Ontologies - Querying Data through Ontologies

Benjamin Nguyen, using material by
Serge Abiteboul Ioana Manolescu Philippe Rigaux
Marie-Christine Rousset Pierre Senellart

Web Data Management and Distribution http://webdam.inria.fr/textbook

December 11, 2014

Outline

- Introduction
 - The Semantic Web
 - Ontologies and Reasoning
 - Illustration
- 3 ontology languages for the Web
- Reasoning in Description Logics
- Querying Data through Ontologies
- 5 Conclusion

The Semantic Web

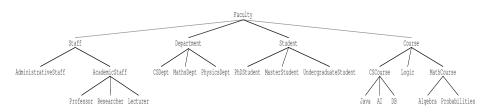
- A Web in which the resources are semantically described
 - annotations give information about a page, explain an expression in a page, etc.
- More precisely, a resource is anything that can be referred to by a URI
 - a web page, identified by a URL
 - a fragment of an XML document, identified by an element node of the document,
 - a web service,
 - a thing, an object, a concept, a property, etc.
- Semantic annotations: logical assertions that relate resources to some terms in pre-defined ontologies

Ontologies

- Formal descriptions providing human users a shared understanding of a given domain
 - A controlled vocabulary
- Formally defined so that it can also be processed by machines
- Logical semantics that enables reasoning.
- Reasoning is the key for different important tasks of Web data management, in particular
 - to answer queries (over possibly distributed data)
 - to relate objects in different data sources enabling their integration
 - to detect inconsistencies or redundancies
 - ▶ to refine queries with too many answers, or to relax queries with no answer

Classes and class hierarchy

- Backbone of the ontology
- AcademicStaff is a Class
- (A class will be interpreted as a set of objects)
- AcademicStaff isa Staff
- (isa is interpreted as set inclusion)



Relations

- Declaration of relations with their signature
- (Relations will be interpreted as binary relations between objects)
- TeachesIn(AcademicStaff, Course)
 - ▶ if one states that "X TeachesIn Y", then X belongs to AcademicStaff and Y to Course,
- TeachesTo(AcademicStaff, Student),
- Leads(Staff, Department)

Instances

- Classes have instances
- Dupond is an instance of the class Professor
- it corresponds to the fact: Professor(Dupond)

- Relations also have instances
- (Dupond,CS101) is an instance of the relation Teaches In
- it corresponds to the fact: Teaches In(Dupond, CS101)

• The instance statements can be seen as (and stored in) a database

Ontology = schema + instance

Schema

- The set of class and relation names
- The signatures of relations and also constraints
- The constraints that are used for two purposes
 - checking data consistency (like dependencies in databases)
 - inferring new facts

Instance

- The set of facts
- The set of base facts together with the inferred facts should satisfy the constraints
- Ontology (i.e., Knowledge Base) = Schema + Instance

Outline

- Introduction
- 2 3 ontology languages for the Web
- Reasoning in Description Logics
- Querying Data through Ontologies
- 6 Conclusion

3 ontology languages for the Web

- RDF: a very simple ontology language
- RDFS: Schema for RDF
 - Can be used to define richer ontologies
- OWL: a much richer ontology language

- We next present them rapidly
- We will introduce further a family of ontology languages: Description logics

RDF: Resource Description Framework

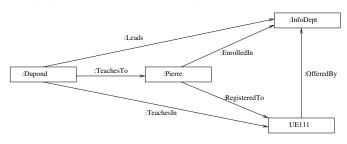
RDF facts are triplets

```
⟨:Dupond:Leads:CSDept⟩
⟨:Dupond:TeachesIn:UE111⟩
⟨:Dupond:TeachesTo:Pierre⟩
⟨:Pierre:EnrolledIn:CSDept⟩
⟨:Pierre:RegisteredTo:UE111⟩
⟨:UE111:OfferedBy:CSDept⟩
```

- Linked open data: publish open data sets on the Web
 - By September 2011, 31 billions RDF triplets

RDF graph

- A set of RDF facts defines
 - a set of relations between objects
 - an RDF graph where the nodes are objects:



