statement, 4-2

TIMEOUT_ON_RESOURCE exception, 11-5
TIMESTAMP data type, 3-17
TIMESTAMP WITH LOCAL TIME ZONE data 

type, 3-19
TIMESTAMP WITH TIME ZONE data type, 3-18
TIMEZONE_ABBR

data type field, 3-16
TIMEZONE_HOUR

data type field, 3-16
TIMEZONE_MINUTES

data type field, 3-16
TIMEZONE_REGION

data type field, 3-16
TO_NUMBER function, 7-6
TO_REFCURSOR function, 7-6
TOO_MANY_ROWS exception, 11-6
Trace API

tracing code for tuning, 12-9
tracking database events, 9-44
transactions, 6-3

autonomous in PL/SQL, 6-40
committing, 6-33
context, 6-43
ending properly, 6-36
processing in PL/SQL, 6-3, 6-32
properties, 6-37



Index-20

read-only, 6-37
restrictions, 6-37
rolling back, 6-34
savepoints, 6-35
triggers and, 9-2
visibility, 6-43

trigger
disabled

definition, 9-2
enabled

definition, 9-2
trigger body

defining, 14-57
triggering statement

definition, 9-6
Triggers

compound, 9-13
triggers

accessing column values, 9-20
AFTER, 9-7, 9-20, 9-32, 9-34, 14-51
as a stored PL/SQL subprogram, 1-19
auditing with, 9-31, 9-32
autonomous, 6-45
BEFORE, 9-7, 9-20, 9-41, 9-42, 14-50
body, 9-18, 9-22, 9-25
check constraints, 9-40, 9-41
column list in UPDATE, 9-7, 9-22
compiled, 9-27
compiling, 14-11
compound, 14-53
conditional predicates, 9-18, 9-22
constraints and, 9-3, 9-35
creating, 9-4, 9-5, 9-24, 14-47
creating enabled or disabled, 14-56
data access and, 9-2
data access restrictions, 9-41
database

altering, 14-11
dropping, 14-87

debugging, 9-29
designing, 9-3
disabling, 9-2, 14-11, 14-56
enabling, 9-2, 14-11, 14-12, 14-47
error conditions and exceptions, 9-22
events, 9-6
examples, 9-31 to 9-42
executing

with a PL/SQL block, 14-57
following other triggers, 14-56
FOR EACH ROW clause, 9-12
generating derived column values, 9-42
illegal SQL statements, 9-25
INSTEAD OF, 14-51
INSTEAD OF triggers, 9-8
listing information about, 9-30
modifying, 9-29
mutating tables and, 9-25
naming, 9-6
on database events, 14-55
on DDL events, 14-54

on DML operations, 14-49, 14-52
on views, 14-51
package variables and, 9-7
privileges

to drop, 9-29
procedures and, 9-25
recompiling, 9-28
re-creating, 14-50
REFERENCING option, 9-21
referential integrity and, 9-36 to 9-39
remote dependencies and, 9-25
remote exceptions, 9-23
removing from the database, 14-87
renaming, 14-12
restrictions, 9-13, 9-24
restrictions on, 14-56
row, 9-12, 14-53
row evaluation order, 9-8
row values

old and new, 14-53
sequential, 14-56
SQL examples, 14-57
statement, 14-53
stored, 9-27
use of LONG and LONG RAW data types, 9-25
username reported in, 9-27
WHEN clause, 9-13

triggers on object tables, 9-22
TRIM method

collections, 5-26, 13-25
TRUE value, 2-8
TRUST attribute

of PRAGMA RESTRICT_REFERENCES, 14-69
TRUST option

RESTRICT_REFERENCES, 13-99
tuning

allocate large VARCHAR2 variables, 12-7
avoid memory overhead, 12-7
computation-intensive programs, 12-27
do not duplicate built-in functions, 12-5
dynamic SQL programs, 12-27
group related subprograms into a package, 12-7
guidelines for avoiding PL/SQL performance 

problems, 12-3
improve code to avoid compiler warnings, 12-7
make function calls efficient, 12-4
make loops efficient, 12-5
make SQL statements efficient, 12-3
optimizing PL/SQL programs, 12-1
pin packages in the shared memory pool, 12-7
PL/SQL code, 12-2
profiling and tracing, 12-8
reducing loop overhead, 12-9
reorder conditional tests to put least expensive 

first, 12-5
use BINARY_FLOAT or BINARY_DOUBLE for 

floating-point arithmetic, 12-6
use PLS_INTEGER for integer arithmetic, 12-6
using DBMS_PROFILE and DBMS_TRACE, 12-8
using FORALL, 12-10



