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Abstract. We propose in this work a logical framework to formally model how a given piece of private in-
formation P (specified as a set of tuples) on a given database D, can get captured by an adversary A with a
sequence of queries on the database; at every stage of the querying process, the knowledge acquired on D with
the answers to his/her current and earlier queries, is ‘saturated’ using relational deductions; for this saturation,
external public data given in advance can also be used. We assume that the database D can be protected with
generalization mechanisms. The logical framework will be built on concepts from Probabilistic Automata, Prob-
abilistic Concurrent Systems, and Probabilistic labeled transition systems, nd will be named Distributed Labeled
Tagged Transition System (DLTTS). A couple of concrete examples will show how the DLTTS can be used in
practice. A second important point addressed in this work is in the realm of what is known as ‘differential
privacy’; its object is to study the situations where the query-answering mechanism (of D’s DBMS) may or
may not distinguish ‘sufficiently/properly’ the answers to two different instances of queries (by adversary A). A
classical result in this direction says the following: If D, D’ are two databases (with all data of the same type and
of the same length for both) adjacent for the Hamming metric (they differ at most on a single entry), then the
answers to certain queries on D, D’ are not properly distinguishable. In our current work, we shall show that on
a larger and more general class of databases — where the data could be of mixed types, nd not necessarily of the
same length — (partial) metrics can be defined ‘value-wise’, i.e., in a constructive approach, and more general
notions of adjacency between data bases can be defined, using these metrics; we will show them to be finer for
differential privacy analysis.
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1 Introduction

Data anonymization has been investigated for decades, and many privacy models have been proposed
(k-anonymity, differential privacy, ...) whose goals are to protect sensitive information. In this
paper, our goal is not to define a new privacy model, but rather to propose a logical framework
(agnostic to the privacy model) to formally model how the information stored in a database can
get captured progressively by any agent repeatedly querying the database, i.e., we consider an agent
with authorized access to the database, asking successively, different legitimate queries, and using the
results of these queries, possibly along with additional background information, to derive information
on the individuals in the database. One can envision several applications of our model.
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A first application is forensics: for instance, in the case of a dataleak, by analyzing the queries asked
by each user, our model is able to quantify the knowledge each user will eventually obtain, and thus
find which user has the highest probability of being responsible for the said dataleak.

A second application is to quantify and detect potential dynamic reidentification attacks on a database
by a user. Such detection could lead to preventive measures such as not answering any more queries
of this specific user. In this case, our approach functions as a monitor, updating its knowledge after
each user query.

We start with the observation that databases are distributed over several ‘worlds’ in general (in a
probabilistic sense), and querying such databases leads to answers which would also be distributed;
and conceivably, to such distributed answers one could assign probability distributions of pertinence
to the query.

Example 1 (Database worlds). Consider the following database.

Name Age Gender Dept. Ailment
Alice | [29-30] F Chemistry Flu

Table 1: Example database D,

This database is distributed over the following two possible worlds (underlying databases):

Name | Age | Gender Dept. Ailment
Alice | 29 F Chemistry Flu

Table 2: Possible world Qixl

Name | Age | Gender Dept. Ailment
Alice | 30 F Chemistry Flu

Table 3: Possible world ngl

If an observer has no other information about the possible worlds, then (s)he will assign equal prob-
abilities of P(Qixl D,y 1) = P(ng1 |D,,;) = 0.5 of representing ‘reality’. If an observer knows for

instance that Alice is in her twenties, then (s)he will assign probabilities P(Qix I |D,,; Atwenties) = 1
and P(Q2 | |D,,; A twenties) = 0. O

The logical framework presented in this article, named DLTTS (Distributed Labeled Tagged Tran-
sition System), formally models how a given private information P, stored on a given (distributed)
database D, can get captured progressively by an adversary querying the database repeatedly. To
every node on a DLTTS will be attached a rag (that we formally define later), representing the ‘cur-
rent’ knowledge of the adversary, acquired from the responses to his/her queries by the answering
mechanism, at the nodes traversed on a run. This knowledge can be ‘saturated’ by the adversary at
any node on the run, using (a given class of) relational deductions, in combination with public infor-
mation from certain external databases, given in advance. This formalism can thus be used to better
understand how a user querying a database is able to build his/her ‘knowledge’.
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This formal model also has an additional ingredient, a distance, which can be suitably defined,
if necessary, for the control/analysis mechanisms for drawing certain correct conclusions regarding
possible database values.

Ideas from Related Work and their Influence. As was observed in Example 1 above, databases
could in general be distributed over several ‘worlds’; so, querying such bases also leads in general
to answers which would be distributed; to such distributed answers one could conceivably assign
probability distributions of relevance to the query. It would therefore be natural to consider the
probabilistic automata of Segala ([14, 15]), with outputs, as a first approximation for the logical
structure we are looking for, for formally analyzing the evolution of the distributed information.
The formalism of Distributed Transition Systems (DTS) appeared a little later; but almost all of
these had as objective the behavioral analysis of the distributed transitions, based on traces and/or
on simulation/bisimulation. Quasi- or pseudo- or hemi- metrics, suitably defined, were employed
in the reasonings, for instance in [4, 5, 8]. But the pseudo- (or hemi-) metrics they use do not
seem extendable suitably into a notion of (even partial) metric between data and databses, based on
which one could have conceived novel notions of adjacence. On the other hand, [6] has presented an
approach based on (pseudo- /hemi-) metrics, for defining novel and ‘functorial’ notions of ajacence
between databases, which could serve to refine notions of differential privacy; but that work considers
only * ‘classical’ databases in standard formats (numerical or strings, all of the same dimension)/

Thus, although our lookout for a metric based vision for privacy analysis has been influenced by
the formalisms developed in many of these works, but our objectives are quite different. As the
developments in this work will show, our syntax-based metric can almost directly handle data of
‘mixed types’: they can be numbers or literals , but can also be ‘anonymized’ as intervals or sets;
they can also be taxonomically related to each other on a tree structure.

As will be shown in Section 7, the partial metric that we shall build ‘data-wise’ (in a constructive
approach’) on type compatible sets of data, can be used for defining a novel notion of adjacence
between databases; it has also led us to a finer notion of e-distinguishabilty on mechanisms answering
queries. The practical application for the DLTTS vision that we have presented in Section 8 of the
current paper, is an addition to our earlier work [1]. Although rather simple, it must be sufficiently
illustrative of how the DLTTS vision can be used. On the other hand, the syntactic developments
presented in Section 8 have certain similarities, in our opinion, with the semantic considerations
presented in [7].

Contributions. Our paper makes the following contributions:

e We propose a formal model, named DLTTS, to represent how the information stored in a
database, protected via a generalization mechanism, is progressively captured by a user query-
ing it.

e We show how to build an adequate distance function to be ‘plugged’ into the DLTTS, if needed

for the purposes of control or analysis; and present an example using such a distance, that we
call ‘value-wise’ metric.

e We show how to extend the use of DLTTS to databases protected via differential privacy mech-
anisms.

e We show how DLTTS could be used in practice through the analysis of an example use case.
We consider a scenario where the owner of a database containing generalized information
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wants to evaluate the maximal probability of information leakage. This can be seen as a form
of quantitative privacy risk assessment.

Structure of the paper. Section 2 presents preliminaries, notations and our running example. Sec-
tion 3 introduces DLLTS. Section 4 proposes a ‘value-wise’ metric. Sections 5 and 6 present the
notions of e-distinguishability, e-local differential privacy, and e-differential privacy for databases.
In Section 7, we show that the notions of e-distinguishability and e-differential privacy can be refined
by using our metric rather than the usual Hamming metric. Section 8 shows how DLTTS works in
practice through a case study. Section 9 concludes the paper.