RDF semantics

- A triplet $\langle s \ P \ o \rangle$ is interpreted in first-order logic (FOL) as a fact P(s,o)
- Example:

```
Leads(Dupond, CSDept)
TeachesIn(Dupond, UE111)
TeachesTo(Dupond, Pierre)
EnrolledIn(Pierre, CSDept)
RegisteredTo(Pierre, UE111)
OfferedBy(UE111, CSDept)
```

RDFS: RDF Schema

- Not detailed here: the schema in RDF is super simplistic
- An RDF Schema defines the schema of a richer ontology

RDF Schema

 Do net get confused: RDFS can use RDF as syntax, i.e., RDFS statements can be themselves expressed as RDF triplets using some specific properties and objects used as RDFS keywords with a particular meaning.

- Declaration of classes and subclass relationships
 - \(\) Staff rdf:type rdfs:Class \(\)\(\) Java rdfs:subClassOf CSCourse \(\)
- Declaration of instances (beyond the pure schema)
 - ► ⟨ Dupond rdf:type AcademicStaff ⟩

RDF Schema - continued

- Declaration of relations (properties in RDFS terminology)
 - ► ⟨ RegisteredTo rdf:type rdfs:Property ⟩
- Declaration of subproperty relationships
 - ► ⟨ LateRegisteredTo rdfs:subPropertyOf RegisteredTo ⟩
- Declaration of domain and range restrictions for predicates
 - ► ⟨ TeachesIn rdfs:domain AcademicStaff ⟩
 - \(\text{TeachesIn rdfs:range Course} \)
 - ► TeachesIn(AcademicStaff, Course)

RDFS logical semantics

RDF and RDFS statements	FOL translation	DL notation
⟨irdf:type C⟩	<i>C</i> (<i>i</i>)	<i>i</i> : <i>C</i> or <i>C</i> (<i>i</i>)
⟨iPj⟩	P(i,j)	iPj or $P(i,j)$
⟨Crdfs:subClassOfD⟩	$\forall X (C(X) \Rightarrow D(X))$	$C \sqsubseteq D$
\langle P rdfs:subPropertyOf R \rangle	$\forall X \forall Y (P(X,Y) \Rightarrow R(X,Y))$	$P \sqsubseteq R$
\langle P rdfs:domain C \rangle	$\forall X \forall Y (P(X,Y) \Rightarrow C(X))$	$\exists P \sqsubseteq C$
⟨Prdfs:rangeD⟩	$\forall X \forall Y (P(X,Y) \Rightarrow D(Y))$	$\exists P^- \sqsubseteq D$

- Ignore for now DL column
- This is just a notation
- We will come back to it to discuss Description logics

OWL: Web Ontology Language

- OWL extends RDFS with the possibility to express additional constraints
- Main OWL constructs
 - Disjointness between classes
 - Constraints of functionality and symmetry on predicates
 - Intentional class definitions
 - Class union and intersection
- We will see these are all expressible in Description logics

OWL constructs

- Ignore again the DL column
- Disjointness between classes:

OWL notation	FOL translation	DL notation
⟨Cowl:disjointWithD⟩	$\forall X (C(X) \Rightarrow \neg D(X))$	$C \sqsubseteq \neg D$

Constraints of functionality and symmetry on predicates:

OWL notation	FOL translation	DL notation
⟨ P rdf:type	$\forall X \forall Y \forall Z$	(funct P)
owl:FunctionalProperty >		
	$(P(X,Y) \land P(X,Z) \Rightarrow Y = Z)$	or $\exists P \sqsubseteq (\leq 1 P)$
⟨Prdf:type	$\forall X \forall Y \forall Z$	(funct P ⁻)
owl:InverseFunctionalProperty	$(P(X,Y) \land P(Z,Y) \Rightarrow X = Z)$	or ∃ <i>P</i> [−] ⊑ (≤
>		1 <i>P</i> ⁻)
⟨Powl:inverseOf Q⟩	$\forall X \forall Y (P(X,Y) \Leftrightarrow Q(Y,X))$	$P \equiv Q^-$
⟨ P rdf:type	$\forall X \forall Y (P(X,Y) \Rightarrow P(Y,X))$	P ⊑ P ⁻
owl:SymmetricProperty >		