Index-21

using NOCOPY, 12-28
using transformation pipelines, 12-34

TYPE attribute, 2-12
declaring, 1-10
links to examples, 13-120
syntax, 13-119
with SUBTYPE, 3-24

TYPE definition
associative arrays, 5-7
collection, 5-6
collection types, 5-7
nested tables, 5-7
RECORD, 5-31
REF CURSOR, 6-23
VARRAY, 5-7

type methods
return type of, 14-68

types
composite, 5-1

types. See object types or data types

U
unbounded collections, 5-2
unhandled exceptions

catching, 11-16
propagating, 11-10

UNION ALL set operator, 6-7
UNION set operator, 6-7
universal rowids, 3-15
updatable view

definition, 9-8
UPDATE statement

column values and triggers, 9-20
triggers and, 9-7, 9-22
triggers for referential integrity, 9-37, 9-38
triggers on, 14-52
with a record variable, 5-36

URL (uniform resource locator), 10-11
UROWID

pseudocolumn, 6-5
UROWID data type, 3-14
user-defined

exceptions in PL/SQL, 11-6
user-defined aggregate functions, 14-32
user-defined statistics

dropping, 14-84, 14-88
user-defined types

defining, 14-64
mapping to Java classes, 14-65

usernames
as reported in a trigger, 9-27

USING clause
EXECUTE IMMEDIATE, 13-43
with OPEN FOR statement, 13-88

UTL_FILE package, 10-11
UTL_HTTP package, 10-11
UTL_SMTP package, 10-11
utlrp.sql script

for PL/SQL native compilation, 12-33

V
V$RESERVED_WORDS view, D-1
VALIDATE clause

of DROP TYPE, 14-89
validation checks

avoiding SQL injection with, 7-15
VALUE_ERROR exception, 11-6
VALUES OF clause, 12-10

FORALL, 13-63
VARCHAR subtype, 3-9
VARCHAR2 data type

differences with CHAR, 3-9
variables

assigning query result to, 2-27
assigning values, 1-7, 2-26
bind

See bind variables
composite, 5-1
declaring, 1-6, 2-10
global, 10-8
initializing, 2-26
links to examples, 13-30, 13-123
passing as IN OUT parameter, 1-8
REF CURSOR data type, 6-22
syntax, 13-28, 13-121
understanding PL/SQL, 1-6

variable-size arrays (varrays)
characteristics of, 5-2

VARRAY data type, 5-7
varrays

compared to nested tables, 5-6
creating, 14-60, 14-71
dropping the body of, 14-90
dropping the specification of, 14-88
increasing size of, 14-22
See variable-size arrays
size limit, 5-7
syntax, 13-19
TYPE definition, 5-7

views
containing expressions, 9-9
inherently modifiable, 9-9
modifiable, 9-9
pseudocolumns, 9-9

visibility
of package contents, 10-1
transaction, 6-43

visibility of identifier, 2-22

W
warning messages

controlling PL/SQL, 11-20
WHEN clause, 9-13

cannot contain PL/SQL expressions, 9-13
correlation names, 9-20
examples, 9-36
EXCEPTION examples, 9-23, 9-36, 9-40, 9-41
exception handling, 13-40
exceptions, 11-13



Index-22

of CREATE TRIGGER, 14-56
using, 4-10, 4-11

WHILE-LOOP statement
overview, 1-15
syntax, 13-82
using, 4-13

wildcards, 2-36
WNDS attribute

of PRAGMA RESTRICT_REFERENCES, 14-69
WNDS option

RESTRICT_REFERENCES, 13-99
WNPS attribute

of PRAGMA RESTRICT_REFERENCES, 14-69
WNPS option

RESTRICT_REFERENCES, 13-99
work areas

queries, 6-23
wrap utility

running, A-3
wrapping PL/SQL source code, A-1

Y
YEAR

data type field, 3-16

Z
ZERO_DIVIDE exception, 11-6
ZONE

part of TIMESTAMP data type, 3-18


	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Syntax Descriptions

	What's New in PL/SQL?
	New PL/SQL Features for 11g Release 1 (11.1)