Positioning w.r.t. our earlier work. The work presented in this paper is an extensively revisited
version of our earlier work [1], which was presented in a conference. In that work, the formalism of
DLTTS was already developed, as well as a ‘value-wise’ (partial) metric between type compatible
sets of data, for a large class of databases. The same role continues to be played by the DLTTS in the
current paper, with some additional precisions; however there is a major modification in the current
version, as regards the ‘value-wise’ metric: this metric is now assumed known only to (the system
administrator and) the oracle mechanism @ controlling the runs on a DLTTS modeling a query-
sequence by an adversary on the base. More importantly, contrary to [1], the oracle @ is no longer
assumed to give any information of any kind to the adversary (such as e.g., on how close or how
far (s)he is, from information intended to remain secret), at any node on the DLTTS. Thus our new
proposition can now be used as an ’assistant’ for a database administrator to control and limit query
execution on a sensitive database. In particular, Section 8 is a new contribution, Section 4 has been
extended, and other sections have been restructured and augmented with novel DLTTS examples and
illustrations to enhance readability. Sections 5, 6 and 7 are presented similarly as in [1].

2  Preliminaries

In this section, we present concepts useful to understand the work presented in this article, and
introduce a simple running example.

2.1 Useful concepts definitions

We assume given a database D, with its attributes set .4, usually divided in three disjoint groups: the
subgroup A" of identifiers, AY) of quasi-identifiers, and A® of sensitive attributes. The tuples
of database D will be generally denoted as ¢, and their attributes denoted respectively as #, 9/, and
t5 in the three subgroups of .A. The attributes ¢ on any tuple ¢ of D are conveniently viewed as
defining a ‘user’ or a ‘client’ stored in database D. Quasi-identifiers' are informally defined as a
set of public attributes, which in combination with other attributes and/or external information, can
allow to re-identify all or some of the users to whom the information refers.

The data in the databases will all be with finite domain, of any of the following ‘basic’ types: nu-
merical, non-numerical, or literal. Some data could be structured in a complex taxonomical relation
(e.g. an ontology), but we shall only consider simple tree-structured taxonomies in this work. Part

IThe notion of quasi-identifier attributes was introduced in informal terms, by T. Dalenius in [9]. Suffices, for now, to see
them as attributes that are not identifiers nor sensitive.
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of the data could also be ‘anonymized’ via a generalization mechanism (e.g. finite intervals or finite
sets, instead of precise values), over the basic types. We therefore consider the types of the data in
such an extended/overloaded sense. (cf. Example 2 below)

By a privacy policy P = P4(D) on D with respect to a given agent/adversary A is meant the
stipulation that for a certain given set of tuples {t € P C D}, the sensitive attributes #* on any such ¢
shall remain inaccessible to A (‘even after further deduction’ — see below).

Repeatedly querying a base D is necessary, in general, to capture sensitive data meant to remain
hidden under the privacy policies on D. The framework DLTTS proposed below is therefore a logical
model for the evolution of the ‘knowledge’ that an adversary A can gain with a query-sequence on D.
The base signature X for this framework DLTTS is assumed to be first-order, with countably many
variables, finitely many constants (including dummy symbols such as ‘x’), and no non-constant
function symbols. By ‘knowledge’ of A we shall mean the data that A retrieves as answers to his/her
successive queries, as well as other data that can be derived under relational operations on these
answers, and some others derivable from these using relational combinations with data (possibly
involving certain users of D) from finitely many external databases given in advance, denoted as
B, ..., B, to which the adversary A has free access. These relational and querying operations are
all assumed done with a well-delimited fragment of the relational language SQL, assumed part of
the signature . In addition, if n > 1 is the length of the data tuples in D, finitely many predicate
symbols K;, 1 < i < n, each K; of arity i, will also be part of the signature X; in the work presented
here they will be the only predicate symbols in Z; the role of these symbols is to allow us to see
any data tuple of length r,1 < r < n, as a variable-free first-order formula with top symbol £,,
with all arguments assumed typed implicitly (with the headers of D). But, in practice, we shall drop
these top symbols K; and see any data tuple (not part of the given privacy policy P,(D)) directly
as a first-order variable-free formula over Z; tuples ¢ that are elements of the policy P,(D) are just
written as ¢ for convenience, in general. We also assume that the given external bases By, ..., B,
— to which A could resort, for deducing additional information with relational operations — are of
the same signature X as D. Thus all the knowledge A can derive from repeated queries on D can be
expressed as first-order variable-free formulas over X.

The DLTTS framework will be shown to be well suited for capturing the ideas of acquiring knowl-
edge and of policy violation, in an elegant and abstract setup. The definition of this framework
(Section 3) considers only the case where the data, as well as the answers to the queries, do not
involve any notion of ‘noise’ — by ‘noise’ we mean the perturbation of data by some external ran-
dom mechanism. The DLTTS we consider will be modeling the lookout for the sensitive attributes
of certain given users on a given base, by a single adversary, with a finite sequence of queries on
D. (It is straightforward to extend the vision to model query-sequences by more than one ‘non-
communicating’ users, seeking to capture possibly different privacy policies.) The formal definition
of the DLTTS is best motivated by first presenting our ‘running example’ in informal style:

2.2 A Running Example

Example 2. Table 4 represents the records kept by the central Hospital of a Faculty, on recent con-
sultations by the faculty staff of three Departments, in a University. ‘Name’ is an identifier attribute,
‘Ailment’ is sensitive, the others are QIDs; ‘Ailment’ is categorical with 3 branches: Heart-Disease,
Cancer, and Viral-Infection; this latter in turn is categorical too, with 2 branches: Flu and Covid. By
convention, such taxonomical relations are assumed known to public, (for simplicity of the example,
we assume that all Faculty staff are on the consultation list of the Hospital.)
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Name | Age | Gender Dept. Ailment
Joan 24 F Chemistry | Heart-Disease
Michel | 46 M Chemistry Cancer
Aline 23 F Physics Flu
Harry 53 M Maths Flu
John 46 M Physics Covid

Table 4: Hospital’s ‘secret’ records

Line Age Gender Dept. Ailment
2 [20 —29] F Chemistry | Heart-Disease
‘s [40 — 49] M Chemistry Cancer
‘s [20 — 29] F Physics Viral-Infection
Cy [50 — 59] M Maths Viral-Infection
‘s [40 — 49] M Physics Viral-Infection

Table 5: Hospital’s published records

The Hospital intends to keep ‘secret’ information concerning Covid infected faculty members; and the
tuple ~(John, %, %, %, Covid) is decided as its privacy policy. Other privacy policies are of course
possible (e.g. —(John,46, M, %, Covid)) and would lead to other analysis formulations. Table 5
is published by the Hospital for the public, where the ‘Age’ attributes are anonymized as (integer)
intervals 2; and ‘Ailment’ is anonymized by an upward push in the taxonomy.

A certain person A, who met John at a faculty banquet, suspected John to have been infected with
Covid; (s)he thus decides to consult the published record of the hospital for information.

Knowing that the ‘John’ (s)he met is ‘male’ and that Table 5 must contain some information on
John’s health, A has as choice lines 2, 4 and 5 (¢,, ¢, ¢5) of Table 5. A being in the lookout for a
‘Covid-infected male named John’, this choice is reduced to the last two tuples of the table, which are
a priori indistinguishable because of anonymization (i.e. generalization as ‘Viral-Infection’). Using
external knowledge such as baby name statistics per year> as shown in Table 6, A can compute the
number of babies named *John’ born between 1976 and 1985 (thus aged 40 to 49) to be approximately
340 000, and those born between 1966 and 1975 (thus aged 50 to 59) to be 511 000. He thus estimates
the last tuple ¢’ to have a probability of 34 /(34 +51) = 0.4 and #5 to have a probability of 51/(34 +
51) = 0.6. This means A can assume, with probability 0.6 that ‘John must be from the Physics Dept.’,
and goes to consult the following Covid-cases record ‘publicly visible’ at the faculty (Table 7), which
confirms A’s suspicion concerning John.

O

One of the objectives of this article is to define a formal model to capture this kind of reasoning. In
the next section, we shall present our Distributed Labeled-Tagged Transition System (DLTTS) model,
which we believe is well suited to assist in the modelling and detection of possible privacy policy
breaches, and we will show in Section 8 how the model can be used by e.g. a database administrator
to monitor potential privacy breaching queries.