Definition of intentional classes in OWL

- Goal: allow expressing complex constraints such as:
 - departments can be lead only by professors
 - only professors or lecturers may teach to undergraduate students.
- The keyword owl:Restriction is used in association with a blank node class, and some specific restriction properties:
 - ▶ owl:someValuesFrom
 - ▶ owl:allValuesFrom
 - owl:minCardinality
 - owl:maxCardinality

OWL Semantics

OWL notation	FOL translation	DL notation
_a owl:onProperty P		
_a owl:allValuesFrom C	$\forall Y (P(X,Y) \Rightarrow C(Y))$	∀P.C
_a owl:onProperty P		
_a owl:someValuesFrom C	$\exists Y (P(X,Y) \wedge C(Y))$	∃ <i>P</i> . <i>C</i>
_a owl:onProperty P		
_a owl:minCardinality \emph{n}	$\exists Y_1 \dots \exists Y_n (P(X, Y_1) \land \dots \land$	$(\geq nP)$
	$P(X, Y_n) \land \bigwedge_{i,j \in [1n], i \neq j} (Y_i \neq Y_j))$	
_a owl:maxCardinality <i>n</i>	$\forall Y_1 \dots \forall Y_n \forall Y_{n+1}$	
	$(P(X,Y_1) \land \ldots \land P(X,Y_n) \land$	$(\leq nP)$
	$P(X,Y_{n+1})$	
	$\Rightarrow \bigvee_{i,j\in[1n+1],i\neq j}(Y_i=Y_j))$	

Unnamed new classes by example

Departments can be lead only by professors

Define the set of objects that are lead by professors

```
_a rdfs:subClassOf owl:Restriction
_a owl:onProperty Leads
a owl:allValuesFrom Professor
```

Now specify that all departments are lead by professors

```
Department rdfs:subClassOf _a
```

Union and Intersection of Classes by example

only professors or lecturers may teach to undergraduate students

```
_a rdfs:subClassOf owl:Restriction
_a owl:onProperty TeachesTo
_a owl:someValuesFrom Undergrad
_b owl:unionOf (Professor, Lecturer)
_a rdfs:subClassOf _b
```

This corresponds to an inclusion axiom in Description Logic:

```
\exists TeachesTo.UndergraduateStudent \sqsubseteq Professor \sqcup Lecturer
```

• owl:equivalentClass corresponds to double inclusion:

```
MathStudent \equiv Student \sqcap \exists RegisteredTo.MathCourse
```

Outline

- Introduction
- 2 3 ontology languages for the Web
- Reasoning in Description Logics
 - ALC
 - Polynomial DLs
- Querying Data through Ontologies
- Conclusion

Description Logics

- Philosophy: isolate decidable fragments of first-order logic allowing reasoning on complex logical axioms over unary and binary predicates
- These fragments are called Description Logics

- The DL jargon:
 - the classes are called concepts
 - ▶ the properties are called roles.
 - ► the ontology (the knowledge base) = Tbox + Abox
 - the schema is called the Tbox
 - the instance is called the Abox

The DL family

- Few constructs: atomic concepts and roles, inverse of roles, unqualified restriction on roles, restricted negation
- Revisit RDFS checking out the DL column
- If you don't like the syntax: neither do I

Semantics of main conctructs

- $I(C_1 \sqcap C_2) = I(C_1) \cap I(C_2)$
- $I(\forall R.C) = \{o_1 \mid \forall \ o_2 \ [(o_1, o_2) \in I(R) \Rightarrow o_2 \in I(C)]\}$
- $I((\exists R.C) = \{o_1 \mid \exists o_2.[(o_1, o_2) \in I(R) \land o_2 \in I(C)]\}$
- $I(\neg C) = \Delta^I \setminus I(C)$
- $I(R^-) = \{(o_2, o_1) \mid (o_1, o_2) \in I(R)\}$

Defining a particular description logic

- Define how to construct complex concepts and roles starting from atomic concepts and roles
 - ► *Professor* ⊔ *Lecturer* (those who are either professor or lecturer)
- Choose the constraints you want to consider
- The complexity of the logic depends on these choices

Reasoning problems studied in DL

- Satisfiability checking: Given a DL knowledge base $\mathcal{K}=\langle\mathcal{T},\mathcal{A}\rangle$, is \mathcal{K} satisfiable?
- Subsumption checking: Given a Tbox T and two concept expressions C and D, does T ⊨ C ⊑ D?
- Instance checking: Given a DL knowledge base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$, an individual e and a concept expression C, does $\mathcal{K} \models C(e)$?
- Query answering: Given a DL knowledge base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$, and a concept expression C, finds the set of individuals e such that $\mathcal{K} \models C(e)$?