	1 Overview of PL/SQL
	Advantages of PL/SQL
	Tight Integration with SQL
	High Performance
	High Productivity
	Full Portability
	Tight Security
	Access to Predefined Packages
	Support for Object-Oriented Programming
	Support for Developing Web Applications and Server Pages

	Main Features of PL/SQL
	PL/SQL Blocks
	PL/SQL Error Handling
	PL/SQL Input and Output
	PL/SQL Variables and Constants
	Declaring PL/SQL Variables
	Assigning Values to Variables
	Declaring PL/SQL Constants
	Bind Variables

	PL/SQL Data Abstraction
	Cursors
	%TYPE Attribute
	%ROWTYPE Attribute
	Collections
	Records
	Object Types

	PL/SQL Control Structures
	Conditional Control
	Iterative Control
	Sequential Control

	PL/SQL Subprograms
	Standalone PL/SQL Subprograms
	Triggers

	PL/SQL Packages (APIs Written in PL/SQL)
	Conditional Compilation
	Embedded SQL Statements

	Architecture of PL/SQL
	PL/SQL Engine
	PL/SQL Units and Compilation Parameters


	2 PL/SQL Language Fundamentals
	Character Sets and Lexical Units
	Delimiters
	Identifiers
	Reserved Words and Keywords
	Predefined Identifiers
	Quoted Identifiers

	Literals
	Numeric Literals
	Character Literals
	String Literals
	BOOLEAN Literals
	Date and Time Literals

	Comments
	Single-Line Comments
	Multiline Comments


	Declarations
	Variables
	Constants
	Using DEFAULT
	Using NOT NULL
	Using the %TYPE Attribute
	Using the %ROWTYPE Attribute
	Aggregate Assignment
	Using Aliases

	Restrictions on Declarations

	Naming Conventions
	Scope
	Case Sensitivity
	Name Resolution
	Synonyms

	Scope and Visibility of PL/SQL Identifiers
	Assigning Values to Variables
	Assigning BOOLEAN Values
	Assigning SQL Query Results to PL/SQL Variables

	PL/SQL Expressions and Comparisons
	Concatenation Operator
	Operator Precedence
	Logical Operators
	Order of Evaluation
	Short-Circuit Evaluation
	Comparison Operators

	BOOLEAN Expressions
	BOOLEAN Arithmetic Expressions
	BOOLEAN Character Expressions
	BOOLEAN Date Expressions
	Guidelines for BOOLEAN Expressions

	CASE Expressions
	Simple CASE Expression
	Searched CASE Expression

	Handling NULL Values in Comparisons and Conditional Statements
	NULL Values and the NOT Operator
	NULL Values and Zero-Length Strings
	NULL Values and the Concatenation Operator
	NULL Values as Arguments to Built-In Functions


	PL/SQL Error-Reporting Functions
	Using SQL Functions in PL/SQL
	Conditional Compilation
	How Does Conditional Compilation Work?
	Conditional Compilation Control Tokens
	Using Conditional Compilation Selection Directives
	Using Conditional Compilation Error Directives
	Using Conditional Compilation Inquiry Directives
	Using Predefined Inquiry Directives with Conditional Compilation
	Using Static Expressions with Conditional Compilation
	Using DBMS_DB_VERSION Package Constants

	Conditional Compilation Examples
	Using Conditional Compilation to Specify Code for Database Versions
	Using DBMS_PREPROCESSOR Procedures to Print or Retrieve Source Text

	Conditional Compilation Restrictions

	Using PL/SQL to Create Web Applications
	Using PL/SQL to Create Server Pages

	3 PL/SQL Data Types
	Predefined PL/SQL Scalar Data Types and Subtypes
	Predefined PL/SQL Numeric Data Types and Subtypes
	PLS_INTEGER and BINARY_INTEGER Data Types
	SIMPLE_INTEGER Subtype of PLS_INTEGER
	BINARY_FLOAT and BINARY_DOUBLE Data Types
	NUMBER Data Type