2Note that here the generalized interval chosen for Age is non deterministic for extremum values.
3See US social security statistics at https://www.ssa.gov/OACT/babynames/index.html
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Date of Birth | Population
1966 65015
1967 61603
1968 60906
1969 58737
1970 58496
1971 51508
1972 43163
1973 39169
1974 37618
1975 35075
1976 33979
1977 34199
1978 34018
1979 35412
1980 35277
1981 34872
1982 34707
1983 33158
1984 32611
1985 31499

Table 6: Demographics for name John’, source USA Social Security Administration

Dept. Covid cases
Physics M:1 F:0
Chemistry | M:0 F:0
Maths M:0 F:0

Table 7: Faculty Covid-cases

3 Distributed Labeled-Tagged Transition Systems

The DLTTS framework presented in this section synthesizes ideas coming from several domains,
such as the Probabilistic Automata of Segala [15], Probabilistic Concurrent Systems, and Proba-
bilistic labelled transition systems [4, 5]. In the current paper we shall work with a limited first-order
signature (as mentioned in the Introduction) denoted %, with countably many variables, finitely many
constants, including certain additional ‘dummies’, no non-constant function symbols, and a finite set
of propositional (predicate) symbols. Let £ be the set of all variable-free formulas over Z, and Ext a
given subset of £. We assume given a decidable procedure C whose role is to ‘saturate’ any finite set
G of variable-free formulas into a finite set G, by adding a finite (possibly empty) set of variable-free
formulas, using relational operations on G and Ext. This procedure C will be internal at every node
on a DLTTS, it is assumed executed using a given finite set of internal actions. There will be an
oracle O as mentioned earlier, to ‘check’ if the given privacy policy on the database is violated ‘at
the current node of the DLTTS’.
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In the definition below, L will stand for a given (finite) set of ground (variable-free) first-order
statements over X, its elements will be called labels. For any set .S, Distr(.S) will stand for the set of
all probability distributions with finite support, over the subsets of .S

Definition 1. A Distributed Labeled-Tagged Transition System (DLTTS), over a given signature %,
is formed of:

a finite (or denumerable) set .S of states, an ‘initial” state s, € S, and a special state ® € §
named ‘Failure’.

- a finite set Act of action symbols (disjoint from X), with a special action 6 € Act named
‘violation’.

- a (probabilistic) transition relation 7 C S X Act X Distr(S).

- A transition t = (s, a, t(s)) € T is said to be ‘from’ the state s € S, and every s’ € t(s) is a
t-successor of 5. The ‘branch’ of t from s to s’ is ‘labeled’ with a set of labels I(s, s’) C L.

- atag 7(s) attached to every state s € .S other than @, formed of finitely many ground first-order
formulas over X. The tag at s, is { T}, the tag at ® is the empty set §.

- at every state s € S other than ®, a special action symbol 1 = 1, € Act, internal at s, that
‘saturates’ 7(s) into a set 7(s) using the procedure C.

The formulas in the tag 7(s) attached to any state s will all have the same probability as assigned
(by the distribution) to s. If the set 7(s) of formulas turns out to be inconsistent, the oracle © will
impose (s, 6, ®) as the only transition from s, which stands for ‘violation’ and ‘Failure’. No outgoing
transition or internal action is allowed from this halting state ®.

REMARK 1: (a) We shall assume our DLTTS to be fully probabilistic, in the following sense: Given
a state s and a given distribution E’ € Distr(S), there is at most one probabilistic transition from s
with E’ as its set of successors.

(b) We assume that ‘No infinite set can get generated from a finite set’ by saturation under the
procedure C for deriving further knowledge, at any state s on a DLTTS. This corresponds to the
assumption of bounded inputs outputs, as in e.g., [2, 3].

(c) The tags z() on a DLTTS will be assumed ‘coherent’ in the following sense: For any state s on
the DLTTS and any transition t from s, and any t-successor s’ of s, 7(s") is a finite set containing the
(finite) set 7(s) U I(s, s"). (In all practical situations and examples considered below, we will actually
have: 7(s") = T(s) U I(s, s"), except when s’ is the state ‘Failure’ ®.) O

DLTTS and query-sequences on a database: The states of the DLTTS will stand for the various
‘moments’ of the querying sequence, while the tags attached to the states will stand for the knowledge
A has acquired on the data of D ‘thus far’. This knowledge consists partly in the answers to the
queries (s)he made so far, then saturated with additional knowledge using the (finitely many) internal
relational operations of the procedure C, between the answers retrieved (as tuples/subtuples in D)
by A for his/her queries, and suitable tuples from the given external databases By, ..., B,,. If the
saturated knowledge of A, at a current state s on the DLTTS namely 7(s), is not inconsistent, then
the transition from s to its successor states represents the probability distribution over the possible
results (resp. answers) of the next action (resp. query).

Note that we make no assumption on whether the repeated queries by A on D are treated inter-
actively, or non-interactively by the DBMS. It appears that the logical framework would function
exactly alike, in both cases.
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Example 2(bis): Figure 1 below shows a DLTTS functioning on the Check-for-Covid problem of
Example 2 above. On the anonymized database we agree to visualize the given privacy policy as:
P = —([40-50], %, %, Covid). The edges in the figure below are marked with the ‘query expressions’
of A, the labels on the branches are part of the answers to A’s current queries:

sat

Figure 1: A DLTTS for Check-for-Covid

The set of states are: §' = {5, 51, 52, 53, 54, @}
Act = {M,Covid, Age, 6}, where M means "Male", Covid means "Covid likely",
Age means "Determine Age" and § signifies "privacy violation".

The transitions on the DLTTS are:

o ty = (sg, Male,{(sy,1)}). The transition sy — s is labeled with the set of tuples correspond-
ing to males {5,704, 75}.

o t; = (s1,Couvid, {(s,,1)}). The transition s; — s, is labeled with the set of tuples correspond-
ing to males for whom Covid is likely {Z4,¢s}.

o t, = (5,9, Age, {(53,0.4),(s4,0.6)}). The transition s, — s5 (of probability 0.4) is labeled with
the set of tuples corresponding to males between 50 and 59 for whom Covid is likely {Z,}.
The transition s, — s, (of probability 0.6) is labeled with the set of tuples corresponding to
males between 40 and 49 for whom Covid is likely {Z5}.

o t3 = (54, Failure, {(®, 1)}).
Concerning the tags:

e There is no saturation of 7(sy) and 7(s;), thus each of these tags will contain a single formula
indicating the possible lines of the database, i.e., 7(sg) = {£( V|V, V3V 4V Es) and
T(S]) = {fz Vf4 VfS}

e 7(s,) is saturated by adding the (external) knowledge of Table 6, i.e. 7(s,) = {(£4 V £5) A
(count(x)|x.name = John A x.dob = 1966) = 65015 A ...}

o 7(sy) is saturated by adding the (external) knowledge of Table 7, i.e. 7(s4) = {5 A (x.dept =
Physics A x.sex = M) — x.hasCovid = true} which leads to a violation of the policy P,
and explains the final transition to the @ state.
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Proposition 1. Suppose given a database D, a finite sequence of repeated queries on D by an
adversary A, and a first-order relational formula P = P,(D) over the signature X of D, expressing
the privacy policy of D with respect to A. Let W be the DLTTS modeling the various queries of A
on D, and the evolution of the knowledge of A on the data of D, resulting from these queries and the
internal actions at the states of W, as described above.

(i) The given privacy policy P,(D) on D is violated under some run on W, if and only if the failure
state ® on W is reachable on ¥V under that run.

(i) The satisfiability of the set of formulas 7(s) U {—P} is decidable, at any state s on the DLTTS,
under the assumptions of Remark 1(b, c).