Remarks

- For DLs with full negation: instance checking and subsumption checking can be reduced to (un)satisfiability checking
 - ▶ $\mathcal{T} \models C \sqsubseteq D \Leftrightarrow \langle \mathcal{T}, \{(C \sqcap \neg D)(a)\} \rangle$ is unsatisfiable.
 - $\langle \mathcal{T}, \mathcal{A} \rangle \models C(e) \Leftrightarrow \langle \mathcal{T}, \mathcal{A} \cup \{\neg C(e)\} \rangle$ is unsatisfiable.
- For DLs without negation: instance checking can be reduced to subsumption checking by computing the most specific concept satisfied by an individual in the Abox (denoted msc(A, e))
 - $\blacktriangleright \ \langle \mathcal{T}, \mathcal{A} \rangle \models \mathit{C}(\mathit{e}) \Leftrightarrow \mathcal{T} \models \mathit{msc}(\mathcal{A}, \mathit{e}) \sqsubseteq \mathit{C}$

\mathcal{ALC} : the prototypical DL

- (standard) An \mathcal{ALC} Abox is made of a set of facts of the form C(a) and R(a,b) where a and b are individuals, R is an atomic role and C is a possibly complex concept
- \mathcal{ALC} constructs:
 - ▶ conjunction $C_1 \sqcap C_2$,
 - ► existential restriction ∃R.C
 - $\star \exists Y (R(X,Y) \land C(Y))$
 - ▶ negation $\neg C$.
- As a result, \mathcal{ALC} also contains de facto:
 - ▶ disjunctions $C_1 \sqcup C_2 \ (\equiv \neg (\neg C_1 \sqcap \neg C_2)),$
 - ▶ value restrictions $(\forall R.C \equiv \neg(\exists R.\neg C))$,
 - $ightharpoonup \top (\equiv A \sqcup \neg A)$ and $\perp (\equiv A \sqcap \neg A)$.

\mathcal{ALC} - continued

 \bullet An \mathcal{ALC} Tbox may contain inclusion constraints between concepts and roles

$$MathCourse \sqsubseteq Course$$

LateRegisteredTo \sqsubseteq RegisteredTo

• An \mathcal{ALC} Tbox may contain General Concept Inclusions (GCIs): \exists Teaches To. Undergraduate Student \sqsubseteq Professor \sqcup Lecturer

Tableau method

- Reasoning is based on tableau calculus a classical method in logic for checking satisfiability
- Extensively used in Description logics for implementing reasoners
- Technique
 - Get rid of the Tbox by recursively unfolding the concept definitions
 - Transform the resulting Abox so that negations applies only to atomic concepts
 - Try to construct a model or raise a contradiction
- We illustrate the technique with a simple example without GCIs
- In general, much more involved

Tableau method

- ullet For satisfiability checking of a DL knowledge base $\langle \mathcal{T}, \mathcal{A}
 angle$
 - $\blacktriangleright \ \mathcal{T} = \{\textit{C}_1 \equiv \textit{A} \, \sqcap \, \textit{B}, \, \textit{C}_2 \equiv \exists \textit{R.A}, \, \textit{C}_3 \equiv \forall \textit{R.B}, \, \textit{C}_4 \equiv \forall \textit{R.} \neg \textit{C}_1 \}$
 - $A = \{C_2(a), C_3(a), C_4(a)\}$
- Get rid of the Tbox, by recursively unfolding the concept definitions:
- ullet Transform the concepts expressions in \mathcal{A}' into negation normal form
- Apply tableau rules to extend the resulting Abox until no rule applies anymore:
 - From an extended Abox which is complete (no rule applies) and clash-free (no obvious contradiction), a so-called canonical interpretation can be built, which is a model of the initial Abox.