	Predefined PL/SQL Character Data Types and Subtypes
	CHAR and VARCHAR2 Data Types
	RAW Data Type
	NCHAR and NVARCHAR2 Data Types
	LONG and LONG RAW Data Types
	ROWID and UROWID Data Types

	Predefined PL/SQL BOOLEAN Data Type
	Predefined PL/SQL Datetime and Interval Data Types
	DATE Data Type
	TIMESTAMP Data Type
	TIMESTAMP WITH TIME ZONE Data Type
	TIMESTAMP WITH LOCAL TIME ZONE Data Type
	INTERVAL YEAR TO MONTH Data Type
	INTERVAL DAY TO SECOND Data Type
	Datetime and Interval Arithmetic
	Avoiding Truncation Problems Using Date and Time Subtypes


	Predefined PL/SQL Large Object (LOB) Data Types
	BFILE Data Type
	BLOB Data Type
	CLOB Data Type
	NCLOB Data Type

	User-Defined PL/SQL Subtypes
	Defining Subtypes
	Using Subtypes
	Type Compatibility with Subtypes
	Constraints and Default Values with Subtypes


	PL/SQL Data Type Conversion
	Explicit Conversion
	Implicit Conversion


	4 Using PL/SQL Control Structures
	Overview of PL/SQL Control Structures
	Testing Conditions (IF and CASE Statements)
	Using the IF-THEN Statement
	Using the IF-THEN-ELSE Statement
	Using the IF-THEN-ELSIF Statement
	Using the Simple CASE Statement
	Using the Searched CASE Statement
	Guidelines for IF and CASE Statements

	Controlling Loop Iterations (LOOP, EXIT, and CONTINUE Statements)
	Using the Basic LOOP Statement
	Using the EXIT Statement
	Using the EXIT-WHEN Statement
	Using the CONTINUE Statement
	Using the CONTINUE-WHEN Statement
	Labeling a PL/SQL Loop
	Using the WHILE-LOOP Statement
	Using the FOR-LOOP Statement
	How PL/SQL Loops Repeat
	Dynamic Ranges for Loop Bounds
	Scope of the Loop Counter Variable
	Using the EXIT Statement in a FOR Loop


	Sequential Control (GOTO and NULL Statements)
	Using the GOTO Statement
	GOTO Statement Restrictions
	Using the NULL Statement


	5 Using PL/SQL Collections and Records
	Understanding PL/SQL Collection Types
	Understanding Associative Arrays (Index-By Tables)
	Understanding Nested Tables
	Understanding Variable-Size Arrays (Varrays)

	Choosing PL/SQL Collection Types
	Choosing Between Nested Tables and Associative Arrays
	Choosing Between Nested Tables and Varrays

	Defining Collection Types
	Declaring Collection Variables
	Initializing and Referencing Collections
	Referencing Collection Elements
	Assigning Values to Collections
	Comparing Collections
	Using Multidimensional Collections
	Using Collection Methods
	Checking If a Collection Element Exists (EXISTS Method)
	Counting the Elements in a Collection (COUNT Method)
	Checking the Maximum Size of a Collection (LIMIT Method)
	Finding the First or Last Collection Element (FIRST and LAST Methods)
	Looping Through Collection Elements (PRIOR and NEXT Methods)
	Increasing the Size of a Collection (EXTEND Method)
	Decreasing the Size of a Collection (TRIM Method)
	Deleting Collection Elements (DELETE Method)
	Applying Methods to Collection Parameters

	Avoiding Collection Exceptions
	Defining and Declaring Records
	Using Records as Subprogram Parameters and Function Return Values
	Assigning Values to Records
	Comparing Records
	Inserting Records Into the Database
	Updating the Database with Record Values
	Restrictions on Record Inserts and Updates
	Querying Data Into Collections of Records


	6 Using Static SQL
	Description of Static SQL
	Data Manipulation Language (DML) Statements
	Transaction Control Language (TCL) Statements
	SQL Functions
	SQL Pseudocolumns
	CURRVAL and NEXTVAL
	LEVEL
	ROWID
	ROWNUM

	SQL Operators
	Comparison Operators
	Set Operators
	Row Operators


	Managing Cursors in PL/SQL
	SQL Cursors (Implicit)
	Attributes of SQL Cursors
	Guidelines for Using Attributes of SQL Cursors