Proof: Assertion (i) is just restatement. Observe now, that at any state s on W, the tags z(s), 7(s) are
both finite sets of first-order variable-free formulas over X, without non-constant function symbols.
Indeed, to start with, the knowledge of A consists of the responses received for his/her queries, in
the form of a finite set of data tuples/subtuples from the given bases; and by our assumption of
Remark 1(b,c), no infinite set can be generated by saturating this initial knowledge with the procedure
C. Assertion (ii) follows then from the known result that the inconsistency of any given finite set of
variable-free first-order Datalog formulas is decidable, e.g., by the analytic tableaux procedure. Only
the absence of variables is essential. O

4 A Metric-based vision for our Databases

Preliminary Remarks: In the analysis of the responses to query-sequences by an intruder A on
databases, one has to consider the two essential issues below:

- On two different bases D, D', when are the responses to a given query by A the same (or "are
indistinguishable")?

- On a given base D, when can the responses to two different query instances by A be considered
"approximately the same"?

The former of the two issues above is classically addressed with a notion "adjacency" of the bases
D, D': if the data in the databases are all of the same type (numerical or strings) and of the same
length, then D and D’ are considered (classically) adjacent iff they differ on at most one entry, i.e.,
iff they are at distance < 1 for the so-called Hamming metric. For the latter issue, the notion of
‘approximation’ is not based on the Hamming metric (even on ‘classical’ bases), but rather on the
Euclidean distance between data, and on appropriately defined probability measures.

We shall get back to these notions in some detail in Section 7. Our current objective in this section
is to propose a metric-based vision that will be suitable for both the issues of analysis. We shall do
that by building a particular distance function, as a partial metric between compatible sets of data
tuples, on our databases of mixed types (as described in the earlier sections of the paper). It may
not be the only metric-based vision that would be suitable for both the above issues; but, as will be
shown in Section 7, it can already lead to a new and more general notion of adjacency between our
databases, and serve as a finer tool of analysis (for the two issues above); it can also be parametrized
in different ways as mentioned in Section 6.

4.1 Building a value-wise Metric for our Bases

We assume given a (distributed) database D, with the datatypes as mentioned in the Introduction (with
a privacy policy P specified on D). Our objective in this section is first to look for a ‘quantitative
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measure’ for comparing type comparable tuples in D, based on which it would be possible to define
a (partial) notion of distance/metric — that we shall denote by p, between sets of tuples/subtuples in
D. Our objective is motivated by the following considerations. Suppose an adversary A launches
a sequence of queries on D, with a view to capture some of the sensitive data in the policy P; and
suppose a DLTTS models the sequence of queries-and-answers (as described in Section 3). Assumed
given € > 0, ‘sufficiently small’ as a ‘threshold’ for approximation, the manner in which the DLTTS
functions can then be refined in two different ways that we describe below:

(1) The role of the oracle mechanism © can be made ‘sharper’ than just registering the violation of
the policy P: if the current (saturated) knowledge of A at some node s on the DLLTS is at p-distance
< e to data intended secret, then the oracle @ could force the transition from s to the state ® Failure;
such a transition would then be named e-violation of privacy. In operational terms, a DLTTS could
inform the database administrator, or some access control system, which in turn could take actions
such as refusing to answer subsequent queries ;

(2) Two distinct ‘query instances’ by A, at some given node s on the DLTTS, could receive the
same output(answer) from the answering mechanism, as concerns the secret data from P. The two
instances will then be said to be epsilon-indistinguishable, in a sense and under certain conditions
that we define formally in Section 5. In such a case, the labels on the outgoing branches at s, corre-
sponding to the knowledge gained by A from these queries, will be considered e-equivalent in 7(s)
for privacy.

It will be actually shown in Section 5, that the notion of e-equivalence can be rendered finer, into
an € -equivalence, by combining it in a suitable sense with the value-wise metric p that we proceed
to construct now.

Remember that the knowledge of A, at any node on the DLTTS, is represented as a set of tuples,
and that the data forming any tuple are assumed ‘implicitly typed with the headers’ of the database
D. For ‘quantitatively’ comparing two tuples of the same length, we shall assume there is a natural,
injective, type-preserving map from one of them onto the other; this map will remain implicit in
general, and two such tuples will be said to be type-compatible. If the two tuples are not of the same
length, one of them will be projected onto (or restricted to) a suitable subtuple, so as to be type-
compatible and comparable with the other; if this turns out to be impossible, the two tuples will be
said to be uncomparable.

We shall propose a comparison method based on an appropriately defined notion of ‘distance’ be-
tween two sets of type-compatible tuples. For that, we shall first define a ‘distance’ between any two
type-compatible tuples; with that purpose, we shall start with defining a notion of distance between
any two data values under every given header of D. As a first step, we shall therefore begin by defin-
ing, for every given header of D, a binary ‘distance’ function on the set of all values that get assigned
to the attributes under that header, all along the sequence of A’s queries. This distance function to
be defined will be a (partial) metric: non-negative, symmetric, and satisfying the so-called Triangle
Inequality (cf. below). The ‘direct-sum’ of these metrics, taken over all the headers of D, will then
define a (partial) metric d on the set of all type-compatible tuples of data assigned to the various
attributes, under all the headers of D, all along the sequence of A’s queries. The ‘distance’ d(z,1'),
from any given tuple 7 in this set to another type-compatible tuple ¢/, will be defined as the value of
this direct-sum metric on the pair of tuples (¢, #’); it will be calculated ‘column-wise’ by definition,
on D and also on the intermediary databases along A’s query sequence. Note that it will a priori give
us an m-tuple of numbers, where m is the number of headers (number of columns) in the database D.

A single number can then be derived as the sum of the entries in the m-tuple d(z,¢'). This sum will
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be denoted as E(t, t"), and defined as the distance from the tuple 7 to the tuple ¢’ in the database D.
Finally, if S, S’ are any two given finite sets of type-compatible tuples of data that get assigned to
the various attributes (along the sequence of A’s queries), we define the distance from the set .S to
the set " as the number p(S, S') = min{d(t, ') |t € S, ' € S')}

For clarity of presentation, in order to define the ‘distance’ between the data values under every
given header of D, we now divide the headers of D into four classes, as below:

. ‘Nominal’: identities, names, attributes receiving literal data not in any taxonomy (e.g., gender,
city, ...), and finite sets of such data;

. ‘Numerval’ : attributes receiving numerical values, or bounded intervals of (finitely many)
numerical values;

. ‘Numerical’: attributes receiving single numerical values (numbers).

. ‘Taxoral’: attributes receiving literal data in a taxonomy relation.

« For defining the ‘distance’ between any two values v, v’ assigned to an attribute under a given
‘Nominal” header of D, for the sake of uniformity we agree to consider every value as a finite set
of singleton values; in particular, a singleton value ‘x” will be seen as the set {x}. Given two such
values v, v/, note first that the so-called Jaccard Index between them is the number jacc(v,v') =
|(vnv')/(vu '), often called a ‘measure of their similarity’; but this index is not a metric, because
the friangle inequality is not satisfied; however, the Jaccard metric d (v, V") = 1 — jacc(v,V') =
[(vAV") /(v U V)| does satisfy that property, and will suite our purposes. Thus defined, d v ,,,(v, V")
is a ‘measure of the dissimilarity’ between the sets v and v'.

e Let Ty, be the set of all data assigned to the attributes under the ‘Nominal’ headers of D, along
A’s queries sequence. Then the above defined binary function dy,,, extends to a metric on the set
of all type-compatible data-tuples from Ty,,,, defined as the ‘direct-sum’ taken over the ‘Nominal’
headers of D.

o If Ty, s the set of all data assigned to the attributes under the ‘Numerval’ headers along the
sequence of queries by A, we define in a similar manner (as above) a ‘distance’ metric dy,,, on
the set of all type-compatible data-tuples from Ty,,,: we first define d;,,, on any couple of values
u, v assigned to the attributes under a given ‘Numerval’ header of D, then extend it to the set of all
type-compatible data-tuples from Ty, (as the direct-sum taken over the ‘Numerval’ headers of D).
The case where both u, v are singleton numbers, the ‘distance’ between them is defined down below,
see ‘Numerical’. We therefore assume that at least one of the two u, v is not a singleton number.
We can then proceed exactly as previously, under the ‘Nominal’ headers: we agree to visualize any
finite interval value as a particular way of presenting a set of numerical values (integers, usually). If
one among the two values u, v is a singleton number, say a, we shall agree to see that as the interval
value [a]. Thus defined the (Jaccard) metric dy,,([a, b], [c, d]) will be a measure of ‘dissimilarity’
between [a, b] and [c, d].

