SECURITE DES SGBD : SEANCE 3 BASES STATISTIQUES, ANONYMAT ET CHIFFREMENT

Objectif :

Ce TP est une introduction aux méthodes de chiffrements pour les BD relationnelles sur OracleXE, de génération de données anonymes. Dans une première partie nous abordons le problème de la gestion de données sensibles dans une base de données statistique. La seconde partie sera consacrée à l'utilisation des packages cryptographiques (chiffrement, déchiffrement, hachage, ...) disponibles au niveau du SGBD, que nous utiliserons pour protéger des mots de passes, une colonne sensible, et pour générer des données anonymes.

Matériel nécessaire:

Répertoire en ligne pour la séance: <u>http://www.benjamin-nguyen.fr/SBD/</u> récupérez le fichier tp_anonymization.zip

Préparation :

Pour ce TP, vous utiliserez exclusivement la ligne de commande "sqlplus".

PARTIE 1 - Introduction.

Dans cette partie, nous considérons la table statistique et la vue suivante:

- Table STATS: name varchar(50), gender char(1), age NUMBER, insurance varchar(50), leucocyte NUMBER. Le champ 'name' contient le nom d'un patient, 'gender' son genre (H ou F), 'age' son age, 'insurance' sa compagnie d'assurance (ex: MGEN, MATMUT, MAIF, ...), et 'leucocyte' son taux de leucocyte qui est considérée comme une données privée ultra sensible.
- Vue STATS_VIEW: gender char(1), insurance varchar(50), leucocyte NUMBER. Il s'agit d'une projection de la table STATS sur les colonnes gender, insurance et leucocyte.

Q1: <u>Utilisation de fonctions statistiques</u>

Connectez-vous en tant qu'administrateur (system).

Lancer le script STAT.sql

Connectez vous en tant qu'utilisateur USER_STAT (mot de passe : oracle) Cet utilisateur a-t-il accès à la table STATS et à la vue STATS_VIEW ?

Cet utilisateur a accès aux fonctions WHERE_CLAUSE(), ROW_COUNT(), SUM_LEUCOCYTE() et peut interroger la vue STATS_VIEW uniquement au travers de ces fonctions. La première fonction permet de visualiser une clause WHERE formée à partir de la clause donnée en paramètre, la seconde donne le nombre de patients correspondant satisfaisant une clause WHERE donnée, et la troisième donne leur taux de leucocyte.

Vous pouvez lancer ces fonctions via la requête SQL suivante:

SELECT <propriétaire_fonction>.<nom_fonction> (' <contenu_clause_where> ') from dual;

Ces fonctions prennent en paramètre une chaine de caractères (clause <contenue_clause_where>) indiquant la clause WHERE d'une requête SQL posée sur une vue STATS_VIEW. La clause <contenue_clause_where> pourra être par exemple : insurance = "MATMUT" (attention: le symbole " est obtenu par deux guillemets simples successifs). Vous devrez consulter la table ALL_OBJETS pour trouver l'utilisateur propriétaire de ces fonctions permettant l'appel.

Quel est le nombre de patients assurés à la MATMUT, et la somme de leur taux de leucocyte ? Quel est le nombre total de patients dans la base ?

Q2 : <u>Attaque de fonctions statistiques non protégées</u>

Vous savez que le patient Dubois est un homme qui est assuré à la MGEN. Utiliser les fonctions statistiques pour obtenir le taux de leucocyte de Dubois.

Q3 : <u>Attaque de fonctions statistiques protégées</u>

Connectez-vous en tant qu'administrateur.

Connectez-vous en tant qu'utilisateur USER_STAT.

Relancer l'attaque conduite à la section précédente. Fonctionne-t-elle toujours ?

Cette fois, les fonctions sont protégées, et seuls les résultats statistiques obtenus à partir d'au moins 2 tuples sont accessibles.

Q4: Attaques de fonctions statistiques protégées

Connectez-vous en tant qu'administrateur.

Lancer le script STAT_PROTECT_2.sql

Connectez-vous en tant qu'utilisateur USER_STAT.

Relancer l'attaque conduite à la section précédente. Fonctionne-t-elle toujours ?

Cette fois, les fonctions sont protégées, et seuls les résultats statistiques obtenus à partir d'au moins 2 tuples et au plus n-1 tuples, sont accessibles. Trouver une séquence d'appels aux fonctions statistiques protégées permettant d'obtenir quand même le taux de leucocyte de Dubois.

PARTIE 2 - Anonymat et Chiffrement (package Oracle de chiffrement)

Dans cette partie, nous utiliserons le package DBMS_OBFUSCATION_TOOLKIT.