	Explicit Cursors
	Declaring a Cursor
	Opening a Cursor
	Fetching with a Cursor
	Fetching Bulk Data with a Cursor
	Closing a Cursor
	Attributes of Explicit Cursors


	Querying Data with PL/SQL
	Selecting At Most One Row (SELECT INTO Statement)
	Selecting Multiple Rows (BULK COLLECT Clause)
	Looping Through Multiple Rows (Cursor FOR Loop)
	Performing Complicated Query Processing (Explicit Cursors)
	Cursor FOR LOOP
	SQL Cursor FOR LOOP
	Explicit Cursor FOR LOOP

	Defining Aliases for Expression Values in a Cursor FOR Loop

	Using Subqueries
	Using Correlated Subqueries
	Writing Maintainable PL/SQL Subqueries

	Using Cursor Variables (REF CURSORs)
	What Are Cursor Variables (REF CURSORs)?
	Why Use Cursor Variables?
	Declaring REF CURSOR Types and Cursor Variables
	Passing Cursor Variables As Parameters
	Controlling Cursor Variables (OPEN-FOR, FETCH, and CLOSE Statements)
	Opening a Cursor Variable
	Using a Cursor Variable as a Host Variable
	Fetching from a Cursor Variable
	Closing a Cursor Variable

	Reducing Network Traffic When Passing Host Cursor Variables to PL/SQL
	Avoiding Errors with Cursor Variables
	Restrictions on Cursor Variables

	Using Cursor Expressions
	Overview of Transaction Processing in PL/SQL
	Using COMMIT in PL/SQL
	Using ROLLBACK in PL/SQL
	Using SAVEPOINT in PL/SQL
	How the Database Does Implicit Rollbacks
	Ending Transactions
	Setting Transaction Properties (SET TRANSACTION Statement)
	Overriding Default Locking
	Using FOR UPDATE
	Using LOCK TABLE
	Fetching Across Commits


	Doing Independent Units of Work with Autonomous Transactions
	Advantages of Autonomous Transactions
	Defining Autonomous Transactions
	Comparison of Autonomous Transactions and Nested Transactions
	Transaction Context
	Transaction Visibility

	Controlling Autonomous Transactions
	Entering and Exiting
	Committing and Rolling Back
	Using Savepoints
	Avoiding Errors with Autonomous Transactions

	Using Autonomous Triggers
	Invoking Autonomous Functions from SQL


	7 Using Dynamic SQL
	When You Need Dynamic SQL
	Using Native Dynamic SQL
	Using the EXECUTE IMMEDIATE Statement
	Using the OPEN-FOR, FETCH, and CLOSE Statements
	Repeating Placeholder Names in Dynamic SQL Statements
	Dynamic SQL Statement is Not Anonymous Block or CALL Statement
	Dynamic SQL Statement is Anonymous Block or CALL Statement


	Using DBMS_SQL Package
	DBMS_SQL.TO_REFCURSOR Function
	DBMS_SQL.TO_CURSOR_NUMBER Function

	Avoiding SQL Injection in PL/SQL
	Overview of SQL Injection Techniques
	Statement Modification
	Statement Injection
	Data Type Conversion

	Guarding Against SQL Injection
	Using Bind Arguments to Guard Against SQL Injection
	Using Validation Checks to Guard Against SQL Injection
	Using Explicit Format Models to Guard Against SQL Injection



	8 Using PL/SQL Subprograms
	Overview of PL/SQL Subprograms
	Subprogram Parts
	Creating Nested Subprograms that Invoke Each Other
	Declaring and Passing Subprogram Parameters
	Formal and Actual Subprogram Parameters
	Specifying Subprogram Parameter Modes
	Using IN Mode
	Using OUT Mode
	Using IN OUT Mode
	Summary of Subprogram Parameter Modes

	Specifying Default Values for Subprogram Parameters
	Passing Actual Subprogram Parameters with Positional, Named, or Mixed Notation

	Overloading PL/SQL Subprogram Names
	Guidelines for Overloading with Numeric Types
	Restrictions on Overloading
	When Compiler Catches Overloading Errors