« Between numerical data x, x’ under the ‘Numerical’ headers, the distance we shall work with is
the usual euclidean metric |x — x'|, normalized as: d,,;(x,x") = |x — x’|/D, where D > 0 is a
fixed finite number, bigger than the maximal euclidean distance between the numerical data on the
databases and on the answers to A’s queries.

e For the data under the ‘Taxoral’ headers, we choose as distance function the metric dwp that
we define in the Appendix (Section 10), based on the well-known notion of Wu-Palmer symmetry
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between the nodes of a Taxonomy tree.

REMARK 2: (a) Note that the distance computed between any couple of data, by the partial metric
p we defined above is always a real in the interval [0, 1], a ‘detail’ which is also true for the WP-
metric between taxonomy trees, as defined in the Appendix. This plays a key role in the proof of
Proposition 2, Section 7.

(b) The Hamming metric between datatuples/databases is generally well-defined only on databases
with all data of a single (numerical or string) type, and all tuples of the same length. However, in the
current paper, we shall be using a generalized notion of that metric, by extending that usual notion,
in a natural and ‘value-wise’ and ‘column-wise’ manner as a partial metric, just as we did for the
distance function p above. We shall denote this extension as dj,. Thus: d,([1,2],a),([2,3],a)) =
1,d,([1,2],a),([2, 3], b)) = 2, whereas d;,((bd, a), (2, 3], b)) is undefined, etc.

5 e-local-differential privacy, e-indistinguishability

In this section we extend the result of Proposition 1 to cases where the violation of a policy can be
up to a ‘threshold of approximation’ € > 0, in the sense we evoked in the previous section. We stick
to the same notation as above. The set £ of all variable-free formulas over X is thus a disjoint union
of subsets of the form £ = U{cE'i’C |0 <i<nKeZX} theindex i in é'i’C standing for the common
length of the formulas in the subset, and K for the common root symbol of its formulas; each set SI.K:
will be seen as a database of i-tuples.

As above, we consider the situation where the queries of an adversary intend to capture certain
given (sensitive) values in the database D. The following definitions of e-indistinguishability (and
of e-distinguishability) of two different query instances for the answering mechanism M, as well as
that of e-DP that will be defined in the next subsection, are essentially reformulations of the same (or
similar) notions defined in [10, 11].

Definition 2. (i) Suppose the probabilistic mechanism M, answering A’s queries on the base D
outputs(answers with) the same tuple @ € & for two different input instances v, v’. Given € > 0, the
two instances will be said to be e-indistinguishable wrt «, if and only if:
Prob[M(v) = a] < e Prob[M (V') = a] and
Prob[M(V') = a] < e Prob[ M(v) = «].
Otherwise, the two instances v, v’ are said to be e-distinguishable for output a.
(ii) The probabilistic answering mechanism M is said to satisfy e-local differential privacy (e-LDP)

for € > 0, if and only if: for any two instances v, v’ of M that lead to the same output, and any set
S C Range(M), we have

Prob[M(v) € S] < €€ Prob[M(V') € S].
The two small examples below illustrate e-Indistinguishability:

(1) The two queries based on sub-tuples ([5S0-60], M, Maths) and ([40-50], M, Physics), from the
Hospital’s published record in Example 2 (Table 5) have both Viral-Infection as output, with respec-
tive probabilities 1/3,2/3; thus they are e-indistinguishable for any € > /n(2); and e-distinguishable
forany 0 < e < In(2).

(ii) The ‘Randomized Response’ mechanism RR ([16]) can be modelled as follows. Inputis (X, F}, F,)

where X is a Boolean, and F|, F, are flips of a coin (H or T'). RR outputs X if F; = H, True if
Fy=Tand F, = H,and Falseif F| =T and F, = T. This mechanism is /n(3)-LDP : the instances
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(True,H,H), (True, H,T), (True, T, H) and (True, T,T) are In(3)-indistinguishable for output
True. (False,H,H), (False,H,T), (False,T, H) and (False, T,T) are In(3)-indistinguishable
for output False.

6  c-Differential Privacy

The notion of e-indistinguishability of two given databases D, D' for an adversary, is more general
than that of e-indistinguishability of pairs of query instances giving the same output (defined above).
e-indistinguishability for pairs of databases D, D’ is usually defined only for bases that are adjacent
in a certain sense (cf. below).

There seems to be no uniquely defined notion of adjacence on pairs of databases; in fact, several
are known and in use in the literature. Actually, a notion of adjacence can be defined in a generic
parametrizable manner (as in e.g., [6]), as follows. Assume given a map f from the set D of all
databases of m-tuples (for some given m > 0), into some given metric space (X, dy). The (symmet-
ric) binary relation on pairs of databases in D, defined by £, (D, D') = d(f(D), (D)) is then said
to give a measure of adjacence between these bases. The relation £, is said to define an ‘adjacency
relation’.

Definition 3. Let f,;; be a given adjacency relation on a set D of databases, and M a probabilistic
answering mechanism for queries on the bases in D. Two bases D, D’ € D are said to be f,,;-
indistinguishable under M, if and only if, for any possible output S C Range(M), we have

Prob[M(D) € S] < eaaiP-L) prop[ M(D') € S]
ProblM(D') € S] < 'aaiP-L) propl M(D € S].

The mechanism M is said to satisty f,,;-differential privacy (f,;;-DP), if and only if the above con-
ditions are satisfied for every pair of databases D, D' in D, and any possible output S C Range(M).

Comments: (i) Given € > 0, ‘classically’ the notions of e-indistinguishability and of e-DP are mean-
ingful for the choice of adjacency f,;; = ed),, where d, is the classical Hamming metric on databases,
namely, the number of ‘records’ where D and D’ differ) and the assumption d (D, D" <1, (cf. [6],
the bases being classically assumed to be of the same length, all data of the same type (numerical,
or string). But remember that in the current paper our databases are assumed more general, and with
data of mixed types, and we shall be using an extension of the classical Hamming metric, as a partial
metric between such databases.

(i1) In Section 7, we shall propose a more general notion of adjacency, based on the value-wise
metric p that we defined in Section 4, on our databases.

(iii) On disjoint databases, it is possible to work with different adjacency relations, using different
maps to the same (or different) metric space(s),

(iv) The mechanism RR described above is actually /n(3)-DP, not only /n(3)-LDP. To check DP,
we have to check all possible pairs of numbers of the form (Prob[M(x) = y], Prob[M(x") = y]),
(Prob[M(x) = V'], Prob[M(') = y]), (Prob[M(x) = y], Prob[M(x') = y']), etc., where the
x, x’.... are the input instances for RR, and y, )/, ... the outputs. The mechanism RR has 23 possible
input instances for (X, F;, F,) and two outputs (True, False); thus 16 pairs of numbers, the distinct
ones being (1/4,1/4),(1/4,3/4),(3/4,1/4), (3/4,3/4); if (a, b) is any such pair, obviously a <
e/"®p. Thus RR is indeed In(3)-DP. O
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7 The metric p for Indistinguishability and DP

As was observed in the previous section, a (partial) notion of e-adjacency between the databases
considered in the current work can be defined using the generalized Hamming metric, by setting
f,4j = edj. Our objective now is to propose a more general notion of adjacency on our databases,
based on the (partial) metric p defined in Section 4, and we shall show that it is a finer tool for e-LDP
and e-DP analysis.