Tableau rules for \mathcal{ALC}

- The □-rule:
 - Condition: \mathcal{A} contains $(C \sqcap D)(a)$ but not both C(a) and D(a) Action: add $\mathcal{A}' = \mathcal{A} \cup \{C(a), D(a)\}$
- The

 ⊢rule:
 - Condition: \mathcal{A} contains $(C \sqcup D)(a)$ but neither C(a) nor D(a)Action: add $\mathcal{A}' = \mathcal{A} \cup \{C(a)\}$ and $\mathcal{A}'' = \mathcal{A} \cup \{D(a)\}$
- The ∃-rule:
 - Condition: \mathcal{A} contains $(\exists R.C)(a)$ but there is no c such that $\{R(a,c),C(c)\}\subset\mathcal{A}$

Action: add $A' = A \cup \{R(a, b), C(b)\}$ where b is a new individual name

- The ∀-rule:
 - Condition: \mathcal{A} contains $(\forall R.C)(a)$ and R(a,b) but not C(b) Action: add $\mathcal{A}' = \mathcal{A} \cup \{C(b)\}$

Illustration on the example

• The result of the application of the tableau method to $\mathcal{A}'' = \{(\exists R.A)(a), (\forall R.B)(a), (\forall R.(\neg A \sqcup \neg B))(a)\}$ gives the following Aboxes:

```
▶ \mathcal{A}_{1}'' = \mathcal{A}'' \cup \{R(a,b), A(b), B(b), \neg A(b)\}

▶ \mathcal{A}_{2}'' = \mathcal{A}'' \cup \{R(a,b), A(b), B(b), \neg B(b)\}
```

• They both contain a clash: \mathcal{A}'' (and the equivalent original knowledge base) is correctly decided unsatisfiable by the algorithm

Complexity

- The tableau method shows that the satisfiability of ALC knowledge bases is decidable but with a complexity that may be exponential because of the disjunction construct and the associated □-rule.
- Satisfiability checking in ALC (and thus also subsumption and instance checking) is in fact ExpTIME-complete
- Additional constructs like those in the fragment OWL DL of OWL do not change the complexity class of reasoning (which remains ExpTIME-complete)
- OWL Full is undecidable

DLs for which reasoning is polynomial

- \mathcal{FL} : conjunction $C_1 \sqcap C_2$, value restrictions $\forall R.C$ and unqualified existential restriction $\exists R$
 - For Tboxes without GCIs, subsumption checking is polynomial
 - For Tboxes with (even simple) GCIs, subsumption checking is co-NP complete
- \mathcal{EL} : conjunctions $C_1 \sqcap C_2$ and existential restrictions $\exists R.C$
 - ▶ Subsumption checking in \mathcal{EL} is polynomial even for general Tboxes.
- \mathcal{FLE} : conjunction $C_1 \sqcap C_2$, value restrictions $\forall R.C$, and existential restrictions $\exists R.C$
 - Subsumption checking in \mathcal{FLE} is NP-complete
- The DL-LITE family: a good trade-off, specially designed for guaranteeing query answering through ontologies to be polynomial in data complexity.

Outline

- Introduction
- 3 ontology languages for the Web
- Reasoning in Description Logics
- Querying Data through Ontologies
 - Querying using RDFS
 - Querying using DL-LITE
 - Complexity
- Conclusion

Querying using RDFS

- RDFS statements can be used to infer new triples
- Example
 - Base fact ResponsibleOf (durand, ue111)
 - ▶ Use the statement $\langle ResponsibleOf \ rdfs : domain \ Professor \rangle$ i.e., the logical rule: $ResponsibleOf(X,Y) \Rightarrow Professor(X)$
 - With substitution {X/durand, Y/ue111}
 - Infer fact Professor (durand)
 - ▶ Use the statement $\langle Professor \ rdfs : subClassOf \ AcademicStaff \rangle$ i.e., the rule $Professor(X) \Rightarrow AcademicStaff(X)$
 - With substitution {X/durand}
 - Infer fact AcademicStaff (durand)
 - etc.