Q5: Pseudonymat par hachage

Connectez-vous en tant qu'administrateur.

Interrogez Oracle XE pour connaitre la liste des fonctions cryptographique disponibles dans le package de chiffrement.

Créez une nouvelle table STAT ANONYM sur le même format que la table STATS. Insérez le contenu de la table STATS dans la table STAT_ANONYM en remplaçant les noms des patients par une clé anonyme, obtenue par hachage cryptographique.

Pour hacher une chaine de caractères, vous pouvez utiliser:

```
SELECT rawtohex(
        UTL RAW.cast to raw (
         DBMS_OBFUSCATION_TOOLKIT.md5(input_string => 'texte' ) ) )
FROM dual;
Ou sitlest est la table crée par : create table t1 (nom varchar2(32)) ;
SELECT rawtohex(
        UTL_RAW.cast_to_raw (
         DBMS_OBFUSCATION_TOOLKIT.md5(input_string => nom ) ))
FROM t1;
```

Donnez les droits nécessaires à l'utilisateur USER_STAT pour qu'il puisse accéder à la table STAT_ANONYM.

Q6: Attaque au pseudonymat par hachage

Connectez-vous en tant qu'utilisateur USER_STAT.

En supposant que cet utilisateur connaisse le nom d'un patient (par exeselectmple le patient 'franck'), retrouvez toutes les données (age, genre, leucocyte) correspondant à ce patient dans la table STAT_ANONYM. Même sans avoir cette information, essayez via des outils existant sur le web (e.g. http://md5decryption.com/) de déchiffrer les données hachées.

Lancer le script NOMS.sql

Une table NOMS contenant une série de noms potentiels vous est fournie dans le script NOMS.sql. Retrouvez dans la table STAT ANONYM chaque ligne correspondant à un nom de la table NOMS. Combien de lignes de la table STAT ANONYM parvenez-vous à dé-anonymiser ?

Q7: Pseudonymat par chiffrement

Connectez-vous en tant qu'administrateur.

Créez une table CLEF avec un champs VAL de type CHAR(8) dans laquelle vous stockerez une clé (secrète) que vous choisirez.

Le script CRYPT.sql crée les fonctions ENCRYPT et DECRYPT que vous pourrez utiliser. Compléter le script (chaque série de points d'interrogation est à remplacer par un nom de variable).

Lancer le script CRYPT.sql

Si le script a été correctement modifié, vous obtenez en sortie:

test

Interroger la base pour obtenir une description des fonctions ENCRYPT et DECRYPT.

Tester ces fonctions en utilisant la table DUAL.

Insérez le contenu de la table STATS dans la table STAT_ANONYM en remplaçant les noms des patients par une valeur anonyme obtenue par chiffrement du nom avec votre clé secrète.

Q8 : <u>Attaque au pseudonymat par chiffrement</u>

Connectez-vous en tant qu'utilisateur USER_STAT.

En supposant que cet utilisateur connaisse le nom d'un patient comme précédemment, peut-il retrouver les données correspondant à ce patient dans la table STAT_ANONYM ?

Lancer le script LISTING.sql

Une table LISTING contenant une série de noms potentiels avec leur genre, age, et compagnie d'assurance, vous est fournie dans le script LISTING.sql. Dé-anonymiser la table STAT ANONYM en utilisant LISTING.sql.

Combien de lignes de la table STAT ANONYM parvenez-vous à dé-anonymiser ?

Q9: <u>2-Anonymat</u>

Connectez-vous en tant qu'administrateur. Anonymiser (à la main) la table STAT_ANONYM de manière à la rendre 2 anonyme. Connectez-vous en tant qu'utilisateur USER_STAT. Montrer que l'attaque précédente n'est plus opérante.

Q10 : <u>Chiffrement d'une colonne sensible</u>

Connectez-vous en tant qu'administrateur.

Lancer le script CLIENT.sql

Ce script crée la table CLI avec 91 clients.

Créer une table CLI_CRYPT sur le même modèle que la table CLI, mais en chiffrant la colonne PAYS de la table CLI avec la clé secrète.

Donnez les droits nécessaires à l'utilisateur USER_STAT pour qu'il puisse accéder à la table CLI_CRYPT. Connectez-vous en tant qu'utilisateur USER_STAT.

Vous avez accès à au graphique suivant montrant la distribution des pays dans la clientèle.

A partir de ce graphique, déchiffrer la colonne pays.

Q11: <u>Chiffrement d'une colonne sensible</u>

Connectez-vous en tant qu'administrateur. Chiffrer à nouveau la colonne PAYS pour résister à cette attaque. Connectez-vous en tant qu'utilisateur USER_STAT. Montrer que l'attaque précédente n'est plus opérante.