So, let D now be the set of all databases, not necessarily all with the same number of columns, and
with data of several possible types as mentioned in the Introduction, and M a probabilistic answering
mechanism for the queries on the bases in D. We define then a (partial) binary relation f 5 dj (D, D"

between the databases D, D’ in D by setting f;’dj(D, D'y = p(D, D"), visualizing D, D' as sets of
type-compatible data tuples.

Given M and an € > 0, recall that the e-indistinguishability of any two given databases for M, and
the notion of e-DP for M, were both defined in Definition 2 (Section 6); based first on a hypothetical
map f from the set of all the databases concerned, into some given metric space (X, dy), and an
‘adjacency relation” on databases, defined as f,;;(D, D) = dx(f D,fD'). We now define the notion
of e,-indistinguishability of two databases D, D' € D for the mechanism M, as well as that of ,-DP
for M, exactly as in Definition 2, by replacing f,,;; first with the relation f 5 ) and subsequently with
ep. The notions thus defined are more general, and are finer tools of analysis, than those presented
earlier with the choice f,;; = ed),. The following example will illustrate this point.

Example 3. We go back to the ‘Hospital’s public record’ of our previous Example 2, and the two
sub-tuples ([50-60], M, Maths) and ([40-50], M, Physics), from the Hospital’s published record in
Example 2 (Table 5). The mechanism M answering two queries for ‘Virus-Ailment information
involving men’, returns the tuples /,, /5 with the probability distribution 1/3,2/3, respectively. Let
us look for the minimum value of € > 0, for which these tuples will be €,-indistinguishable under
the mechanism M.

We first compute the p-distance between the two tuples:
plyls) =d(ls) = (1 — %) +041+0=39/20.
The condition for /, and /5 to be ¢,-indistinguishable under M is thus:
(1/3) < e®720¢ 5 (2/3),  (2/3) < e/ 4 (1/3),
Which gives: € > (20/39) = In(2). That is, for € > (20/39) = In(2), the two tuples I, and /5 will
be €,-indistinguishable; and for values of € with 0 < e < (20/39) = In(2), these tuples will be
€,-distinguishable.

Now, the Hamming metric is definable between these two tuples: they differ only at two places,
we have dj(l4,l5) = 2. So, they are e,-indistinguishabilty (wrt dj), for ¢ > 0, if and only if:
(2/3) < e* % (1/3), ie., €>(1/2) % In(2).

In other words, if these two tuples are € -indistinguishable wrt p under M for some e, then they
will be €;,-indistinguishable wrt d, for the same e. But the converse is not true, since (1/2) * In(2) <
(20/39) * In(2). In other words: M e-distinguishes more finely combined with p, than with d,. []

REMARK 3: The statement “M e-distinguishes more finely with p, than with d;,”, is always true
—not just in Example 3 — For the following reasons: the records that differ ‘at some given position’
on two bases D, D’ are always at distance 1 for the Hamming metric d;,, by definition, whatever
be the type of data stored at that position. Now, if the data stored at that position ‘happened to be’
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numerical, the usual euclidean distance between the two data could have been (much) bigger than
their Hamming distance 1; precisely to avoid such a situation, our definition of the metric d,,.; on
numerical data ‘normalized’ the euclidean distance, to ensure that their d,,,.,-distance will not exceed
their Hamming distance. Thus, all the ‘record/value-wise’ metrics we defined above have their values
in [0, 1], as we mentioned earlier; so, whatever the type of data at corresponding positions on any
two bases D, D', the p-distance between the records will never exceed their Hamming distance. That
suffices to prove our statement above. The Proposition below formulates all this, more precisely:

Proposition 2. Let D,, be the set of all databases with the same number m of columns, over a finite
set of given data, and M a probabilistic mechanism answering queries on the bases in D. Let p be
the metric (defined above) and d;, the Hamming metric, between the databases in D, and suppose
given an € > 0.

- If two databases D, D’ € D,, are €,-indistinguishable under M wrt p, then they are also e-
indistinguishable under M wrt d,.

- If the mechanism M is €,-DP on the bases in D,,,, then it is also e-DP (wrt d,) on these bases.

Proof: We reason exactly as in the Example 3 (and the Remark) above: For the ‘record/value-wise’
metric p defined above, the p-distance between the records at any pair of corresponding positions on
the two bases D, D', is always in the interval [0, 1], and it never exceeds their Hamming distance. []

The idea of ‘normalizing’ the Hamming metric between numerical databases (with the same number
of columns) has already been suggested in several works (cf. e.g., [6]) for the same reasons. When
only numerical databases are considered, the metric p we have defined above is the same as the
‘normalized Hamming metric’ of [6]. Thus, our metric p is in a sense a generalization of that notion,
for handling directly bases with more general types of data such as anonymized, taxonomies, etc.

8 Using DLTTS in practise: privacy analysis

Context and motivation. In order to demonstrate how DTLLS can be used in practice, we consider
a scenario where the owner of a database containing generalized information wants to evaluate the
maximal probability of information leakage. This can be seen as a form of quantitative privacy risk
assessment.

We thus consider a database D which has its qid columns anonymized, with specified probability
thresholds on the entries in D (i.e. the database owner does not want certain tuples to be deduced
with a probability greater than a certain threshold). The various adversaries (A, B, and C) considered
in this privacy anaylsis have access to only some of the qids, and different kinds of background
information. The objective of the analysis is to estimate the maximal probability threshold for these
attackers to get access to the sensitive values of (some of) the entries in D.

We present next this example application in detail, by making use of the DLTTS approach.

8.1 Example database

EXAMPLE: An enterprise E stores a database D, containing a sensitive value as an integer between 1
and 10, standing for the (anonymized) responses of its employees to a questionnaire on their working
conditions. The gid-attributes of D are Id, Sex, Age, the anonymized sensitive value is ‘Response’.
Age and Id may be anonymized when D is rendered public.
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id | Sex Age Response
¢, | F | [30,40] 1
¢, | F | [30,40] 8
£y | M | [30,40] 3
£y | M | [40,50] 7

Objective: An estimation for the maximal probability, for different attackers to infer the response
of one or more randomly chosen employees of E, with runs on suitably constructed DLTTS.

With such a purpose, the administrator of D conceives three different ‘test attacks’, where the initial
knowledges/beliefs of the attackers on the qid’s are specified, so as to be ‘sufficiently complementary’.
Based on these tests, an empirical strategy will be formulated in subsection 8.3, with some parametric
conditions for accepting/refusing a given query for accessing any given response. It is assumed that
all the employees in E have responded to the questionnaire; none of the attackers A, B, C is assumed
to have any a priori knowledge of the ‘Response’ of any particular employee.

8.2 Privacy attack analysis

We detail next how DLTTS can be used to analyze privacy attack: we present several realistic attack-
ers, and compare them.

Evaluating the success of an attack: There are two types of attackers : Attackers that have some
knowledge of the individual in the database for whom they wish to retrieve information (Attackers
A and B below), and Attackers with no knowledge other than the database distribution (Attacker C).
The efficiency of an attack is evaluated by first computing (using the DLTTS) the probability that an
attacker interested in re-identifying a given individual will have, using no external knowledge. This
gives a baseline probability of success. We then compute (using a different DLTTS) the maximal
probability with which an ‘informed’ attacker retrieves this knowledge. If such an attack has a ‘better’
probability of retrieving the correct knowledge, then that attack is considered as a success. (This
notion will be formalized in Section 8.3.)

Attacker A works with the following initial knowledge(belief):

Sex =F: 80%, Age = [30-40] : 70%

Sex=M:20% Age = [40-50] : 30%
A aims to capture ‘preferably’ the response of a female employee, age 30 to 40 years.
Attacker B works with the following initial knowledge(belief):

Sex=F:20% Age =[30-40] : 75%

Sex =M : 80% Age =[40-50] : 25%
» B aims to capture ‘preferably’ the response of a male employee, age 30 to 40 years.
Attacker C  works with Initial qid knowledge inferred from the base :

Sex =F:50% Age =[30-40] : 75%

Sex =M : 50% Age = [40-50] : 25%

« C to capture the response of ‘any’ employee of ‘any’ sex, and of ‘any’ age. C has no knowledge
beyond the distribution of the qid values in the database. In particular, C has no knowledge about
possible correlations between the QIDs.