The saturation algorithm

- Keep infering new facts until a fixpoint is reached
- Note: Only polynomially many facts can be added
- PTIME

Querying using DL-LITE

- Develop as a good compromise between expressive power and reasonable complexity of query answering
- RDFS simpler and very used but limited
- More complex DL: query answering is unfeasible

The DL-LITE family

- Three kinds of axioms: positive inclusions (PI), negative inclusions (NI) and functionality constraints (func)
- Captures the main constraints used in Databases and Software Engineering
- Different variants
 - ▶ DL-LITE_R: no functionality constraints
 - ▶ DL-LITE F: no role inclusion
 - DL-LITE_A: no functionality constraints on roles involved in role inclusions

PI: Positive inclusion and incompleteness

One of the following forms:

DL notation	Corresponding logical rule
$B \sqsubseteq \exists P$	$B(X) \Rightarrow \exists Y P(X, Y)$
$\exists Q \sqsubseteq \exists P$	$Q(X,Y) \Rightarrow \exists ZP(X,Z)$
$B \sqsubseteq \exists P^-$	$B(X) \Rightarrow \exists Y P(Y, X) Q(X, Y) \Rightarrow \exists Z P(Z, X)$
$\exists Q \sqsubseteq \exists P^-$	$Q(X,Y) \Rightarrow \exists ZP(Z,X)$
$P \sqsubseteq Q^- \text{ or } P^- \sqsubseteq Q$	$P(X,Y) \Rightarrow Q(Y,X)$

where *P* and *Q* denote properties and *B* denotes a class.

DL notation	Corresponding logical rule
Professor ⊑∃TeachesIn	$Professor(X) \Rightarrow \exists Y TeachesIn(X, Y)$
Course $\sqsubseteq \exists$ RegisteredIn $^-$	$Course(X) \Rightarrow \exists Y RegisteredIn(Y, X)$

- Not safe
- From Professor(durand), I know there is some y TeachesIn(durand, y)
- Incompleteness: I don't know y
- Saturation may not terminate

Negative inclusion and inconsistencies

Negative inclusion takes one of the forms:

DL notation	
$B_1 \sqsubseteq \neg B_2$	
$R_1 \sqsubseteq \neg R_2$	

- ▶ where B_1 and B_2 are either classes or expressions of the form $\exists P$ or $\exists P^-$ for some property P
- \triangleright and where R_1 and R_2 are either properties or inverses of properties.
- Students do not teach courses

DL notation	Corresponding logical rule
Student $\sqsubseteq \neg \exists$ TeachesIn	$Student(X) \Rightarrow \neg \exists Y TeachesIn(X, Y)$
	or equivalently,
	$\exists Y Teaches In(X, Y) \Rightarrow \neg Student(X)$

- The knowledge base may be inconsistent
- Not possible with RDFS ontologies

Key constraints and more inconsistencies.

Axioms of the form (funct P) or (funct P⁻) where P is a property

DL notation	corresponding logical rule
(funct P)	$P(X,Y) \wedge P(X,Z) \Rightarrow Y = Z$
$(funct P^-)$	$P(Y,X) \wedge P(Z,X) \Rightarrow Y = Z$

- Key constraints also lead to inconsistencies
- Example:
 - ▶ (funct ResponsibleOf⁻)
 - ▶ A course must have a unique professor responsible for it
 - If we have ResponsibleOf(durand, ue111) and ResponsibleOf(dupond, ue111) The KB is inconsistent

Query answering: Example

- Abox:
 - Professor(Jim), HasTutor(John, Mary), TeachesTo(John, Bill)
- Tbox:
 - ► Professor □ ∃ Teaches To
 - ► Student

 ∃HasTutor
 - ► ∃TeachesTo⁻ □ Student
 - ► ∃HasTutor⁻ □ Professor
 - ► Professor □ ¬Student
- Queries: conjunctive queries on concepts and atomic roles
 - $q_0(x) \leftarrow TeachesTo(x,y) \wedge HasTutor(y,z)$