	How PL/SQL Subprogram Calls Are Resolved
	Using Invoker's Rights or Definer's Rights (AUTHID Clause)
	Choosing Between AUTHID CURRENT_USER and AUTHID DEFINER
	AUTHID and the SQL Command SET ROLE
	Need for Template Objects in IR Subprograms
	Overriding Default Name Resolution in IR Subprograms
	Using Views and Database Triggers with IR Subprograms
	Using Database Links with IR Subprograms
	Using Object Types with IR Subprograms
	Invoking IR Instance Methods

	Using Recursive PL/SQL Subprograms
	Invoking External Subprograms
	Controlling Side Effects of PL/SQL Subprograms
	Understanding PL/SQL Subprogram Parameter Aliasing
	Using the PL/SQL Function Result Cache
	Enabling Result-Caching for a Function
	Developing Applications with Result-Cached Functions
	Restrictions on Result-Cached Functions
	Examples of Result-Cached Functions
	Result-Cached Application Configuration Parameters
	Result-Cached Recursive Function

	Advanced Result-Cached Function Topics
	Rules for a Cache Hit
	Bypassing the Result Cache
	Making Result-Cached Functions Handle Session-Specific Settings
	Making Result-Cached Functions Handle Session-Specific Application Contexts
	Choosing Result-Caching Granularity
	Result Caches in Oracle RAC Environment
	Managing the Result Cache
	Hot-Patching PL/SQL Units on Which Result-Cached Functions Depend



	9 Using Triggers
	Overview of Triggers
	Trigger Types
	Trigger States
	Data Access for Triggers
	Uses of Triggers

	Guidelines for Designing Triggers
	Privileges Required to Use Triggers
	Creating Triggers
	Naming Triggers
	When Does the Trigger Fire?
	Do Import and SQL*Loader Fire Triggers?
	How Column Lists Affect UPDATE Triggers

	Controlling When a Trigger Fires (BEFORE and AFTER Options)
	Ordering of Triggers
	Modifying Complex Views (INSTEAD OF Triggers)
	Views that Require INSTEAD OF Triggers
	Triggers on Nested Table View Columns
	Example: INSTEAD OF Trigger

	Firing Triggers One or Many Times (FOR EACH ROW Option)
	Firing Triggers Based on Conditions (WHEN Clause)
	Compound Triggers
	Why Use Compound Triggers?
	Compound Trigger Sections
	Triggering Statements of Compound Triggers
	Compound Trigger Restrictions
	Compound Trigger Example
	Using Compound Triggers to Avoid Mutating-Table Error


	Coding the Trigger Body
	Accessing Column Values in Row Triggers
	Example: Modifying LOB Columns with a Trigger
	INSTEAD OF Triggers on Nested Table View Columns
	Avoiding Trigger Name Conflicts (REFERENCING Option)
	Detecting the DML Operation that Fired a Trigger
	Error Conditions and Exceptions in the Trigger Body

	Triggers on Object Tables
	Triggers and Handling Remote Exceptions
	Restrictions on Creating Triggers
	Maximum Trigger Size
	SQL Statements Allowed in Trigger Bodies
	Trigger Restrictions on LONG and LONG RAW Data Types
	Trigger Restrictions on Mutating Tables
	Restrictions on Mutating Tables Relaxed
	System Trigger Restrictions
	Foreign Function Callouts

	Who Uses the Trigger?

	Compiling Triggers
	Dependencies for Triggers
	Recompiling Triggers

	Modifying Triggers
	Debugging Triggers
	Enabling Triggers
	Disabling Triggers
	Viewing Information About Triggers
	Examples of Trigger Applications
	Auditing with Triggers
	Contraints and Triggers
	Referential Integrity Using Triggers
	Foreign Key Trigger for Child Table
	UPDATE and DELETE RESTRICT Trigger for Parent Table
	UPDATE and DELETE SET NULL Triggers for Parent Table
	DELETE Cascade Trigger for Parent Table
	UPDATE Cascade Trigger for Parent Table
	Trigger for Complex Check Constraints
	Complex Security Authorizations and Triggers
	Transparent Event Logging and Triggers
	Derived Column Values and Triggers
	Building Complex Updatable Views Using Triggers
	Fine-Grained Access Control Using Triggers