(We shall agree to rename attacker C the “Basic Analyser”).
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Preliminary Remarks for attack analysis For a DLTTS-analysis on privacy policies with prob-
ability thresholds as intended above, it is natural (even necessary) to ‘compare’ the probability dis-
tributions available prior to choosing a particular transition. Given an outgoing transition 7 at any
given node s on a DLTTS, its distribution is a multiset of the probability measures on the branches of
7 that we denote as M. Since our DLTTS are assumed to be ‘fully probabilistic’, the transition 7 is
uniquely determined by M, and the set 7(s) of successor states to s (and the labels on the branches
from s to its successors). On the other hand, on the DLTTS that we construct below for this analy-
sis, the following will be assumed: at any state s on the DLTTS, and any successor state s’ on any
transition, the tag z(s”) at s” will be implicitly set to be the set 7(s) U (s, s"), where I(s, s") C L is the
label on the transition’s branch from s to s”; no external information and no saturation step at any of
the nodes, therefore the tags at the nodes will not be mentioned explicitly.

Now, the multisets of probability distributions (for the transitions available at any given node on a
DLTTYS) are totally ordered by the multiset extension > of the natural order > on numbers (reals or
integers). If 7, 7/ are two outgoing transitions from a state s on a DLTTS, we shall define t to have
priority over t' if and only if M, > M. Two different outgoing transitions from a state s can have
the same multiset distribution, but with different successor states; if so, neither has priority over the
other, they will not be ‘>-distinguishable’.

For computing the maximal probability threshold for any attack to capture sensitive data, it is thus
necessary to choose, at any given node on a DLTTS, an outgoing transition 7 such that M is maximal
for the ordering >. This will be the case in the attacks presented below.

On any DLTTS A constructed below, and any state s on .A where the incoming transition has
a singleton label set of the form {£}, a special outgoing transition, referred to as response(?), is
assumed available; its objective is to give access to the ‘response’ for the entry £ in base D. This
special outgoing transition response() is in fact a switch, ‘turned ON, by default’. (Butit can be turned
OFF, at certain states by the oracle mechanism © of the DLTTS, on ‘considerations of strategy for
secrecy’ — that we shall present/discuss in section 8.3 below. Pending that discussion, the switch
response() is assumed ON by default; it will be an outgoing transition with probability 1.)

Basic Analyser C: We first consider the case of Basic Analyser C, with initial knowledge inferred
from the base D, and its QIDs. The DLTTS-C (Figure 2) shows how C gets access to the responses
of all employees, and respective probability thresholds. The DLTTS construction is based only on
the database D; the probabilities on its various branches, denoted as Py, are all inferred from D.

Starting from the initial state s, on DLTTS-C, the probability for access to the response of employee
¢ is the product of the probabilities along the branches traversed by the run, namely: (3/4) * (1/2) =
(1/2) = (3/16),which is also same for access to the response for entry £,; access to the responses
for #5 and ¢, are also the same. The transitions of DLTTS-C are of >-maximal priority at all the
nodes. The maximal probability threshold for access to any of the four responses, as reported by
Basic Analyser C, turns out to be 3/16.

Attacker B: With DLTTS-B (Figure 3), Attacker B gets access to the responses of employees,
preference to males of age 30 to 40. (P, = probabilities from B’s assigned objective.)

Maximal probability thresholds computed by B: Males 6/10, Females 1/10. Note: The threshold
6/10 for males is higher than the 3/16 reported by C.

The actual probabilities for all possible responses are: Pr(response = 3|M) = 6/10,
Pr(response =7|M) = 1/5, Pr(response = 1|F) = 1/10 and Pr(response = 8|F) = 1/10.
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Figure 2: DLTTS-C: Basic Analyser C captures all responses
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Figure 3: DLTTS-B for B’s capture of responses
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Figure 4: DLTTS-A for A’s capture of responses

Attacker A: With DLTTS-A (Figure 4) Attacker A gets access to the responses of employees,
preference to females of age 30 to 40. (P, = probabilities from A’s assigned objective.)

Maximal probability thresholds computed by A: Males 7/50, Females 2/5.
Note: The threshold 2/5 for females is higher than the 3/16 reported by C.

The actual probabilities for possible responses are: Pr(response = 3| M) = 7/50,
Pr(response = 7|M) = 3/50, Pr(response = 1|F) = 2/5 and Pr(response = 8|F) =2/5.
In view of our earlier remark, we may deduce from these details, that:
- B’s attack succeeds at node s; (response(£5)) and node sg (response(?,)), on DLTTS-B.
- A’s attack succeeds at node s5 (response(£;)) and node s¢ (response(¢,)), on DLTTS-A.
Such ‘defeats’ for the Basic Analyser can be avoided if the administrator of D (and the oracle mech-

anism O in the DLTTS) implement a strategy for better protecting the access to the special values in
the database D (‘responses’, in this example). We present such a strategy in the following subsection.

8.3 A Strategy for better ’Secrecy’ Protection

For any attacker N, and a DLTTS-N constructed by N modeling his/her query-runs on the given
base D, if s is a node where the incoming transition has a singleton label set {£'}, we shall denote
by Pr(s,l; N) the probability computed at s with >-priority transitions along the runs to s from the
initial state. We shall denote by M ax p,(f ; N) the maximum of all these probabilities, taken over all
such nodes s on DLTTS-N.

(1) Let s be a node on DLTTS-B, with a singleton {#'} labeling the incoming transition.
IF Maxpr(f; C) < Pr(s,?; B),
THEN Switch OFF the outgoing transition response(l) at s.

(2) Do the same on DLTTS-A, with respect to DLTTS-C.

Details:
(i) Wehave: 3/16 = Max,,(¢3;C) < Pr(s;,¢3; B) =3/5,
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and 3/16 = Max,,(£4;C) < Pr(ss,¢4; B) = 1/5.
(i) Wehave: 3/16 = Max, (¢,;C) < Pr(ss,¢; A) =2/5,
and  3/16 = Max,,(£,;C) < Pr(se,¢»; A) = 2/5.

It follows that the outgoing transition ‘response()’ can be switched OFF, if we apply the the strategy
above at nodes s, sg on DLTTS-B, and at nodes s5, sq on DLTTS-A. O

We are in a position now to formulate an empirical strategy for better protecting access to the ‘spe-
cial’ values, for any database. The formulation below is for any general database D with a ‘column
of protected values’ (anonymized or not) that we shall still refer to as ‘responses’, and any attacker
N. It is assumed in this formulation that the administrator of the base D has made an appropriate
choice for the ‘Basic Analyser’ C.

The Strategy:

« Let s be a node on a DLTTS-N under construction by an Attacker N for access to the responses,
where the incoming transition at s on DLTTS-N has a singleton label £.

« Suppose the probability Pr(s,?; N) at s, computed along the runs to s with the supposed initial
knowledge of N, and >-priority transitions all along, satisfies the condition:

Pr(s,Z;N)) > Maxp,(zf’; O).
Then switch OFF the outgoing transition response(¢’) at the node s on DLTTS-N.

9 Conclusion

As we have already mentioned earlier, our lookout for a logical formalism for privacy analysis, which
could also be mingled with the notion of a ‘value-wise’ metric between (type compatible) atomic
data, has been influenced by many works in the last couple of decades, although not with the same
objective. As the developments in this work show, our syntax-based metric can almost directly handle
data of ‘mixed types’, which can be numbers or literals , but can also be ‘anonymized’ as intervals or
sets; they can also be taxonomically related to each other on a tree structure.

As has been shown in Section 7, the value-wise (partial) metric, constructed in Section 4 on type
compatible sets of data, has led us to a novel and finer notion of e-distinguishabilty on mechanisms
answering queries. The practical application for the DLTTS vision that we have presented in Section
8 of the current paper is an addition to our earlier work [1]. Although rather simple, we believe it
must be sufficiently illustrative of how the DLTTS vision can be used. It must also be noted, on the
other hand, that the syntactic developments presented in Section 8 have some similarities with the
semantic considerations presented in [7].