Query answering: Principles of reformulation

- Transform the query into FO queries over the database
- FO queries are used to check for inconsistencies of the KB
- FO queries are used to evaluate the result

- The FO queries can be evaluated using a database engine with query optimization
- Because of incompleteness, not always possible

Query answering by example (no inconsistency)

- Thox: T
 - ▶ Professor □ ∃TeachesTo
 - Student □ ∃HasTutor
 - ▶ ∃TeachesTo⁻ □ Student
 - ► ∃HasTutor⁻ □ Professor
 - ▶ Professor □ ¬Student
- Query:
 - ▶ $q_n(x) \leftarrow TeachesTo(x,y) \wedge HasTutor(y,z)$
- Reformulations of q_0 given the the Tbox \mathcal{T} :
 - ▶ $q_1(x) \leftarrow TeachesTo(x, y) \land Student(y)$
 - ▶ $q_2(x) \leftarrow TeachesTo(x,y) \wedge TeachesTo(z',y)$
 - $ightharpoonup q_3(x) \leftarrow TeachesTo(x, y')$
 - $ightharpoonup q_4(x) \leftarrow Professor(x)$
 - $ightharpoonup q_5(x) \leftarrow HasTutor(u,x)$
- Main result (holds for DL-LITE_A but not for full DL-LITE):
 - ▶ For any Abox \mathcal{A} such that $\mathcal{T} \cup \mathcal{A}$ is satisfiable: Answer $(q_0, \mathcal{T} \cup \mathcal{A}) = \bigcup_i \text{Answer}(q_i, \mathcal{A})$

Illustration

- $q_0(x) \leftarrow TeachesTo(x,y) \wedge HasTutor(y,z)$
- Student □ ∃HasTutor
- $HasTutor(y, z) \leftarrow Student(y)$
- $q_1(x) \leftarrow TeachesTo(x, y) \wedge Student(y)$

Example (ctd)

- Abox: \mathcal{A}
 - ► Professor(Jim), HasTutor(John, Mary), TeachesTo(John, Bill)
- Query
 - ▶ $q_0(x) \leftarrow TeachesTo(x,y) \land HasTutor(y,z)$
- Reformulations of q_0 given the Tbox \mathcal{T} :
 - ▶ $q_1(x) \leftarrow TeachesTo(x, y) \land Student(y)$
 - ▶ $q_2(x) \leftarrow TeachesTo(x,y) \wedge TeachesTo(z',y)$
 - $ightharpoonup q_3(x) \leftarrow TeachesTo(x, y')$
 - $ightharpoonup q_4(x) \leftarrow Professor(x)$
 - ▶ $q_5(x) \leftarrow HasTutor(u, x)$
- Result of the evaluation of the reformulations over A:
 - ▶ Answer(q_0 , $\mathcal{T} \cup \mathcal{A}$) = { Mary, Jim, John}

Consistency checking by example

- Tbox: \mathcal{T}'
 - ▶ Professor □ ∃TeachesTo
 - Student

 ∃HasTutor
 - ► ∃TeachesTo⁻ ⊑ Student
 - ▶ ∃HasTutor⁻ ⊑ Professor
 - ► Professor ⊑ ¬Student
 - ► ∃TeachesTo ⊑ ¬Student
 - ► ∃HasTutor ⊑ Student
- Saturation of the NIs (possibly using the PIs):
 - ∃ Teaches To □ ¬∃ Has Tutor
- Translation of each NI into a boolean conjunctive query:
 - ▶ $q_{unsat} \leftarrow TeachesTo(x, y) \land HasTutor(x, y')$
- Evaluation of q_{unsat} on the Abox A:
 - ► { Professor(Jim), HasTutor(John, Mary), TeachesTo(John, Bill)}
 - Answer(q_{unsat} , A) = true
- Main result:
 - ▶ $\mathcal{T}' \cup \mathcal{A}$ is inconsistent iff there exists a q_{unsat} such that Answer (q_{unsat}, \mathcal{A}) = true