	Responding to Database Events Through Triggers
	How Events Are Published Through Triggers
	Publication Context
	Error Handling
	Execution Model
	Event Attribute Functions
	Database Events
	Client Events


	10 Using PL/SQL Packages
	What is a PL/SQL Package?
	What Goes in a PL/SQL Package?
	Advantages of PL/SQL Packages
	Understanding the PL/SQL Package Specification
	Referencing PL/SQL Package Contents
	Understanding the PL/SQL Package Body
	Examples of PL/SQL Package Features
	Private and Public Items in PL/SQL Packages
	How STANDARD Package Defines the PL/SQL Environment
	Overview of Product-Specific PL/SQL Packages
	DBMS_ALERT Package
	DBMS_OUTPUT Package
	DBMS_PIPE Package
	DBMS_CONNECTION_POOL Package
	HTF and HTP Packages
	UTL_FILE Package
	UTL_HTTP Package
	UTL_SMTP Package

	Guidelines for Writing PL/SQL Packages
	Separating Cursor Specifications and Bodies with PL/SQL Packages

	11 Handling PL/SQL Errors
	Overview of PL/SQL Run-Time Error Handling
	Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions
	Advantages of PL/SQL Exceptions
	Predefined PL/SQL Exceptions
	Defining Your Own PL/SQL Exceptions
	Declaring PL/SQL Exceptions
	Scope Rules for PL/SQL Exceptions
	Associating a PL/SQL Exception with a Number (EXCEPTION_INIT Pragma)
	Defining Your Own Error Messages (RAISE_APPLICATION_ERROR Procedure)
	Redeclaring Predefined Exceptions

	How PL/SQL Exceptions Are Raised
	How PL/SQL Exceptions Propagate
	Reraising a PL/SQL Exception
	Handling Raised PL/SQL Exceptions
	Exceptions Raised in Declarations
	Handling Exceptions Raised in Exception Handlers
	Branching To or from an Exception Handler
	Retrieving the Error Code and Error Message
	Catching Unhandled Exceptions
	Guidelines for Handling PL/SQL Errors
	Continuing Execution After an Exception Is Raised
	Retrying a Transaction
	Using Locator Variables to Identify Exception Locations


	Overview of PL/SQL Compile-Time Warnings
	PL/SQL Warning Categories
	Controlling PL/SQL Warning Messages
	Using DBMS_WARNING Package


	12 Tuning PL/SQL Applications for Performance
	How PL/SQL Optimizes Your Programs
	When to Tune PL/SQL Code
	Guidelines for Avoiding PL/SQL Performance Problems
	Avoiding CPU Overhead in PL/SQL Code
	Make SQL Statements as Efficient as Possible
	Make Function Calls as Efficient as Possible
	Make Loops as Efficient as Possible
	Use Built-In String Functions
	Put Least Expensive Conditional Tests First
	Minimize Data Type Conversions
	Use PLS_INTEGER or SIMPLE_INTEGER for Integer Arithmetic
	Use BINARY_FLOAT, BINARY_DOUBLE, SIMPLE_FLOAT, and SIMPLE_DOUBLE for Floating-Point Arithmetic

	Avoiding Memory Overhead in PL/SQL Code
	Declare VARCHAR2 Variables of 4000 or More Characters
	Group Related Subprograms into Packages
	Pin Packages in the Shared Memory Pool
	Apply Advice of Compiler Warnings


	Collecting Data About User-Defined Identifiers
	Profiling and Tracing PL/SQL Programs
	Using the Profiler API: Package DBMS_PROFILER
	Using the Trace API: Package DBMS_TRACE

	Reducing Loop Overhead for DML Statements and Queries with Bulk SQL
	Running One DML Statement Multiple Times (FORALL Statement)
	How FORALL Affects Rollbacks
	Counting Rows Affected by FORALL (%BULK_ROWCOUNT Attribute)
	Handling FORALL Exceptions (%BULK_EXCEPTIONS Attribute)

	Retrieving Query Results into Collections (BULK COLLECT Clause)
	Examples of Bulk Fetching from a Cursor
	Limiting Rows for a Bulk FETCH Operation (LIMIT Clause)
	Retrieving DML Results Into a Collection (RETURNING INTO Clause)
	Using FORALL and BULK COLLECT Together
	Using Host Arrays with Bulk Binds
	SELECT BULK COLLECT INTO Statements and Aliasing