We have not considered any notions of noisy channels perturbing numerical data in the databases;
but it is not difficult to extend the DLTTS setup — and the mechanism M answering the queries —
of our work, to handle noise additions. It will then have to be assumed that the internal (saturation)
procedure C, at every state in the DLTTS, incorporates the three well-known noise adding mecha-
nisms: the Laplace, Gauss, and exponential mechanisms, with the assumption that noise additions to
numerical values is done in a bounded fashion — as in e.g., [12] —, so as to be from a finite prescribed
domain around the values. It will then have to be assumed that the tuples with noisy data are also
part of the base signature £. The notion of e-local-indistinguishabilty between tuples with noisy data
can also be defined in such an extended setup, under these assumptions.
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As part of future work, we hope to generalize the value-wise (partial) metric constructed in Section 4
of the current paper, by assigning different ‘weights’ to the columns of the given base. That could
be one of the techniques to ‘disfavor’ the columns in the database that tend to be ‘noisier’, or of
lesser interest. That would also offer the possibility of taking into account possible dependencies
between some of the columns in the database. We hope to deduce still finer notions of adjacency
on databases, and of e-distinguishabilty on query answering mechanisms, with such a refinement.
Diverses experimentaions based on such ideas are part of the project aiming to validate the DLTTS
formalism. As concerns the strategy for better secrecy protection, proposed in Section 8.3, the crucial
assumption is on the appropriate choice of the (or a) ‘Basic Analyser’ by the system administrator; it
seems a priori rather specific to the context/example considered, and notions like ‘completeness’ or
‘soundness’ of any strategy may not be very easily formalizable.

The principal goal of the DLTTS model presented in this article is to serve as an analyser of the
knowledge that a querier (considered in this work to be an honest-but-curious attacker) accumulates
when querying a database containing private information — usually protected by simple privacy poli-
cies represented as the values of specific tuples. We show how the DLTTS can be used as a core
model by a database administrator to detect privacy breaches, and to compute the probability thresh-
olds for these breaches; in certain cases, these thresholds can also be kept under control with simple
strategies, deciding not to answer further queries in certain situations (empirically, but with certain
further explanations).
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10  Appendix

Taxonomies are frequent in machine learning. Data mining and clustering techniques employ rea-
sonings based on measures of symmetry, or on metrics, depending on the objective. The Wu-Palmer
symmetry measure on tree-structured taxonomies is one among those in use; it is defined as follows
([17]): Let 7 be a given taxonomy tree. For any node x on 7, define its depth c, as the number of
nodes from the root to x (both included), along the path from the root to x. For any pair x, y of nodes
on 7T, let Cxy be the depth of the common ancestor of x, y that is farthest from the root. The Wu-

. 2¢y .
Palmer symmetry measure between the nodes x, y on 7 is then defined as WP(x, y) = % This
xTCy

measure, although considered satisfactory for many purposes, is known to have some disadvantages
such as not being conform to semantics in several situations.

What we are interested in, for the purposes of our current paper, is a metric between the nodes of a
taxonomy tree, which in addition will suit our semantic considerations. This is the objective of our
Lemma below. (A result that seems to be unknown, to our knowledge.)

Lemma 3. On any taxonomy tree T, the binary function between its nodes defined by d,,,(x,y) =

_ 2oy (notation as above) is a metric.
extey

Proof: We drop the suffix wp for this proof, and just write d. Clearly d(x, y) = d(y, x); and d(x, y) =
0 if and only if x = y. We only have to prove the Triangle Inequality; i.e. show that d(x,z) <
d(x,y)+d(y, z) holds for any three nodes x, y, zon 7. A ‘configuration’ can be typically represented
in its ‘most general form’ by the diagram below. The boldface characters X, Y, Z, a, h in the diagram
all stand for the number of arcs on the corresponding paths. So that, for the depths of x, y, z, and of
their farthest common ancestors on the tree, we get:

cx=X+h+1, ¢,=Y+h+a+l, c,=Z+h+a+]l,

Cy=h+1, ¢, =h+a+l, ¢,,=h+1

The ‘+1’ in these equalities is because the X, Y, Z, a, h are the number of arcs on the paths, while
the depths are the number of nodes. The X, Y, Z, a, h must all be integers > 0. For the Triangle
Inequality on the three nodes x, y, z on T, it suffices to prove the following two relations:

d(x,z) <d(x,y)+d(y,z) and d(y,z) <d(y,x)+d(x,z).

by showing that the following two algebraic inequalities hold:

(1) 1— 2x(h+1) +1-— 2x(h+a+1) >1— 2x(h+1)
(X+Y +2xh+a+2) (Y+Z+2%h+2%a+2) — (X+Z+2xh+a+2)
21— 2:%(h+1) +1-— 2:x(h+1) >1— 2%(h+a+1)
(X4Y +2xh+a+2) (X+Z+2xh+2%a+2) — (Y +Z+2%h+2%a+2)

The third relation d(x, y) < d(x, z) + d(z, y) is proved by just exchanging the roles of Y and Z in the
proof of inequality (1).

Inequality (1): We eliminate the denominators (all strictly positive), and write it out as an inequality
between two polynomials eql,eq2 on X, Y, Z, h, a, which must be satisfied for all their non-negative
integer values:

eql i (X +Y +2%xh+a+2)« (Y +Z+2%h+2%a+2)x« (X +Z+2%h+a+2)
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eq2 . (h+ 1)« (Y +Z4+2xh+2%xa+2)«x(X+Z+2+xh+a+2)
+h+a+ 1)« (X+Y+2xh+a+2)x(X+Z+2xh+a+?2)
—h+ D)« (X+Y+2xh+a+2)« Y +Z+2xh+2%xa+2)
eq . eql —2 x eq2. We need to check: eq >0 ?

The equation eq once expanded (e.g., under Maxima) appears as:

eq : YZ?+ X Z?+aZ*+Y?Z42XY Z+4hY Z+2aY Z+4Y Z+ X*>Z +4hX Z +2aX Z +4X Z +
AP Z+XY2H4hY 2 +aY 2 +4Y 2+ X2Y +4h X Y +2a X Y +4 X Y +8h%Y +8ahY +16hY +a*Y +8aY +8Y

The coefficients are all positive, and inequality (1) is proved.

Inequality (2): We first define the following polynomial expressions:

eq3 . (X +Y+2xh+a+2)*x(X+Z+2xh+a+2)« Y +Z+2*xh+2*xa+2),
eqd i (h+ D)« Y +Z+2xh+2%xa+2)+«2L*xX+Y+Z+4+xh+2xa+4),
eq5:(h+a+ 1)+« (X+Y+2xh+a+2)x(X+Z+2xh+a+2)

If weset eqgn : eq3 +2 % eq5 — 2 x eqd, we get

eqn: 2h+ D)% (Z+Y +2h+2a+2)« (Z+Y +2X +4h +2a+4) +
Y+X+2h+a+2)«(Z+X+2h+a+2)(Z+Y +2h+2a+2)+
2h+a+ D)« Y +X+2h+a+2)«(Z+X+2h+a+2)

Inequality (2) is proved by showing that eqn remains non-negative for all non-negative values of
X,Y, Z, h,a; we expand eqn (with Maxima), to get:

eqn: YZ?+ X Z%+aZ*+Y2Z +2XY Z+4hY Z+6aY Z+4Y Z+ X*Z +4hX Z +6aX Z+4X Z +
8ahZ +5a*Z +8aZ + XY%+aY?+ X2Y +4hXY +6aXY +4XY +8ahY +5a*Y +8aY +4h X% +
4aX?2+4X%2+8h2 X +16ahX +16hX +8a2 X +16aX +8X +8ah?+12a%>h+ 16ah+4a> +12a* +8a

The coefficients are all positive, so we are done. O
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