- Closure of a Tbox: derive new statements
- From ∃TeachesTo □ ¬Student
- Derive Student □ ¬∃TeachesTo
- From ∃HasTutor ⊆ Student and Student ⊆ ¬∃TeachesTo
- Derive ∃HasTutor □ ¬∃TeachesTo
- From ∃HasTutor □ ¬∃TeachesTo
- Derive ∃TeachesTo □ ¬∃HasTutor

FOL reducibility of data management in DL-LITE

Query answering and data consistency checking can be performed in two separate steps:

- A reasoning step with the Tbox alone (i.e., the ontology without the data) and some conjunctive queries
- An evaluation step of conjunctive queries over the data in the Abox (without the Tbox)
 - makes it possible to use an SQL engine
 - thus taking advantage of well-established query optimization strategies supported by standard relational DBMS

Complexity results

- The reasoning step on Tbox is polynomial in the size of the Tbox
 - Produces a polynomial number of reformulations and of unsat queries
- The evaluation step over the Abox has the same data complexity as standard evaluation of conjunctive queries over relational databases
 - ▶ in AC₀ (strictly contained in LogSpace and thus in P)
- The interaction between role inclusion constraints and functionality constraints makes reasoning in DL-LITE P-complete in data complexity
 - full DL-LITE is not FOL-reducible
 - Reformulating a query may require recursion

Problem with full DL-LITE by example

• Let the Tbox ($\mathbb R$ and $\mathbb P$ are two properties and $\mathbb S$ is a class):

```
R \sqsubseteq P
(funct P)
S \sqsubseteq \exists R
\exists R^- \sqsubseteq \exists R
```

- and the query: q(x):- R(z,x)
- $r_1(x) := S(x_1), P(x_1, x)$ is a reformulation of the query q given the Tbox
 - ▶ from $S(x_1)$ and the PI $S \sqsubseteq \exists R$, it can be inferred: $\exists y \ R(x_1, y)$, and thus $\exists y \ P(x_1, y)$ (since $\mathbb{R} \sqsubseteq \mathbb{P}$).
 - ▶ from the functionality constraint on P and $P(x_1, x)$, it can be inferred: y = x, and thus: $R(x_1, x)$
 - ► Therefore: $\exists x_1 S(x_1) \land P(x_1, x) \models \exists z R(z, x)$ (i.e., $r_1(x)$ is contained in the query q(x))

Problem with full DL-LITE by example - continued

- r_1 is not the only one reformulation of the query
- In fact, there exists an *infinite* number of different reformulations for q(x):
- for $k \ge 2$, $r_k(x) := S(x_k)$, $P(x_k, x_{k-1})$, ..., $P(x_1, x)$ is also a reformulation:
 - ▶ from $S(x_k)$ and the PI $S \sqsubseteq \exists R$, it can be inferred: $\exists y_k \ R(x_k, y_k)$, and thus $\exists y_k \ P(x_k, y_k)$ (since $\mathbb{R} \sqsubseteq \mathbb{P}$).
 - from the functionality constraint on P and $P(x_k, x_{k-1})$, it can be inferred: $y_k = x_{k-1}$, and thus: $R(x_k, x_{k-1})$
 - Now, based on the PI $\exists R^- \sqsubseteq \exists R : \exists y_{k-1} R(x_{k-1}, y_{k-1}),$
 - ▶ and with the same reasoning as before, we get $y_{k-1} = x_{k-2}$, and thus: $R(x_{k-1}, x_{k-2})$.
 - ▶ By induction, it can be inferred: $R(x_1, x)$, and therefore $r_k(x)$ is contained in the query q(x).

Problem with full DL-LITE by example - end

- One can show that for each k, there exists an Abox such that the reformulation r_k returns answers that are not returned by the reformulation $r_{k'}$ for k' < k.
- Thus, there exists an infinite number of non redundant conjunctive reformulations.

Outline

- Introduction
- 2 3 ontology languages for the Wel
- Reasoning in Description Logics
- Querying Data through Ontologies
- Conclusion

Conclusion

- The scalability of reasoning on Web data requires light-weight ontologies
- One can use a description logic for which reasoning is feasible (polynomial)
- For Aboxes stored as relational databases, it is even preferable that query answering can be performed with a relational query (using query reformulation)
- Full OWL is too complex
- Consider extensions of RDFS