	Writing Computation-Intensive PL/SQL Programs
	Tuning Dynamic SQL with EXECUTE IMMEDIATE Statement and Cursor Variables
	Tuning PL/SQL Subprogram Calls with NOCOPY Hint
	Compiling PL/SQL Units for Native Execution
	Determining Whether to Use PL/SQL Native Compilation
	How PL/SQL Native Compilation Works
	Dependencies, Invalidation, and Revalidation
	Setting Up a New Database for PL/SQL Native Compilation
	Compiling the Entire Database for PL/SQL Native or Interpreted Compilation

	Performing Multiple Transformations with Pipelined Table Functions
	Overview of Pipelined Table Functions
	Writing a Pipelined Table Function
	Using Pipelined Table Functions for Transformations
	Returning Results from Pipelined Table Functions
	Pipelining Data Between PL/SQL Table Functions
	Optimizing Multiple Calls to Pipelined Table Functions
	Fetching from Results of Pipelined Table Functions
	Passing Data with Cursor Variables
	Performing DML Operations Inside Pipelined Table Functions
	Performing DML Operations on Pipelined Table Functions
	Handling Exceptions in Pipelined Table Functions


	13 PL/SQL Language Elements
	Assignment Statement
	AUTONOMOUS_TRANSACTION Pragma
	Block
	CASE Statement
	CLOSE Statement
	Collection
	Collection Method Call
	Comment
	Constant
	CONTINUE Statement
	Cursor Attribute
	Cursor Variable Declaration
	EXCEPTION_INIT Pragma
	Exception Declaration
	Exception Handler
	EXECUTE IMMEDIATE Statement
	EXIT Statement
	Explicit Cursor
	Expression
	FETCH Statement
	FORALL Statement
	Function Declaration and Definition
	GOTO Statement
	IF Statement
	INLINE Pragma
	Literal
	LOOP Statements
	NULL Statement
	OPEN Statement
	OPEN-FOR Statement
	Parameter Declaration
	Procedure Declaration and Definition
	RAISE Statement
	Record Definition
	RESTRICT_REFERENCES Pragma
	RETURN Statement
	RETURNING INTO Clause
	%ROWTYPE Attribute
	SELECT INTO Statement
	SERIALLY_REUSABLE Pragma
	SQL (Implicit) Cursor Attribute
	SQLCODE Function
	SQLERRM Function
	%TYPE Attribute
	Variable

	14 SQL Statements for Stored PL/SQL Units
	ALTER FUNCTION Statement
	ALTER PACKAGE Statement
	ALTER PROCEDURE Statement
	ALTER TRIGGER Statement
	ALTER TYPE Statement
	CREATE FUNCTION Statement
	CREATE PACKAGE Statement
	CREATE PACKAGE BODY Statement
	CREATE PROCEDURE Statement
	CREATE TRIGGER Statement
	CREATE TYPE Statement
	CREATE TYPE BODY Statement
	DROP FUNCTION Statement
	DROP PACKAGE Statement
	DROP PROCEDURE Statement
	DROP TRIGGER Statement
	DROP TYPE Statement
	DROP TYPE BODY Statement

	A Wrapping PL/SQL Source Code
	Overview of Wrapping
	Guidelines for Wrapping
	Limitations of Wrapping
	Wrapping PL/SQL Code with wrap Utility
	Input and Output Files for the PL/SQL wrap Utility
	Running the wrap Utility
	Limitations of the wrap Utility

	Wrapping PL/QL Code with DBMS_DDL Subprograms
	Using DBMS_DDL.CREATE_WRAPPED Procedure
	Limitation of the DBMS_DDL.WRAP Function


	B How PL/SQL Resolves Identifier Names
	What is Name Resolution?
	Examples of Qualified Names and Dot Notation
	How Name Resolution Differs in PL/SQL and SQL
	What is Capture?
	Inner Capture
	Same-Scope Capture
	Outer Capture

	Avoiding Inner Capture in DML Statements
	Qualifying References to Attributes and Methods
	Qualifying References to Row Expressions


	C PL/SQL Program Limits
	D PL/SQL Reserved Words and Keywords
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z


